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Convergence to equilibrium

Consider X B pXtqtě0 an ergodic Markov process on some state
space V and let π be its invariant probability measure. One would
like to estimate for large t ě 0,

}LpXtq ´ π}tv

or any other quantity measuring the distance to equilibrium.
In practice, π is given and X is typically constructed via a
Metropolis-type procedure. The deterministic mixing time

Tε B inftt : }LpXtq ´ π}tv ď εu

enables to stop the algorithm X to get a r.v. XTε sampled
according to π, up to the precision ε P p0, 1q.



Strong stationary times
Strong stationary times provides a probabilistic approach to
convergence to equilibrium: by looking at a given trajectory, one
decides to stop it at a random time to get an exact sample of π.
A strong stationary time τ associated to X is a finite stopping
time such that

τ KK Xτ and Xτ „ π

It can be used to deduce estimates on the speed of convergence:

@ t ě 0, }LpXtq ´ π}tv ď spLpXtq, µq ď Prτ ą ts

in total variation and in separation discrepancy: for any
probability measures µ and π on the same state space:

spµ, πq B esssupπ1´
dµ

dπ
ě

1
2

›

›

›

›

dµ

dπ
´ 1

›

›

›

›

L1pπq
C }µ´ π}tv

Strong stationary times were introduced by Aldous and Diaconis
[1986] to investigate the quantitative convergence to equilibrium of
the top-to-random card shuffle.



Markov intertwining relations

How to obtain a strong stationary time?
Assume we can find an absorbed dual Markov process X B pXtqtě0
on a state space V such that there exist Λ a Markov kernel from V
to V satisfying the intertwining relations

LpX0q “ LpX0qΛ

LΛ “ ΛL

where L and L are the generators of X and X. Then there is a
coupling of X and X such that the absorption time for X is a
strong stationary time for X .
This method was developed by Diaconis and Fill [1990], at least for
discrete time and finite state spaces V and V. The coupling was
such that, for all n P Z`,

LpXJ0,nK|X q “ LpXJ0,nK|XJ0,nKq

LpXn|XJ0,nKq “ ΛpXn, ¨q



Set-valued dual processes

An interesting class of absorbed dual processes are those which are
set-valued: V is a nice subset of the set of the measurable subsets
A of V such that πpAq ą 0 or A is a singleton. The kernel Λ
corresponds to the conditional expectation under π: for any
A P V,

ΛpA, ¨q “

#

πpAX¨q
πpAq , if πpAq ą 0
δx , if A “ txu

Furthermore, the process X is assumed to be absorbed at V P V.



Pitman’s theorem

A famous example is Pitman’s intertwining relation between the
Brownian motion and the Bessel process [Pitman 1975, Pitman and
Rogers 1981]. Here V “ R, X is the Brownian motion starting
from 0 and

V B tr´r , r s : r ě 0u

The dual process X B pr´Rt ,Rtsqtě0 is given by

@ t ě 0, Rt B 2MX
t ´ Xt

where MX B pMX
t qtě0 is the maximum process:

@ t ě 0, MX
t B maxtXs : s P r0, tsu

The process pRtqtě0 is known to be a Bessel-3 process, namely
has the same law as the norm of a Brownian motion in dimension 3.



Pitman’s theorem in picture

R

time

Figure: Trajectories: Brownian motion Br0,ts, Rr0,ts, ´Rr0,ts, and the
segment-valued dual: r´Rt ,Rts
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Random mappings (1)

Consider here the discrete time and finite state space situation. Let
P B pPpx , yqqx ,yPV be the transition matrix of X B pXnqnPZ` .
Assume P irreducible and let π be the invariant probability measure.
The adjoint transition matrix P˚ B pP˚px , yqq is given by

@ x , y P V , P˚px , yq B
πpyq

πpxq
Ppy , xq

A random mapping ψ : V Ñ V is said to be associated to P˚

when

@ x , x 1 P V , Prψpxq “ x 1s “ P˚px , x 1q

It is convenient to have at our disposal a family of random
mappings pψSqSPV̄ associated to P˚, where V̄ B tA : A Ă V u.



Random mappings (2)

Such a family enables to define a random mapping Ψ from V̄ to V̄
via

@ S P V̄, ΨpSq B ty P V : ψSpyq P Su

Consider the transition matrix K from V̄ to V̄ given by

@ S , S 1 P V̄, K pS ,S 1q B PrΨpSq “ S 1s

as well as its Doob transform:

@ S ,S 1 P V, PpS ,S 1q B
πpS 1q

πpSq
K pS , S 1q

where V “ V̄ztHu.



