Most probable exit points for the overdamped Langevin dynamics

Dorian Le Peutrec

(Joint work with Giacomo Di Gesù, Tony Lelièvre, and Boris Nectoux)

Advances in Computational Statistical Physics

CIRM, September 2018

Introduction – Motivation

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

Results

- Hypotheses and notation
- Results
- Comments

Introduction – Motivation

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

2 Results

- Hypotheses and notation
- Results
- Comments

Introduction – Motivation

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

Results

- Hypotheses and notation
- Results
- Comments

$\fbox{3}$ About the proof when $X_0\sim \mathsf{QSD}$

• Overdamped Langevin dynamics :

$$\hookrightarrow$$
 System $X = (X_t)_{t \geq 0}$ of d particles

$$dX_t = -\nabla f(X_t) \, dt + \sqrt{h} \, dB_t$$

Where :

- *f* potential function (assumed to be smooth here!)
- $h = \kappa_B T$, $T \leftrightarrow$ temperature, $\kappa_B \leftrightarrow$ Boltzmann constant
- $B = (B_1, \ldots, B_d) \leftrightarrow d$ independent Brownian motions
- When 0 < h ≪ 1, the process X is trapped during a long period of time near a local minimum of f before going to another region of ℝ^d
 - $\hookrightarrow \mathsf{This} \text{ regions are said metastable (} \longleftrightarrow \mathsf{tunneling effect)}$
 - \hookrightarrow Long period of inactivities between two "transitions"

• General question : For $\Omega \subset \mathbb{R}^d$ metastable and $h \ll 1$,

what is the behaviour of the exit event from Ω ?

 $\mathbf{Rk} : \mathsf{Exit event from } \Omega = \left\{ \begin{array}{l} \mathsf{time spent in } \Omega \\ + \mathsf{exit point distribution} \end{array} \right.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• General question : For $\Omega \subset \mathbb{R}^d$ metastable and $h \ll 1$,

what is the behaviour of the exit event from Ω ?

 $\mathbf{Rk} : \mathsf{Exit} \text{ event from } \Omega \ = \left\{ \begin{array}{c} \mathsf{time spent in } \Omega \\ + \mathsf{exit point distribution} \end{array} \right.$

• We focus here on the most probable exit points :

Let $\Omega \subset \mathbb{R}^d$ be a smooth open and connected set, and

 $\tau_{\Omega} = \inf\{ t \ge 0 \mid X_t \notin \Omega \}$ the first exit time from Ω .

Definition 1

 X_{τ_Ω} concentrates on $\mathcal{Y} \subset \partial \Omega$ if :

- for any neigh.
$$\mathcal{V}_{\mathcal{Y}} \subset \partial \Omega$$
 of \mathcal{Y} , $\lim_{h \to 0^+} \mathbb{P}(X_{\tau_{\Omega}} \in \mathcal{V}_{\mathcal{Y}}) = 1$

- for any $x \in \mathcal{Y}$ and $\mathcal{V}_x \subset \partial \Omega$ neigh. of x, $\lim_{h \to 0^+} \mathbb{P}(X_{\tau_\Omega} \in \mathcal{V}_x) > 0$

Introduction – Motivation

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

2 Results

- Hypotheses and notation
- Results
- Comments

 When ∂_nf > 0 on ∂Ω and f admits one unique critical point x₀ in Ω (and hence f(x₀) = min_Ω f) being non degenerate, it holds :

$$\forall x \in \Omega, \forall F \in \mathcal{C}^{\infty}(\partial\Omega, \mathbb{R}), \ \mathbb{E}^{x}[F(X_{\tau_{\Omega}})] = \frac{\int_{\partial\Omega} F \,\partial_{n} f \, e^{-\frac{2}{h}f} \, d\sigma}{\int_{\partial\Omega} \partial_{n} f \, e^{-\frac{2}{h}f} \, d\sigma} + o(1)$$

