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Overdamped Langevin dynamics :

↪→ System X = (Xt)t≥0 of d particles

dXt = −∇f (Xt) dt +
√
h dBt

Where :

f potential function (assumed to be smooth here !)

h = κBT , T ↔ temperature, κB ↔ Boltzmann constant

B = (B1, . . . ,Bd) ↔ d independent Brownian motions

When 0 < h� 1, the process X is trapped during a long period of
time near a local minimum of f before going to another region of Rd

↪→ This regions are said metastable (! tunneling effect)

↪→ Long period of inactivities between two “transitions”



General question : For Ω ⊂ Rd metastable and h� 1,

what is the behaviour of the exit event from Ω ?

Rk : Exit event from Ω =

{
time spent in Ω

+ exit point distribution

We focus here on the most probable exit points :

Let Ω ⊂ Rd be a smooth open and connected set, and

τΩ = inf{ t ≥ 0 | Xt /∈ Ω} the first exit time from Ω.

Definition 1

XτΩ
concentrates on Y ⊂ ∂Ω if :

– for any neigh. VY ⊂ ∂Ω of Y, lim
h→0+

P(XτΩ
∈ VY) = 1

– for any x ∈ Y and Vx ⊂ ∂Ω neigh. of x, lim
h→0+

P(XτΩ
∈ Vx) > 0
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When ∂nf > 0 on ∂Ω and f admits one unique critical point x0 in Ω
(and hence f (x0) = minΩ f ) being non degenerate, it holds :

∀ x ∈ Ω , ∀F ∈ C∞(∂Ω,R), Ex [F (XτΩ
) ] =

∫
∂Ω F ∂nf e

− 2
h
f dσ∫

∂Ω ∂nf e
− 2

h
f dσ

+ o(1)

[ Follows from M.I. Freidlin and A.D. Wentzell when argmin∂Ωf = {z0} (1970)
Result formally obtained in general by B.J. Matkowsky and Z. Schuss (1977)

Proved by S. Kamin (1978,1979), M.V. Day (1984, 1987), B. Perthame (1990) ]

Rk 1 : x 7→ Ex [F (XτΩ
) ] is the sol. to

{
−h

2 ∆g +∇f · ∇g = 0
g
∣∣
∂Ω

= F

Rk 2 : These results are also valid in the non-gradient case !

↪→ When X0 = x ∈ Ω, XτΩ
concentrates on argmin∂Ωf

(with explicitly computable asymptotic relative probabilities)
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We want to obtain similar results for quite general domains Ω when
X0 is distributed according to the QSD of Ω and to extend them to
deterministic initial conditions X0 = x .

More precisely, we look for geometric assumptions ensuring that :

when X0 ∼ QSD, the distrib. of XτΩ
concentrates on Y ⊂ argmin∂Ωf ,

these results extend to X0 = x for some particular x to be specified
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Def : A QSD ν on Ω is a measure supp. in Ω s.t. Lν(Xt | t < τΩ) = ν

Infinitesimal generator of the dynamics :

L(0) := −h

2
∆ +∇f · ∇ = −h

2
e

2
h
f div ( e−

2
h
f ∇ · )

(
L(0) , (H2 ∩ H1

0 )(Ω, e−
2
h
f dx)

)
s.a. ≥ 0 on L2

w = L2(Ω, e−
2
h
f dx)

Discrete spectrum, the principal e.v. λ1(h) > 0 is non degenerate

The principal
→

e.v. has a sign on Ω

Proposition 2

Let uh be any
→
e.v. associated with λ1(h) > 0. Then

dνh =
uh e−

2
h
f dx∫

Ω uh(y) e−
2
h
f (y)dy

is a QSD for the process (Xt | t < τΩ).



Properties of the QSD

Proposition 3 (Le Bris, Lelièvre, Luskin, Perez)

For every probability µ0 on Ω and every t large enough,

‖Lµ0(Xt |t < τΩ)− νh‖TV ≤ C (µ0)e−(λ2(h)−λ1(h)) t

↪→ The QSD is unique !