Conditioned random mappings

For x , x 1 P V with Ppx , x 1q ą 0 and S P V containing x , denote

@ S 1 P V, Kx ,x 1pS , S
1q B PrΨpSq “ S 1|ψSpx

1q “ xs

Note that the conditioning is non-degenerate, since
PrψSpx

1q “ xs “ P˚px 1, xq ą 0. Consider

W B tpx ,Sq P V ˆV : x P Su

and let A be the set of probability measures m on W of the form

@ px ,Sq PW , mpx ,Sq “ µpSqΛpS , xq

where µ is the marginal of m on V. Define a Markov kernel Q on
W via

@ px ,Sq, px 1, S 1q PW , Qppx ,Sq, px 1, S 1qq B Ppx , x 1qKx ,x 1pS ,S
1q



Principle of the construction via random mappings

Theorem 1

Let pXn,XnqnPZ` be a Markov chain on W whose initial
distribution LpX0,X0q belongs to A and whose transitions are given
by Q. Then X B pXnqnPN is a set-valued absorbed dual for
X B pXnqnPN whose transitions are given by P.

This result is related to the coupling-from-the-past algorithm of
Propp and Wilson [1996] and to the evolving set process of Morris
and Peres [2005]. There is an improvement based on random
mappings weakly associated to P˚.



A corresponding algorithm

Let be given a trajectory pxnqnPZ` of X . We start with X0 B tx0u

(this can sometimes be improved, for instance one can take X0 “ S
if LpX0q “ ΛpS , ¨q). Assume next that Xn has been constructed for
some for n P Z`. We consider a random mapping ψXn weakly
associated to P˚, whose law may depend on Xn (but not directly
on pxmqmPJ0,nK) and whose underlying randomness is independent
from all that has been done before. We condition by the fact that
ψXnpxn`1q “ xn and we sample a corresponding mapping ϕ, to
construct

Xn`1 B ty P V : ϕpyq P Xnu

Due to the conditioning, we are sure that xn`1 P Xn`1.
This works for any random mapping associated to P˚, all the
difficulty stays on relevant choices leading to (close to optimal)
strong stationary times.
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A denumerable state space example

Consider the transition “matrix” of the simple random walk on Z:

@ x , y P Z, Ppx , yq B

"

1{2 , if |y ´ x | “ 1
0 , otherwise

An invariant measure π is the counting measure, it is even reversible
for P , in the sense that P˚ “ P . The kernel Λ is still well-defined,
if we take for V the set of finite non-empty subsets of Z.
Let X B pXnqnPZ` be a random walk with transition kernel P and
starting from 0. Introduce the process R_ B pR_n qnPZ` defined by

@ n P Z`, R_n B 2maxtXm : m P J0, nKu ´ Xn

Finally consider X B pXnqnPZ` given by

@ n P Z`, Xn B tX_n ´ 2m : m P J0,X_n Ku

Pitman [1975] has shown that X is a set-valued dual for X .



A corresponding random mapping

Consider the function ψ given by

@ S P V, @ x P Z, @ b P t´1, 1u,

ψpS , x , bq B

"

x ` b , if x ą maxpSq
x ´ b , if x ď maxpSq

Consider a Rademacher variable B , i.e. such that
PrB “ ´1s “ PrB “ 1s “ 1{2 and for fixed S P V, let ψS be the
random mapping given by

@ x P Z, ψSpxq B ψpS , x ,Bq

It is clear that ψS is a random mapping associated to P˚ “ P . The
discrete Pitman’s theorem can be easily deduced from Theorem 1
with the family pψSqsPV.



Schematic proof

m m ` 1 m m ` 1 m m ` 1 m m ` 1

Figure: Schematic proof of the discrete Pitman theorem via random
mappings
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A card shuffle example
The top-to-random shuffle takes the top card of a deck and put
it at a uniform random location inside. With N the number of
cards, it leads to a Markov chain X B pXnqnPZ` on the symmetric
group V B SN , starting from id and whose transition matrix
P B pPpσ, σ1qqσ,σ1PSN

is given by

Ppσ, σ1q B

$

&

%

1{N , if there exists l P J1,NK with
σ1 “ p1Ñ l Ñ l ´ 1Ñ ¨ ¨ ¨ Ñ 2q ˝ σ

0 , otherwise

P is irreducible and its invariant probability π is the uniform
probability distribution on SN . The Markov chain X admits a
famous set-valued dual process rX B prXnqnPZ` defined by Aldous
and Diaconis [1986]:

@ n P Z`, rXn B AXn,Yn

where Yn P J1,NK is the position of the initial last card and with for
any σ P SN and y P J0,NK,

Aσ,y B tσ1 P SN : σ1p1q “ σp1q, ..., σ1pyq “ σpyqu



A corresponding random mapping (1)

The associated strong stationary time rτ is first time the initial last
card arrives at the top of the deck and is inserted. It is easy to
check that Errτ s „ N lnpNq.
Let us check that first time τ the initial last-but-one card arrives at
the top of the deck and is inserted is also a strong stationary time,
strictly better than rτ , but since Errτ s ´ Erτ s “ N, the improvement
is not very significant. The proof uses random mappings.
Here P˚ is the transition matrix of the random-to-top shuffle and
corresponds to taking a card of the deck at a uniform random
location and putting it at the top. Consider for any x P J1,NK, the
mapping ψpxq : SN Ñ SN which acts on any permutation σ by
removing the card x from the deck and putting it at the top.
Formally, we have

@ σ P SN , ψpxqpσq “ p1Ñ 2Ñ ¨ ¨ ¨ Ñ σ´1pxqq ˝ σ

(σ´1pxq is the position of the card x).