[Follows from M.I. Freidlin and A.D. Wentzell when $\operatorname{argmin}_{\partial\Omega} f = \{z_0\}$ (1970) Result formally obtained in general by B.J. Matkowsky and Z. Schuss (1977) Proved by S. Kamin (1978,1979), M.V. Day (1984, 1987), B. Perthame (1990)]

$$\mathsf{Rk} \ \mathbf{1} : x \mapsto \mathbb{E}^{x}[F(X_{\tau_{\Omega}})] \text{ is the sol. to } \left\{ \begin{array}{c} -\frac{h}{2}\Delta g + \nabla f \cdot \nabla g = 0 \\ g \big|_{\partial\Omega} = F \end{array} \right.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rk 2 : These results are also valid in the non-gradient case !

 When ∂_nf > 0 on ∂Ω and f admits one unique critical point x₀ in Ω (and hence f(x₀) = min_Ω f) being non degenerate, it holds :

$$\forall x \in \Omega, \forall F \in \mathcal{C}^{\infty}(\partial\Omega, \mathbb{R}), \ \mathbb{E}^{x}[F(X_{\tau_{\Omega}})] = \frac{\int_{\partial\Omega} F \,\partial_{n} f \, e^{-\frac{2}{h}f} \, d\sigma}{\int_{\partial\Omega} \partial_{n} f \, e^{-\frac{2}{h}f} \, d\sigma} + o(1)$$

[Follows from M.I. Freidlin and A.D. Wentzell when $\operatorname{argmin}_{\partial\Omega} f = \{z_0\}$ (1970) Result formally obtained in general by B.J. Matkowsky and Z. Schuss (1977) Proved by S. Kamin (1978,1979), M.V. Day (1984, 1987), B. Perthame (1990)]

Rk 1:
$$x \mapsto \mathbb{E}^{x}[F(X_{\tau_{\Omega}})]$$
 is the sol. to $\begin{cases} -\frac{h}{2}\Delta g + \nabla f \cdot \nabla g = 0 \\ g \Big|_{\partial\Omega} = F \end{cases}$

Rk 2 : These results are also valid in the non-gradient case !

 \hookrightarrow When $X_0 = x \in \Omega$, X_{τ_Ω} concentrates on $\operatorname{argmin}_{\partial\Omega} f$ (with explicitly computable asymptotic relative probabilities)

- We want to obtain similar results for quite general domains Ω when X₀ is distributed according to the QSD of Ω and to extend them to deterministic initial conditions X₀ = x.
- More precisely, we look for geometric assumptions ensuring that :
 - when $X_0 \sim \text{QSD}$, the distrib. of X_{τ_Ω} concentrates on $\mathcal{Y} \subset \operatorname{argmin}_{\partial\Omega} f$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• these results extend to $X_0 = x$ for some particular x to be specified

Introduction – Motivation

- Overdamped Langevin dynamics
- Previous results

• Quasi-stationary distribution (QSD)

2 Results

- Hypotheses and notation
- Results
- Comments

- **Def** : A QSD ν on Ω is a measure supp. in Ω s.t. $\mathcal{L}^{\nu}(X_t | t < \tau_{\Omega}) = \nu$
- Infinitesimal generator of the dynamics :

$$L^{(0)} := -\frac{h}{2}\Delta + \nabla f \cdot \nabla = -\frac{h}{2} e^{\frac{2}{h}f} \operatorname{div} \left(e^{-\frac{2}{h}f} \nabla \cdot \right)$$

- $(L^{(0)}, (H^2 \cap H^1_0)(\Omega, e^{-\frac{2}{h}f}dx))$ s.a. ≥ 0 on $L^2_w = L^2(\Omega, e^{-\frac{2}{h}f}dx)$
- Discrete spectrum, the principal e.v. $\lambda_1(h) > 0$ is non degenerate
- The principal $\vec{e.v}$. has a sign on Ω

Proposition 2

Let u_h be any $\vec{e.v.}$ associated with $\lambda_1(h) > 0$. Then

$$d\nu_h = \frac{u_h \ e^{-\frac{2}{h}f} dx}{\int_{\Omega} u_h(y) \ e^{-\frac{2}{h}f(y)} dy}$$

is a QSD for the process $(X_t | t < \tau_{\Omega})$.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Proposition 3 (Le Bris, Lelièvre, Luskin, Perez)