Proposition 4

When X0 ∼ νh :

1 τΩ are XτΩ
independent,

2 τΩ ∼ E(λ1(h)),

3 XτΩ
has the following density on ∂Ω :

z ∈ ∂Ω 7→ − h

2λ1(h)

∂nuh(z) e−
2
h
f (z)∫

Ω uh(y)e−
2
h
f (y)dy
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“Morse” type hypotheses on f (MH) :

f is a smooth Morse function on Ω

∇f does not vanish on ∂Ω

f
∣∣
∂Ω

(or more generally f
∣∣
{σ s.t. ∂nf (σ)>0}) is a Morse function

U0 := {local minima of f in Ω} is not empty

Minimal energy needed to reach the boundary :

Let us define, for any x ∈ U0,

Hf (x) := inf
γ ∈ C([0, 1],Ω)
γ(0) = x
γ(1) ∈ ∂Ω

max
t∈[0,1]

f (γ(t))

and, for some arbitrary x1 ∈ argmax{Hf (x)− f (x), x ∈ U0},

C1 := connected component of {f < Hf (x1)} containing x1



Geometric hypotheses (GH) :

(GH1) argmax{Hf (x)− f (x), x ∈ U0} ⊂ C1

( ⇒ the definition of C1 does not depend on the choice of x1 ! )

(GH2) ∂C1 ∩ ∂Ω 6= ∅

(GH3) ∂C1 ∩ ∂Ω ⊂ argmin∂Ωf



(GH1) not satisfied{f = min∂Ω f }z1

z2

z

x1 x2

{f = minΩ f }

C1

x1
•x2

•
z1•

z2
•

d
•

c•

(GH1) but not (GH2)

C1

Hf (x1)− f (x1)

z2

z1

x1

x2

z

(GH1), (GH2) but not (GH3)



An example where (GH) is satisfied

Ω

C1 C

Hf (x1)− f (x1)

∂Ω ∩ ∂C1

•

x1 x2



Generalized saddle points on ∂Ω

Generalized saddle points on ∂Ω :

U∂Ω
1 = {local minima of f

∣∣
∂Ω

where ∂nf > 0}
= {z1, . . . , zm1} ⊂ ∂Ω

U∂Ω
1 ∩ argmin∂Ωf = {z1, . . . , zk1} (0 ≤ k1 ≤ m1)

∂C1 ∩ ∂Ω = ∂C1 ∩ U∂Ω
1 ∩ argmin∂Ωf = {z1, . . . , zk∂C1

1

}

Rk : From our hypotheses : 1 ≤ k∂C1
1 ≤ k1 ≤ m1
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Theorem 1 (with G. Di Gesù, T. Lelièvre et B. Nectoux)

We assume (MH) and (GH).

Let F ∈ C∞(∂Ω,R) and {Σ1, . . . ,Σk1} be a family of disjoint neigh. of
{z1, . . . , zk1} = U∂Ω

1 ∩ argmin∂Ωf in ∂Ω.

We assume that X0 ∼ νh or X0 = x ∈ C1. Then :

1. There exists c > 0 such that in the limit h→ 0+,

EX0 [F (XτΩ
) ] =

k1∑
i=1

Eνh [ 1Σi
F (XτΩ

) ] + O(e−
c
h )

and
k1∑

i=k
∂C1
1 +1

EX0 [ 1Σi
F (XτΩ

) ] = O(h
1
4 )
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We assume that X0 ∼ νh or X0 = x ∈ C1. Then :

2. For every i ∈ {1, . . . , k∂C1
1 }, it holds when h→ 0+,

EX0 [ 1Σi
F (XτΩ

) ] = F (zi ) ai + O(h
1
4 )

where

ai =
∂nf (zi )√

detHessf
∣∣
∂Ω

(zi )

( k
∂C1
1∑
k=1

∂nf (zk)√
detHessf

∣∣
∂Ω

(zk)

)−1



Theorem 1 (with G. Di Gesù, T. Lelièvre et B. Nectoux)

We assume (MH) and (GH).

Let F ∈ C∞(∂Ω,R) and {Σ1, . . . ,Σk1} be a family of disjoint neigh. of
{z1, . . . , zk1} = U∂Ω

1 ∩ argmin∂Ωf in ∂Ω.