A corresponding random mapping (2)

Let pUnqnPN be a family of independent random variables uniformly
distributed on J1,NK. At any time n P N, consider the random
mapping ψpUnq, it is associated to P˚. Here there is no dependence
on a subset S P V.
Let be given a trajectory xJ0,nK, for some fixed n P Z`, starting
from the identity, x0 “ id. For any m P J1, nK, let ϕm be the
conditioning of ψpUmq by ψpUmqpxmq “ xm´1. As in the previous
example, ϕm is deterministic, as we have ϕm “ ψpxm´1p1qq.
It can be checked that

@ n P Z`, Xn “ tσ P SN : ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpσq “ idu

and that the corresponding absorption time at SN is τ .
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Extensions

Theorem 1 admits several extensions:
‚ the state space V can be a Polish space,
‚ the time can be continuous (for the moment, only in a regular
diffusion framework).
The underlying theory is quite involved and misses the existence of
convenient stochastic coalescing flows depending on subset
evolutions, despite the works of Le Jan and Raymond [2004, 2006].
Let us just illustrate the use of stochastic coalescing flows on the
classical Brownian motion:

Theorem 2

The process X “ pr´pLX0 ptq ` |Xt |q, L
X
0 ptq ` |Xt |qqtě0 is a

set-valued dual for the Brownian motion X starting from 0, where
LX0 B pL

X
0 ptqqtě0 is the local time of X at 0.

One recover Pitman’s theorem, by taking into account that the two
processes pLX0 ` |X | ,X q and p2M

X ´ X ,X q have the same law.



Stochastic coalescing flows

Let B B pBsqsě0 be another Brownian motion. Consider the
following system of equations, for all t ě 0 and y P R,

#

dY
ptq
s pyq “ ´sgnpY ptqs pyqqdB

ptq
s , @ s P r0, ts

Y
ptq
0 pyq “ y

(1)

where sgn equals ´1 on p´8, 0s and 1 on p0,`8q and where
Bptq B pBt´sqsPr0,ts is the time-reversed process associated to B at
time t ě 0.
Le Jan and Raimond [2006] provide a (non-Wiener) coalescing
stochastic flow solution to this system.
Define ψ B pψs,tpyqqps,t,yqP4ˆR via

@ x P R, @ 0 ď s ď t, ψs,tpyq B Y
ptq
t´spyq

with 4 B tps, tq : 0 ď s ď tu. By monotonicity in y , there is a
version of ψ which is càdlàg in y .



Conditioned stochastic coalescing flows (1)
Fix t ě 0 and a Brownian trajectory Xr0,ts. Conditioning ψ by the
event

@ s P r0, ts, ψs,tpXtq “ Xs

implies in particular that X ptq is a solution to Tanaka’s stochastic
differential equation:

@ s P r0, ts, dX
ptq
s “ ´sgnpX ptqs qdB

ptq
s

We deduce that the conditioned flow ϕ is given by

@ 0 ď s ď t, @ z P R, ϕs,tpzq B Z
ptq
s pzq

where
#

dZ
ptq
s pzq “ sgnpZ ptqs pzqqsgnpX ptqs qdX

ptq
s

Z
ptq
0 pzq “ z

This system is the same as (1), once Bptq is replaced by the
standard Brownian motion p´

şs
0 sgnpX ptqv q dX

ptq
v qsPr0,ts.



Conditioned stochastic coalescing flows (2)

Theorem 2 is deduced from the fact that X B pXtqtě0, defined by

@ t ě 0, Xt B ϕ´1
0,t pt0uq

is a set-valued dual for X and that we can compute

@ t ą 0, Xt “ r´pLX0 ptq ` |Xt |q, L
X
0 ptq ` |Xt |q

In the underlying theory, one has to consider

V B tra, bq : a ă b P Ru

to which is added the initial subset Xp0q “ t0u.



What we really want

We would like to have at our disposal a solution to the following
system of equations, for all 0 ď s ď t and y P R,
$

’

&

’

%

dY
ptq
s pyq “ ´sgnpY ptqs pyq ´ R_t´sqdB

ptq
s ` bpY

ptq
s pyqqds

Y
ptq
0 pyq “ y

R_t´s B maxtz P R : Y
pt´sq
t´s pzq P X0u

where b : RÑ R is a nice drift.
For b “ 0, it would lead to a proof of Pitman’s theorem similar to
that given in the discrete situation. Above all, for b ­“ 0, it would
provide a direct coupling of the diffusion X solution of the s.d.e.

@ t ě 0, dXt “ dWt ` bpXtqdt

(where W B pWtqtě0 is a Brownian motion) with a non-trivial
segment-valued dual process. It would open the way for
multidimensional and hypo-elliptic extensions, which are the remote
motivation for this work.
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