For every probability μ_0 on Ω and every t large enough,

$$\|\mathcal{L}^{\mu_0}(X_t|t< au_\Omega)-
u_h\|_{TV}\leq C(\mu_0)e^{-(\lambda_2(h)-\lambda_1(h))\,t}$$

 $\hookrightarrow \mathsf{The}\;\mathsf{QSD}\;\mathsf{is}\;\mathsf{unique}\,!$

Proposition 4

When $X_0 \sim \nu_h$:

- τ_{Ω} are $X_{\tau_{\Omega}}$ independent,
- 2 $\tau_{\Omega} \sim \mathcal{E}(\lambda_1(h)),$
- **③** $X_{\tau_{\Omega}}$ has the following density on $\partial\Omega$:

$$z \in \partial \Omega \mapsto -\frac{h}{2 \,\lambda_1(h)} \frac{\partial_n u_h(z) \ e^{-\frac{2}{h}f(z)}}{\int_\Omega u_h(y) e^{-\frac{2}{h}f(y)} dy}$$

(日) (四) (문) (문) (문)

Introduction – Motivatior

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

Results

- Hypotheses and notation
- Results
- Comments

3 About the proof when $X_0\sim$ QSD

Introduction – Motivatior

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

2 Results

• Hypotheses and notation

- Results
- Comments

- "Morse" type hypotheses on f (MH) :
 - f is a smooth Morse function on $\overline{\Omega}$
 - ∇f does not vanish on $\partial \Omega$
 - $f|_{\partial\Omega}$ (or more generally $f|_{\{\sigma \text{ s.t. } \partial_n f(\sigma) > 0\}}$) is a Morse function
 - $\mathcal{U}_0 := \{ \text{local minima of } f \text{ in } \Omega \}$ is not empty
- Minimal energy needed to reach the boundary :
 - Let us define, for any $x \in \mathcal{U}_0$,

$$H_f(x) := \inf_{\substack{\gamma \in C([0, 1], \overline{\Omega}) \\ \gamma(0) = x \\ \gamma(1) \in \partial\Omega}} \max_{t \in [0, 1]} f(\gamma(t))$$

• and, for some arbitrary $x_1 \in \operatorname{argmax} \{H_f(x) - f(x), x \in U_0\}$,

 C_1 := connected component of $\{f < H_f(x_1)\}$ containing x_1

Geometric hypotheses (GH) :

• (GH1) $\operatorname{argmax}\{H_f(x) - f(x), x \in U_0\} \subset C_1$

(\Rightarrow the definition of C_1 does not depend on the choice of x_1 !)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- (GH2) $\partial C_1 \cap \partial \Omega \neq \emptyset$
- (GH3) $\partial C_1 \cap \partial \Omega \subset \operatorname{argmin}_{\partial \Omega} f$

An example where (GH) is satisfied

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Generalized saddle points on $\partial \Omega$

• Generalized saddle points on $\partial \Omega$:

$$\begin{aligned} \mathcal{U}_1^{\partial\Omega} &= \{ \text{local minima of } f \big|_{\partial\Omega} \text{ where } \partial_n f > 0 \} \\ &= \{ z_1, \dots, z_{m_1} \} \subset \partial\Omega \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Generalized saddle points on $\partial \Omega$

• Generalized saddle points on $\partial \Omega$:

$$\begin{aligned} \mathcal{U}_1^{\partial\Omega} &= \{ \text{local minima of } f \big|_{\partial\Omega} \text{ where } \partial_n f > 0 \} \\ &= \{ z_1, \dots, z_{m_1} \} \subset \partial\Omega \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•
$$\mathcal{U}_1^{\partial\Omega} \cap \operatorname{argmin}_{\partial\Omega} f = \{z_1, \ldots, z_{k_1}\} \ (0 \leq k_1 \leq m_1)$$