We assume that X0 ∼ νh or X0 = x ∈ C1. Then :

3. Under some additional geometric assumption, it holds :

k1∑
i=k

∂C1
1 +1

EX0 [ 1Σi
F (XτΩ

) ] = O(e−
c
h ) + ��

��
O(h

1
4 )

and for every i ∈ {1, . . . , k∂C1
1 },

EX0 [ 1Σi
F (XτΩ

) ] = F (zi ) ai + O(h) + �
���

O(h
1
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Under (MH) and (GH) :

f can have local minima with larger energies than min∂Ω f

Results also valid for any x ∈ Ω sent in C1 by the flow of −∇f

When X0 ∼ νh or X0 = x as specified above, XτΩ
concentrates on

Y = ∂C1 ∩ ∂Ω ⊂ argmin∂Ωf

But XτΩ
does not concentrate on the sets

{z
k
∂C1
1 +1

, . . . , zk1} and {global minima of f
∣∣
∂Ω

where ∂nf < 0}

which have energy min∂Ωf (and can be non-empty)
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As a consequence, when

∂nf > 0 on ∂Ω and (∇f )−1({0}) ⊂ {f < min
∂Ω

f } ,

it holds k∂C1
1 = k1 (iff ∂C1 ∩ ∂Ω = argmin∂Ωf ) and for every x ∈ Ω :

Ex [F (XτΩ
) ] =

k1∑
i=1

F (zi ) ai + O(h
1
4 ) =

∫
∂Ω F ∂nf e

− 2
h
f dσ∫

∂Ω ∂nf e
− 2

h
f dσ

+ o(1)

↪→ One recovers in particular the previous mentioned results

Two simple examples :

z1•
z2•

z
•

x1

• x2
•

C1

•
z1 •

z2

•
z

•
x1

•
x2

Here : PX0 [XτΩ
= z2] '

√
h PX0 [XτΩ

= z2] = O(e−
c
h )
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Intermediate results about λ1(h) :

Under (MH), there exist C1,C2 > 0 such that when h→ 0+,

C1

hp
e−

2
h (Hf (x1)−f (x1)) ≤ λ1(h) ≤ C2

hp
e−

2
h (Hf (x1)−f (x1))

for some p ∈ {0, 1
2} and

(GH1) holds iff ∃ c > 0 s.t. λ1(h) = λ2(h)O(e−
c
h ).

Laslty, under (MH), (GH1), and (GH2), it holds :

λ1(h) =

∑k
∂C1
1

j=1 ∂nf (zj)
(
detHessf

∣∣
∂Ω

(zj)
)− 1

2

√
π h

∑
x∈argminC1

f

(
detHessf (x)

)− 1
2

e−
2
h (Hf (x1)−f (x1))

(
1+O(

√
h)
)

Some related results about the low spectrum of L(0) (in Ω or in Rd) :

Probabilistic approach : Holley-Kusuoka-Stroock, Miclo, Mathieu,

Bovier-Gayrard-Klein

Semi-classical approach : Helffer-Klein-Nier, Helffer-Nier, L.P., Michel

Langevin (in Rd) : Hérau-Hitrik-Sjöstrand
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Let uh be any
→

e.v. associated with λ1(h) and F ∈ C∞(∂Ω,R), then :

Eνh [F (XτΩ
) ] = − h

2λ1(h)

∫
∂Ω F (z) ∂nuh(z) e−

2
h
f (z) dz∫

Ω uh(x)e−
2
h
f (x) dx

↪→ we precisely estimate :

λ1(h)∫
Ω uh(y)e−

2
h
f (y)dy

∂nuh on ∂Ω



Estimates on λ1(h) and on the low spectrum of L(0)

By standard techniques developed in semiclassical analysis, for
p ∈ {0, 1} and C > 0 small enough :

dim
(
Im 1[0,C)(L(p))

)
= dim

(
Im 1

[0,he−
C
h )

(L(p))
)

= Card(Up)

where
U1 := U∂Ω

1 ∪ {saddle points of f in Ω}

Use the supersymmetric extension “à la Witten”

L(1) := L(0) ⊗ Id + Hess f ,

Dom(L(1)) =
{
v ∈ Λ1H2(Ω, e−

2
h
f dx) ; tv = 0 et t(div (e−

2
h
f v)) = 0

}
↪→ s.a. ≥ 0 on Λ1L2(Ω, e−

2
h
f dx) and

L(1)∇ = ∇ L(0)



Estimates on λ1(h) and on the low spectrum of L(0)

Reduce the problem to a finite dimensional one :