Generalized saddle points on $\partial \Omega$

• Generalized saddle points on $\partial \Omega$:

$$\begin{aligned} \mathcal{U}_1^{\partial\Omega} &= \{ \text{local minima of } f \big|_{\partial\Omega} \text{ where } \partial_n f > 0 \} \\ &= \{ z_1, \dots, z_{m_1} \} \subset \partial\Omega \end{aligned}$$

•
$$\mathcal{U}_1^{\partial\Omega} \cap \operatorname{argmin}_{\partial\Omega} f = \{z_1, \ldots, z_{k_1}\} \ (0 \leq k_1 \leq m_1)$$

• $\partial C_1 \cap \partial \Omega = \partial C_1 \cap \mathcal{U}_1^{\partial \Omega} \cap \operatorname{argmin}_{\partial \Omega} f = \{z_1, \dots, z_{k_1}^{\partial c_1}\}$

Rk : From our hypotheses : $1 \leq k_1^{\partial C_1} \leq k_1 \leq m_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction – Motivatior

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

2 Results

- Hypotheses and notation
- Results
- Comments

Theorem 1 (with G. Di Gesù, T. Lelièvre et B. Nectoux)

We assume (MH) and (GH).

Let $F \in C^{\infty}(\partial\Omega, \mathbb{R})$ and $\{\Sigma_1, \ldots, \Sigma_{k_1}\}$ be a family of disjoint neigh. of $\{z_1, \ldots, z_{k_1}\} = \mathcal{U}_1^{\partial\Omega} \cap \operatorname{argmin}_{\partial\Omega} f$ in $\partial\Omega$.

We assume that $X_0 \sim \nu_h$ or $X_0 = x \in C_1$. Then :

1. There exists c > 0 such that in the limit $h \rightarrow 0^+$,

$$\mathbb{E}^{X_0}[F(X_{\tau_\Omega})] = \sum_{i=1}^{k_1} \mathbb{E}^{\nu_h}[\mathbf{1}_{\Sigma_i}F(X_{\tau_\Omega})] + O(e^{-\frac{c}{h}})$$

and

$$\sum_{i=k_1^{\partial C_1}+1}^{k_1} \mathbb{E}^{X_0}[\mathbf{1}_{\Sigma_i}F(X_{\tau_\Omega})] = O(h^{\frac{1}{4}})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 1 (with G. Di Gesù, T. Lelièvre et B. Nectoux)

We assume (MH) and (GH).

Let $F \in C^{\infty}(\partial\Omega, \mathbb{R})$ and $\{\Sigma_1, \ldots, \Sigma_{k_1}\}$ be a family of disjoint neigh. of $\{z_1, \ldots, z_{k_1}\} = \mathcal{U}_1^{\partial\Omega} \cap \operatorname{argmin}_{\partial\Omega} f$ in $\partial\Omega$.

We assume that $X_0 \sim \nu_h$ or $X_0 = x \in C_1$. Then :

2. For every $i \in \{1, \dots, k_1^{\partial C_1}\}$, it holds when $h \to 0^+$,

$$\mathbb{E}^{X_0}[\mathbf{1}_{\Sigma_i}F(X_{\tau_{\Omega}})] = F(z_i) a_i + O(h^{\frac{1}{4}})$$

where

$$a_i = \frac{\partial_n f(z_i)}{\sqrt{\det \operatorname{Hess} f}|_{\partial \Omega}(z_i)} \Big(\sum_{k=1}^{k_1^{\partial C_1}} \frac{\partial_n f(z_k)}{\sqrt{\det \operatorname{Hess} f}|_{\partial \Omega}(z_k)}\Big)^{-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem 1 (with G. Di Gesù, T. Lelièvre et B. Nectoux)

We assume (MH) and (GH).

Let $F \in C^{\infty}(\partial\Omega, \mathbb{R})$ and $\{\Sigma_1, \ldots, \Sigma_{k_1}\}$ be a family of disjoint neigh. of $\{z_1, \ldots, z_{k_1}\} = \mathcal{U}_1^{\partial\Omega} \cap \operatorname{argmin}_{\partial\Omega} f$ in $\partial\Omega$.

We assume that $X_0 \sim \nu_h$ or $X_0 = x \in C_1$. Then :

3. Under some additional geometric assumption, it holds :

$$\sum_{i=k_1^{\partial C_1}+1}^{k_1} \mathbb{E}^{X_0}[\mathbf{1}_{\Sigma_i}F(X_{\tau_\Omega})] = O(e^{-\frac{c}{h}}) + O(h^{\frac{1}{4}})$$

and for every $i \in \{1, \ldots, k_1^{\partial C_1}\}$,

$$\mathbb{E}^{X_0}[\mathbf{1}_{\Sigma_i}F(X_{\tau_\Omega})] = F(z_i)a_i + O(h) + \mathcal{O}(h^{\frac{1}{4}})$$

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - のへで

Introduction – Motivatior

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

Results

- Hypotheses and notation
- Results
- Comments

3 About the proof when $X_0 \sim$ QSD

<ロト <四ト <注入 <注下 <注下 <

Under (MH) and (GH):

• f can have local minima with larger energies than $\min_{\partial\Omega} f$

Under (MH) and (GH) :

- f can have local minima with larger energies than $\min_{\partial\Omega} f$
- Results also valid for any $x \in \Omega$ sent in C_1 by the flow of $-\nabla f$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Under (MH) and (GH) :

- f can have local minima with larger energies than $\min_{\partial\Omega} f$
- Results also valid for any $x \in \Omega$ sent in C_1 by the flow of $-\nabla f$

• When $X_0 \sim \nu_h$ or $X_0 = x$ as specified above, X_{τ_Ω} concentrates on

 $\mathcal{Y} = \partial C_1 \cap \partial \Omega \subset \operatorname{argmin}_{\partial \Omega} f$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Under (MH) and (GH) :

- f can have local minima with larger energies than min $_{\partial\Omega} f$
- Results also valid for any $x \in \Omega$ sent in C_1 by the flow of $-\nabla f$
- When $X_0 \sim \nu_h$ or $X_0 = x$ as specified above, X_{τ_Ω} concentrates on

$$\mathcal{Y} = \partial C_1 \cap \partial \Omega \subset \operatorname{argmin}_{\partial \Omega} f$$

• But $X_{\tau_{\Omega}}$ does not concentrate on the sets

 $\{z_{k_1^{\partial C_1}+1}, \dots, z_{k_1}\}$ and $\{\text{global minima of } f|_{\partial\Omega} \text{ where } \partial_n f < 0\}$

which have energy $\min_{\partial\Omega} f$ (and can be non-empty)

• As a consequence, when

$$\partial_n f > 0 \text{ on } \partial \Omega \quad \text{and} \quad (\nabla f)^{-1}(\{0\}) \subset \{f < \min_{\partial \Omega} f\},$$

it holds $k_1^{\partial C_1} = k_1$ (iff $\partial C_1 \cap \partial \Omega = \operatorname{argmin}_{\partial \Omega} f$) and for every $x \in \Omega$:

$$\mathbb{E}^{\mathsf{x}}[F(X_{\tau_{\Omega}})] = \sum_{i=1}^{k_{1}} F(z_{i}) a_{i} + O(h^{\frac{1}{4}}) = \frac{\int_{\partial \Omega} F \partial_{n} f e^{-\frac{2}{h}f} d\sigma}{\int_{\partial \Omega} \partial_{n} f e^{-\frac{2}{h}f} d\sigma} + o(1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 \hookrightarrow One recovers in particular the previous mentioned results