↪→ we study ∇ : Im 1[0,C)(L(0))→ Im 1[0,C)(L(1)) :

L(0) = −h

2
e

2
h
f div ( e−

2
h
f ∇ · )

=
h

2
∇∗∇ ( adjoint w.r.t. e−

2
h
f dx )

↪→
{

E.v. of L(0)
∣∣
Im 1[0,C)(L(0))

}
=
{

h
2

(
Sing. V. of ∇

∣∣
Im 1[0,C)(L(0))

)2
}

↪→ Construct (u
(p)
j )

j∈{1,...,CardUΩ
p }

an appropriate basis of

Im 1[0,C)(L(p)) , p ∈ {0, 1}

in which the matrix ∇ is estimable



Estimates on λ1(h) and on the low spectrum of L(0)

On this simple example :

{f = min∂Ω f } = {f = Hf (x1)}
z1•

z2•
z
•

x1

• x2
•

C1 C

↪→ A “good” choice of “quasi-modes” first leads to the singular values of : a1 O(e−
c
h )

b1 h
1
4 b2 h

1
4

O(e−
c
h ) a2

×( h−
3
4 e−

f (z1)−f (x1)
h 0

0 h−
3
4 e−

f (z2)−f (x2)
h

)

where

ai ∼ −(
2√
π

)
1
2 |f ′(zi )|

1
2 |f ′′(xi )|

1
4 et bi ∼ (−1)i

1√
π
|f ′′(z)|

1
4 |f ′′(xi )|

1
4



Estimates on λ1(h) and on the low spectrum of L(0)

On this simple example :

{f = min∂Ω f } = {f = Hf (x1)}
z1•

z2•
z
•

x1

• x2
•

C1 C

↪→ Which finally leads to :

λ1(h) =
h

2

(
a2

1 + O(
√
h)
)
h−

3
2 e−

2
h

(f (z1)−f (x1)

=
1√
π h
|f ′(z1)| |f ′′(x1)|

1
2 e−

2
h

(f (z1)−f (x1))
(
1 + O(

√
h)
)



Estimates on
∫

Ω uh(y)e−
2
h f (y)dy

Under (HG1) and minC1 f = minΩ f , one easily proves :

∫
Ω
uh e−

2
h
f =

∫
V(argminC1

f )
uh e−

2
h
f
(
1 + O(e−

c
h )
)

= h
d
4 π

d
4 e−

1
h

minΩ f
( ∑
x∈argminC1

f

(
det Hessf (x)

)− 1
2

) 1
2 (

1 + O(h)
)

↪→ take a “good” quasi-mode ũh = χ
‖χ‖

L2
w

↪→ use (HG1) ⇔ ∃ c > 0 t.q. λ1(h) = λ2(h)O(e−
c
h )

↪→ it then holds in L2
w , for some fixed δ > 0 small enough :

uh + O(e−
c
h ) = 1

[0,λ1(h)e
δ
h )

(L(0)) ũh = ũh + O(e−
c
h )

↪→ we conclude using Cauchy-Schwarz inequality and minC1 f = minΩ f !



Estimates on ∂nuh

We have to conveniently estimate, on ∂Ω,

∂nu = ~n · ∇uh

( where uh > 0 unitary L2
w )

↪→ Supersymmetry :

∇u ∈ Im 1[0,C)(L(1))

↪→ In any o.n.b. (ψj)j of Im 1[0,C)(L(1)), it holds :

∂nu =
∑
j

〈∇u, ψj〉 ψj · ~n

An accurate quasi-mode (but in L2
w ) for uh is given by ũh := χ

‖χ‖
L2
w

↪→ We need to precisely compare their gradients !



Estimates on ∂nuh

A “key” result (OK under (HG1) and (HG2)) :

‖∇
(
1[0,C)(L(0)) ũh

)
‖2
L2
w

=
2

h
λ1(h)

(
1 + O(

√
h)
)

and for δ > 0 small enough

‖∇
(

1[0,C)(L(0))− 1
[0,λ1(h)e

δ
h )

(L(0))
)
ũh‖2

L2
w

= ‖∇ 1[0,C)(L(0)) ũh‖2
L2
w
− ‖∇ 1

[0,λ1(h)e
δ
h )

(L(0)) ũh‖2
L2
w

=
2

h
λ1(h)O(

√
h)



Thank you for your attention !
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