• As a consequence, when

$$\partial_n f > 0 \text{ on } \partial \Omega \quad \text{and} \quad (\nabla f)^{-1}(\{0\}) \subset \{f < \min_{\partial \Omega} f\},$$

it holds $k_1^{\partial C_1} = k_1$ (iff $\partial C_1 \cap \partial \Omega = \operatorname{argmin}_{\partial \Omega} f$) and for every $x \in \Omega$:

$$\mathbb{E}^{\mathsf{x}}[F(X_{\tau_{\Omega}})] = \sum_{i=1}^{k_{1}} F(z_{i}) a_{i} + O(h^{\frac{1}{4}}) = \frac{\int_{\partial \Omega} F \partial_{n} f e^{-\frac{2}{h}f} d\sigma}{\int_{\partial \Omega} \partial_{n} f e^{-\frac{2}{h}f} d\sigma} + o(1)$$

 \hookrightarrow One recovers in particular the previous mentioned results

• Two simple examples :

- Intermediate results about $\lambda_1(h)$:
 - Under (MH), there exist $C_1, C_2 > 0$ such that when $h \to 0^+$,

$$\frac{C_1}{h^{\rho}}e^{-\frac{2}{h}(H_f(x_1)-f(x_1))} \leq \lambda_1(h) \leq \frac{C_2}{h^{\rho}}e^{-\frac{2}{h}(H_f(x_1)-f(x_1))}$$

for some $p \in \{0, \frac{1}{2}\}$ and

(GH1) holds iff $\exists c > 0$ s.t. $\lambda_1(h) = \lambda_2(h) O(e^{-\frac{c}{h}})$.

Laslty, under (MH), (GH1), and (GH2), it holds :

$$\lambda_1(h) = \frac{\sum_{j=1}^{k_1^{\partial C_1}} \partial_n f(z_j) \left(\det \operatorname{Hess} f \big|_{\partial \Omega}(z_j) \right)^{-\frac{1}{2}}}{\sqrt{\pi \ h} \sum_{x \in \operatorname{argmin}_{C_1} f} \left(\det \operatorname{Hess} f(x) \right)^{-\frac{1}{2}}} e^{-\frac{2}{h} (H_f(x_1) - f(x_1))} (1 + O(\sqrt{h}))$$

• Some related results about the low spectrum of $L^{(0)}$ (in Ω or in \mathbb{R}^d) :

- Probabilistic approach : Holley-Kusuoka-Stroock, Miclo, Mathieu, Bovier-Gayrard-Klein
- Semi-classical approach : Helffer-Klein-Nier, Helffer-Nier, L.P., Michel
- Langevin (in \mathbb{R}^d) : Hérau-Hitrik-Sjöstrand

Introduction – Motivatior

- Overdamped Langevin dynamics
- Previous results
- Quasi-stationary distribution (QSD)

2 Results

- Hypotheses and notation
- Results
- Comments

3 About the proof when $X_0 \sim QSD$

Let u_h be any $\vec{e.v.}$ associated with $\lambda_1(h)$ and $F \in C^{\infty}(\partial\Omega, \mathbb{R})$, then :

$$\mathbb{E}^{\nu_h}[F(X_{\tau_\Omega})] = -\frac{h}{2\lambda_1(h)} \frac{\int_{\partial\Omega} F(z) \partial_n u_h(z) e^{-\frac{2}{h}f(z)} dz}{\int_{\Omega} u_h(x) e^{-\frac{2}{h}f(x)} dx}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - のへで

- \hookrightarrow we precisely estimate :
 - λ₁(h)
 - $\int_{\Omega} u_h(y) e^{-\frac{2}{h}f(y)} dy$
 - $\partial_n u_h$ on $\partial \Omega$

• By standard techniques developed in semiclassical analysis, for $p \in \{0, 1\}$ and C > 0 small enough :

$$\dim \left(\operatorname{Im} \mathbf{1}_{[0,C)}(L^{(p)}) \right) = \dim \left(\operatorname{Im} \mathbf{1}_{[0,he^{-\frac{C}{h}})}(L^{(p)}) \right) = \mathsf{Card}(\mathcal{U}_p)$$

where

$$\mathcal{U}_1 := \mathcal{U}_1^{\partial \Omega} \cup \{ \text{saddle points of } f \text{ in } \Omega \}$$

Use the supersymmetric extension "à la Witten"

$$L^{(1)} := L^{(0)} \otimes \mathrm{Id} + \mathrm{Hess}\,f,$$

 $\begin{aligned} \mathsf{Dom}(L^{(1)}) &= \left\{ v \in \Lambda^1 H^2(\Omega, e^{-\frac{2}{h}f} dx) \, ; \, \mathbf{t}v = 0 \, \operatorname{et} \, \mathbf{t}(\operatorname{div}\left(e^{-\frac{2}{h}f}v\right)) = 0 \right\} \\ &\hookrightarrow \, \operatorname{s.a.} \geq 0 \, \operatorname{on} \, \Lambda^1 L^2(\Omega, e^{-\frac{2}{h}f} dx) \, \operatorname{and} \\ & L^{(1)} \nabla \, = \, \nabla \, L^{(0)} \end{aligned}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

• Reduce the problem to a finite dimensional one :

$$\hookrightarrow \text{ we study } \nabla : \text{ Im } \mathbf{1}_{[0,C)}(\mathcal{L}^{(0)}) \to \text{ Im } \mathbf{1}_{[0,C)}(\mathcal{L}^{(1)}) :$$

$$L^{(0)} = -\frac{h}{2} e^{\frac{2}{h}f} \operatorname{div} \left(e^{-\frac{2}{h}f} \nabla \cdot \right)$$
$$= \frac{h}{2} \nabla^* \nabla \quad \left(\text{ adjoint w.r.t. } e^{-\frac{2}{h}f} dx \right)$$

$$\hookrightarrow \left\{ \mathsf{E.v. of } \mathcal{L}^{(0)} \big|_{\operatorname{Im} \mathbf{1}_{[0,C)}(\mathcal{L}^{(0)})} \right\} = \left\{ \frac{h}{2} \left(\mathsf{Sing. V. of } \nabla \big|_{\operatorname{Im} \mathbf{1}_{[0,C)}(\mathcal{L}^{(0)})} \right)^2 \right\}$$

 $\hookrightarrow {\sf Construct} \ (u_j^{(p)})_{j\in\{1,\ldots,{\rm Card}\,{\mathcal U}_p^{\overline\Omega}\}} \ {\sf an \ appropriate \ basis \ of}$

Im
$$\mathbf{1}_{[0,C)}(L^{(p)})$$
, $p \in \{0,1\}$

in which the matrix abla is estimable

On this simple example :

 \hookrightarrow A "good" choice of "quasi-modes" first leads to the singular values of :

$$\begin{pmatrix} a_1 & O(e^{-\frac{c}{h}}) \\ b_1 h^{\frac{1}{4}} & b_2 h^{\frac{1}{4}} \\ O(e^{-\frac{c}{h}}) & a_2 \end{pmatrix} \times \begin{pmatrix} h^{-\frac{3}{4}}e^{-\frac{f(z_1)-f(x_1)}{h}} & 0 \\ 0 & h^{-\frac{3}{4}}e^{-\frac{f(z_2)-f(x_2)}{h}} \end{pmatrix}$$

where

$$a_i \sim -(rac{2}{\sqrt{\pi}})^{rac{1}{2}} |f'(z_i)|^{rac{1}{2}} |f''(x_i)|^{rac{1}{4}} ext{ et } b_i \sim (-1)^i rac{1}{\sqrt{\pi}} |f''(z)|^{rac{1}{4}} |f''(x_i)|^{rac{1}{4}}$$

On this simple example :

 \hookrightarrow Which finally leads to :

$$\begin{split} \lambda_1(h) &= \frac{h}{2} \left(a_1^2 + O(\sqrt{h}) \right) h^{-\frac{3}{2}} e^{-\frac{2}{h} (f(z_1) - f(x_1))} \\ &= \frac{1}{\sqrt{\pi h}} |f'(z_1)| |f''(x_1)|^{\frac{1}{2}} e^{-\frac{2}{h} (f(z_1) - f(x_1))} (1 + O(\sqrt{h})) \end{split}$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Estimates on $\int_{\Omega} u_h(y) e^{-\frac{2}{h}f(y)} dy$

Under (**HG1**) and $\min_{C_1} f = \min_{\overline{\Omega}} f$, one easily proves :

$$\begin{split} \int_{\Omega} u_h \ e^{-\frac{2}{h}f} &= \int_{\mathcal{V}(\operatorname{argmin}_{C_1} f)} u_h \ e^{-\frac{2}{h}f} \ \left(1 + O(e^{-\frac{c}{h}})\right) \\ &= h^{\frac{d}{4}} \pi^{\frac{d}{4}} e^{-\frac{1}{h}\min_{\overline{\Omega}} f} \left(\sum_{x \in \operatorname{argmin}_{C_1} f} \left(\det \operatorname{Hess} f(x)\right)^{-\frac{1}{2}}\right)^{\frac{1}{2}} \left(1 + O(h)\right) \end{split}$$

$$\hookrightarrow$$
 take a "good" quasi-mode $ilde{u}_h = rac{\chi}{\|\chi\|_{L^2_w}}$

 $\hookrightarrow \text{ use } (\textbf{HG1}) \ \Leftrightarrow \exists \ c \ > \ 0 \ \text{ t.q. } \lambda_1(h) = \lambda_2(h) \ O(e^{-\frac{c}{h}})$

 \hookrightarrow it then holds in L^2_w , for some fixed $\delta > 0$ small enough :

$$u_h + O(e^{-\frac{c}{h}}) = \mathbf{1}_{[0,\lambda_1(h)e^{\frac{\delta}{h}}]}(L^{(0)}) \tilde{u}_h = \tilde{u}_h + O(e^{-\frac{c}{h}})$$

 $\hookrightarrow \text{ we conclude using Cauchy-Schwarz inequality and } \min_{C_1} f = \min_{\overline{\Omega}} f !$

Estimates on $\partial_n u_h$

• We have to conveniently estimate, on $\partial\Omega$,

$$\partial_n u = \vec{n} \cdot \nabla u_h$$

(where $u_h > 0$ unitary L_w^2)

 $\hookrightarrow \mathsf{Supersymmetry}:$

$$\nabla u \in \operatorname{Im} \mathbf{1}_{[0,C)}(L^{(1)})$$

 \hookrightarrow In any o.n.b. $(\psi_j)_j$ of $\operatorname{Im} \mathbf{1}_{[0,C)}(\mathcal{L}^{(1)})$, it holds :

$$\partial_n u = \sum_j \langle \nabla u, \psi_j \rangle \ \psi_j \cdot \vec{n}$$

• An accurate quasi-mode (but in L^2_w) for u_h is given by $\tilde{u}_h := \frac{\chi}{\|\chi\|_{L^2_w}}$ \hookrightarrow We need to precisely compare their gradients!

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• A "key" result (OK under (HG1) and (HG2)) :

$$\|\nabla (\mathbf{1}_{[0,C)}(L^{(0)}) \, \tilde{u}_h)\|_{L^2_w}^2 = \frac{2}{h} \lambda_1(h) \left(1 + O(\sqrt{h})\right)$$

and for $\delta > 0$ small enough

$$\begin{split} \|\nabla \left(\mathbf{1}_{[0,C)}(L^{(0)}) - \mathbf{1}_{[0,\lambda_{1}(h)e^{\frac{\delta}{h}})}(L^{(0)})\right) \tilde{u}_{h}\|_{L^{2}_{w}}^{2} \\ &= \|\nabla \mathbf{1}_{[0,C)}(L^{(0)}) \tilde{u}_{h}\|_{L^{2}_{w}}^{2} - \|\nabla \mathbf{1}_{[0,\lambda_{1}(h)e^{\frac{\delta}{h}})}(L^{(0)}) \tilde{u}_{h}\|_{L^{2}_{w}}^{2} \\ &= \frac{2}{h}\lambda_{1}(h) O(\sqrt{h}) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Thank you for your attention !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで