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General framework

Langevin equations

Let φ be a potential landscape on Rd . Consider the Langevin
equation describing the movement of a particle under a
deterministic force −∇φ(xt) and a random force given by the
derivative of the Brownian motion Bt{

ẋt = m−1vt

v̇t = ∇φ(xt)− γẋt +
√
γ/βḂt

(1)

where m = mass of the particle, γ = friction coefficient, β−1 =
temperature of the system.
For massless particle we obtain the overdamped Langevin equation

ẋt = −γ−1∇φ(xt) +
√

1/(γβ)Ḃt (2)
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General framework

Macroscopic point of view

Let u be the probability density of presence of particle satisfying
the Langevin equations. It satisfies the Fokker-Planck equation

h∂tu = L u

Langevin equation ; Kramers-Fokker-Planck operator

L = LKFP := −vh∂x +∇φ(x)h∂v − h∂v ◦ (h∂v + 2v)

Overdamped Langevin equation ; Kramers-Smoluchovski
operaror

L = LKS := h∂x ◦ (h∂x + 2∇φ(x))

where h is a rescaled parameter proportional to the
temperature.
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General framework

Assumptions on φ

In the sequel we assume that

φ : Rd → R is a smooth Morse function.

there exists C > 0 and a compact K ⊂ Rd such that for all
x ∈ Rd \ K , one has

|∇φ(x)| ≥ 1

C
, |Hess(φ(x))| ≤ C |∇φ|2, and φ(x) ≥ C |x |.
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General framework

These Fokker-Planck equations admit a global equilibrium M :

Kramers-Fokker-Planck ;M(x , v) = 1
C e
−2(φ(x)+v2/2)/h

Kramers-Smoluchovski ;M(x) = 1
C e
−2φ(x)/h

In other words
L (M) = 0

Under the preceding assumptions, M∈ Lp for any p ≥ 1 and one
can chose C such that M is a probability density. Under some
spectral gap assumption any initial distribution u0, converges to
equilibrium

e−tL u0 →M, when t →∞

Question

What is the speed of convergence in the above limit ?
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General framework

Eyring Kramers law

In a seminal paper, Kramers [1940] computed the average
transition rate for a double well potential in 1D :

τφ ∼ aφe
2S/h

with

S = the highest height a particle has to jump in order to
reach the absolute minimum of φ

aφ explicit in terms of derivative of φ
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Conjugation by the Maxwellian

Conjugation by the Maxwellian

We look at the evolution of initial densities of the form

u0 = ũ0M1/2

with ũ0 ∈ L2(dx). The natural Hilbert space to study this question
is L2(M(x)−1dx). Let

UM : L2(M(x)−1dx)→ L2(dx)

u 7→ M−
1
2 u

(3)

then UM is an isometry.
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Conjugation by the Maxwellian

For any u0 ∈ L2(M(x)−1dx) we have

e−tL u0 = U∗Me−tPUMu0

the operators P• := UML•U∗M are given by

PKS = −h2∆ + |∇φ|2 − h∆φ

and
PKFP = −vh∂x + ∂xφh∂v + (−h2∆v + v2 − hd)

As a consequence for any probability density u0 =M
1
2 ũ0 with

ũ0 ∈ L2(dx) we have

‖e−tL u0 −M‖L2(M−1dx) = ‖e−tP ũ0 − 〈ũ0,M
1
2 〉M

1
2 ‖L2(dx)
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Conjugation by the Maxwellian

Some remarks on the generator P

The operator PKS is self-adjoint on L2(dx). It is the
celebrated Witten Laplacian associated to φ.

The operator PKFP is not self-adjoint on L2(dxdv). This leads
to serious complications

In both cases, we will study the spectrum of P in order to get
some information on the speed of return to equilibrium.
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Small eigenvalues of Witten Laplacian

Preliminary results on Witten Laplacians

Consider the semiclassical Witten Laplacian associated to φ :

∆φ = −h2∆ + |∇φ|2 − h∆φ = (−h∂x + ∂φ) ◦ (h∂x + ∂φ)

where h ∈]0, 1] denotes the semiclassical parameter. Under the
preceding assumptions, one has the following properties on ∆φ.

∆φ is essentially self-adjoint on C∞c (Rd).

∆φ ≥ 0

there exists C0, h0 > 0 such that for all 0 < h < h0

σess(∆φ) ⊂ [C0,∞[

0 is an eigenvalue of ∆φ associated to the eigenstate e−φ/h.

Goal :

Study the small eigenvalues of ∆φ.
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Small eigenvalues of Witten Laplacian

Rough localization result

Theorem [Helffer-Sjöstrand-Witten, 80’s]

Let U (0) denote the set of minima of φ and n0 = ]U (0). There
exists ε0 > 0 such that for h > 0 small enough :

σ(∆φ) ∩ [0, ε0h] has n0 elements.

these n0 ”small” eigenvalues are O(e−C/h).

Proof.

Consider the quasimodes

f
(0)

m (x) = h−
d
4χm(x)e−(φ(x)−φ(m))/h, m ∈ U (0)

for some cut-off functions χm localized around m.

Compute

∆φf
(0)

m = h−
d
4 [h2∆, χm]e−(φ(x)−φ(m))/h = O(e−C/h)

Use self-adjointness of ∆φ to conclude (min-max).
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Small eigenvalues of Witten Laplacian

Exponentially small eigenvalues : log-limit

Denote 0 = λ1(h) < λ2(h) ≤ . . . ≤ λn0(h) the small eigenvalues of
∆φ.

Freidlin-Wentzell compute the limit of h log(λj(h)) as h→ 0
(large deviations approach)

On compact manifolds, Holley-Kusuoka-Stroock [89] proved
(by functional inequalities approach) that

C1he
−2S/h ≤ λ2(h) ≤ C2he

−2S/h

with S = highest height a particle has to jump in order to
reach the absolute minimum of φ

Mathieu [95], Miclo [95] generalized this result to λj , j ≥ 3
(functional inequalities)
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Small eigenvalues of Witten Laplacian

Remark

One aims to compute the exact prefactors. This is important

from a mathematical point of view

for applications : accelerated dynamics algorithms use these
prefactors, see Voter [97,98].
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Small eigenvalues of Witten Laplacian

Exponentially small eigenvalues : sharp result

Theorem

There exists a function S : U (0) → R∗+ such that the n0 small
eigenvalues (λm(h))m∈U (0) satisfy

λm(h) = hζ(m, h)e−2S(m)/h

where ζ(m, h) ∼
∑∞

r=0 h
rζr (m) and ζ0(m) is explicit.

This theorem was proved by

Bovier-Gayrard-Klein [04], potential theory approach. Non
degeneracy assumption on the family of heights (S(m))m∈U (0) .

Helffer-Klein-Nier [04] by semiclassical methods. Non
degeneracy assumption.

Michel [17] in the full general case.
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Small eigenvalues of Witten Laplacian

The labelling procedure I

Let U (1) denote the set saddle points of φ. For any s ∈ U (1) and
r > 0 small enough, the set

B(s, r) ∩ {x ∈ X , φ(x) < φ(s)}

has exactly two connected components Cj(s, r), j = 1, 2.

Definition (Hérau-Hitrik-Sjöstrand, 2011)

s ∈ U (1) is a separating saddle point (ssp) iff C1(s, r) and
C2(s, r) are contained in two different connected components
of {x ∈ X , φ(x) < φ(s)}. We denote by V(1) the set of ssp.

σ ∈ R is a separating saddle value (ssv) if it is of the form
σ = φ(s) with s ∈ V(‘1). We denote
Σ = φ(V(1)) = {σ2 > σ3 > . . . > σN}.
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Small eigenvalues of Witten Laplacian

Example of SSP I

s1

s2

Level set of a potential with 2 minima, 2 saddle points and 1
maximum
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Small eigenvalues of Witten Laplacian

Example of SSP II

s1

C1(s1, r) C2(s1, r)
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Small eigenvalues of Witten Laplacian

Example of SSP II

s1

C1(s1, r) C2(s1, r)

{φ < φ(s1)}

s1 is not separating
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Small eigenvalues of Witten Laplacian

Example of SSP III

s2

C1(s2, r) C2(s2, r)
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Small eigenvalues of Witten Laplacian

Example of SSP III

s2

C1(s2, r) C2(s2, r)

{φ < φ(s2)}

s2 is separating
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Small eigenvalues of Witten Laplacian

The labelling procedure II

Add a fictive infinite saddle value σ1 = +∞ to Σ and let

Σ = {σ1} ∪ Σ = {σ1 > σ2 > . . . > σN}

To σ1 = +∞ associate the unique connected component
E1,1 = Rd of {φ < σ1}. In E1,1, pick up m1,1 one (non
necessarily unique) minimum of φ|E1,1

.

The set {φ < σ2} has finitely many connected components.
One of them contains m1,1. The others are denoted
E2,1, . . . ,E2,N2 . In each of these CC, one choses one absolute
minimum m2,j of φ|E2,j

.

The set {φ < σk} has finitely many CC. One denotes by
Ek,1, . . . ,Ek,Nk

those of these CC which do not contain any
mi ,j , i < k . In each Ek,j one choses one absolute minimum
mk,j of φ|Ek,j

.
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Small eigenvalues of Witten Laplacian

The labelling procedure III

Let O(X ) denote the connected open subsets of X . Using the
preceding labelling one constructs the following applications :

σ : U (0) → Σ, defined by σ(mi ,j) = σi .

E : U (0) → O(X ), defined by E (mi ,j) = Ei ,j .

S = σ − φ



Introduction Reversible equations Non reversible equations

Small eigenvalues of Witten Laplacian

The Generic case I

The following hypothesis introduced by Hérau-Hitrik-Sjöstrand
(2011) is a generalization of Helffer-Klein-Nier assumption (2004).

Generic Assumption (GA) :

For all m ∈ U (0), the following hold true :

i) φ|E(m) has a unique point of minimum

ii) for any connected component E of {φ < σ(m)}

E ∩ V(1) 6= ∅ =⇒ ∃! s ∈ V(1), φ(s) = supφ(E ∩ V(1))

This assumption yields a bijection

s : U (0) → V(1) ∪ {∞}

We let
S(m) = φ(s(m))− φ(m)

with the convention φ(∞) =∞.
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Small eigenvalues of Witten Laplacian

The Generic case II

Let us write λ(m, h), m ∈ U (0) the n0 small eigenvalues of ∆φ.

Theorem (Helffer-Klein-Nier 2004, Hérau-Hitrik-Sjöstrand
2011)

Suppose the the Generic Assumption is satisfied. Then the n0 small
eigenvalues of ∆φ satisfy

λ(m, h) = hζ(m, h)e−2S(m)/h

where ζ(m, h) ∼
∑∞

r=0 h
rζr (m) and

ζ0(m) = π−1|µ(s(m))|

√
| detφ′′(m)|
| detφ′′(s(m))|

where µ(s) is the unique negative eigenvalue of φ′′ in s.
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Small eigenvalues of Witten Laplacian

A simple example

Suppose that the following hypothesis are verified :

The set of minimal values is reduced to one point :
∃c0, ∀m ∈ U (0), φ(m) = c0

The set of saddle values is reduced to one point :
∃c1, ∀m ∈ U (1), φ(m) = c1

O

O

OX

X

X X

X

X

X

Figure – The sublevel set {ϕ < σ} (dashed region) associated to a
potential ϕ satisfying the assumptions. The x’s represent local minima,
the o’s, local maxima.
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Small eigenvalues of Witten Laplacian

Theorem (Michel 2017)

The n0 small eigenvalues of ∆φ satisfy λ1 = 0 and for all
k = 2, . . . n0,

λk(h) = hζk(h)e−2S/h

where S = c1 − c0 and

ζk(h) ∼
∞∑
r=0

hrζk,r

and ζk,0 are the non zero eigenvalues of the weighted graph G
defined by

The vertices of the graph are the minima m ∈ U (0).

The edges between two vertices m, m′ are the saddle points
s ∈ V(1) such that s ∈ E (m) ∩ E (m′).

The weights explicitly depend on the values of φ′′ on U (0) and
U (1).
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Small eigenvalues of Witten Laplacian

O

O

OX

X

X X

X

X

X

Figure – The sublevel set {ϕ < σ} (dashed region) associated to a
potential ϕ satisfying the assumptions. The x’s represent local minima,
the o’s, local maxima.

Figure – The graph associated to the potential represented in Figure 2
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Strategy of proof

Finite dimensional reduction

The general strategy of Helffer-Klein-Nier is the following :

Introduce
F (0) = eigenspace associated to the n0 low lying eigenvalues
on 0-forms
Π(0) = projector on F (0) .
M = restriction of ∆φ to F (0).

We have to compute the eigenvalues of M.

We compute suitable BKW approximated eigenfunctions f
(0)

m

indexed by m ∈ U (0), and show that

Π(0)f
(0)

m = f
(0)

m + error

and compute the matrix of M in the base Π(0)f
(0)

m .

Doing that leads to error terms which are too big.

In order to overcome this difficulty, they use the
supersymmetric structure.
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Strategy of proof

Supersymmetric structure

For 0 ≤ p ≤ d , let Ωpdenote the space of p-differential forms
on Rd and let d : Ωp → Ωp+1 denote the exterior derivative.

Introduce the twisted semiclassical derivative

dφ = e−φ/h ◦ hd ◦ eφ/h = hd + ∂φ∧

the semiclassical Witten Laplacian on p forms is

∆
(p)
φ = d∗φ ◦ dφ + dφ ◦ d∗φ

for p = 0, we recover

∆
(0)
φ = −h2∆ + |∇φ|2 − h∆φ
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Strategy of proof

The Witten Laplacian on 1-forms

The operator ∆
(1)
φ is essentially self-adjoint on C∞c (Ω1) and non

negative. Morever, one has

∆
(1)
φ = ∆

(0)
φ ⊗ Id +hHess(φ)

there exists C0, h0 > 0 such that for all 0 < h < h0

σess(∆
(1)
φ ) ⊂ [C0,∞[

σ(∆
(1)
φ ) ∩ [0, ε0h] has n1 elements.

the eigenfunctions associated to the n1 small eigenvalues of

∆
(1)
φ are exponentially localized near the saddle points

s ∈ U (1) (Agmon estimates).
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Strategy of proof

Using Supersymmetry

The fondamental remarks are the following :

∆
(p+1)
φ d

(p)
φ = d

(p)
φ ∆

(p)
φ and d

(p),∗
φ ∆

(p+1)
φ = ∆

(p)
φ d

(p),∗
φ

Denote F (1) the eigenspace associated to low lying

eigenvalues on 1 forms, then d
(0)
φ (F (0)) ⊂ F (1) and

d
(0),∗
φ (F (1)) ⊂ F (0). Hence

M = L∗L

where L is the matrix of d
(0)
φ : F (0) → F (1).

The matrix L is well approximated L = (1 +O(e−α/h))L with

L := (〈d (0)
φ f

(0)
m , f

(1)
s 〉),s∈U (1)m∈U (0)

where f
(1)

s are BKW approximated eigenfunctions on 1-form.
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Strategy of proof

Singular values analysis

The eigenvalues of M are the singular values of
L = (1 +O(e−α/h))L
The fondamental point is that the error terms induced by
change of basis, etc. result in multiplicative errors thanks to
the following

Lemma (Fan inequalities)

Let A,B be two matrices and denote by µn the singular values of
any matrix. Then

µn(AB) ≤ ‖B‖µn(A)

µn(AB) ≤ ‖A‖µn(B)

where ‖C‖ denotes the norm of C : Rp → Rq with R• endowed
with `2 norms.
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Boundary value problems

Exit event from a domain

Let Ω be a basin of attraction for the deterministic dynamic
ẋ = −2∇φ(x) and let D ⊂ Ω. Let (Xt) be driven by overdamped
Langevin equation with X0 distributed according to the stationary
measure of D. We want to compute

the mean first exit time from D for the dynamic (Xt)

the law of the first exit point

Let (λ1, u1) be the first eigenpair of the infinitesimal generator
LKS with Dirichlet boundary conditions on ∂D :{

−2∇φ · h∇u1 + h2∆u1 = −λ1u1 on D,
u1 = 0 on ∂D.

Then

mean exit time = λ1

the law of the first exit point is proportional to −∂nu1dσ∂D.
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Boundary value problems

Some results

After conjugation by e−φ/h, we are lead to consider the Witten
Laplacian with boundary conditions.

Helffer-Nier [06] : Small eigenvalues for Dirichlet boundary
cond.

Le Peutrec [10] : Small eigenvalues for Neumann BC

di Gesu-Lelièvre-Le Peutrec-Nectoux [17] : computation of
∂nu1 up to the boundary
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Kramers-Fokker-Planck equations

Kramers-Fokker-Planck equations

Consider the Kramers-Fokker-Planck operator acting on
L2(Rd

x × Rd
v )

P = −vh∂x + ∂xφh∂v + (−h2∆v + v2 − hd)

This operator is (look at the x variable)

non elliptic

non self-adjoint

This has serious consequences. We don’t know

what is the nature of the spectrum of P.

how to go from quasimodes to eigenfunctions.
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Kramers-Fokker-Planck equations

Hypoellipticity

One has
P = X0 + b∗b

with X0 = −vh∂x + ∂xφh∂v and b = h∂v + v . We have the
following relations

[b,X0] = a, [[b,X0],X0] = [a,X0] = −Hess(φ)b

with a = h∂x + ∂xφ. This implies

[a∗b,X0] = a∗a− hb∗Hess(V )b

One wants to use these relations in the spirit of Hörmander’s
hypoellipticity theorem.
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Kramers-Fokker-Planck equations

Consider the operator Λ defined by

Λ2 := 1 + a∗a + b∗b

= 1 + ∆φ + ∆ v2

2

Theorem (Hérau-Nier [04])

There exists C > 0 such that for any u ∈ C∞c (Rd) we have

‖Λ
2
3 u‖2 ≤ C (‖Pu‖2 + ‖u‖2)

Corollary

Assume that ∇φ grows sufficiently fast at infinity, then P has
compact resolvent.
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Kramers-Fokker-Planck equations

Resolvant estimate

Theorem (Hérau-Nier [04])

Let ε = min( 1
8 ,

1
8d−4 ). There exists some constants c ,C ,C ′ > 0

such that the following holds true :

i) The spectrum of P is contained in the infinite cusp
S ∩ {Re z ≥ 0} with

S = {z ∈ C, Re z ≥ c |z |ε or |z | ≤ C}

ii) For any z /∈ S we have

‖(P − z)−1‖L2→L2 ≤ C ′|z |−ε
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Kramers-Fokker-Planck equations

Return to equilibrium

In the following, we denote by Π0 the orthogonal projector (in
L2(R2d)on the vector space generated by the half-Maxwellian

M(x , v)
1
2 .

Theorem (Hérau-Nier [04])

Under the preceding assumptions, there exists C , α1 > 0 such that

‖e−tPu0 − Π0u0‖ ≤ Ce−α1t‖u0‖

for all u0 ∈ L2(R2d).
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Kramers-Fokker-Planck equations

Contour integral

Write

e−tP =
1

2iπ

∫
∂S

e−tz(P − z)−1dz

where the integral converges in L2 sense thanks to the cusp
shape of S and the resolvent estimate.

Modify the integration contour

e−tP =
1

2iπ

∫
|z|=C

e−tz(P − z)−1dz +
1

2iπ

∫
∂S ′

e−tz(P − z)−1dz

= Π0 +
1

2iπ

∫
∂S ′

e−tz(P − z)−1dz = Π0 +OL2(e−α1t)

since S ′ ⊂ {Re z ≥ α1} for some α1 > 0.

Remark

To find the best α1 we need to compute the small eigenvalues of P.
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Kramers-Fokker-Planck equations

Small eigenvalues of Kramers-Fokker-Plank operators

Theorem (Hérau-Hitrik-Sjöstrand [08-11])

Suppose that φ is a Morse function satisfying theGeneric
Assumption. Then

There exists ε0, h0 > 0 such that for any 0 < h < h0, P has
exactly n0 eigenvalues in {0 ≤ Re z ≤ ε0h}.
These n0 small eigenvalues satisfy
λ(m, h) = hζ(m, h)e−2S(m)/h where ζ(m, h) ∼

∑∞
r=0 h

rζr (m)
and

ζ0(m) = π−1|µ(s(m))|

√
| detφ′′(m)|
| detφ′′(s(m))|

where µ(s) is the unique negative eigenvalue of the matrix(
0 Id

Hessφ(s) Id

)
.
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Kramers-Fokker-Planck equations

Supersymmetry for KFP

Let f (x , v) = φ(x) + v2

2 and introduce the twisted exterior
derivatives df ,h mapping 0-forms to 1-forms on R2d

x ,v . Using the
basis of 1-forms dx1, . . . , dxd , dv1, . . . , dvd this reads

df ,h =

(
h∂x + ∂xV
h∂v + v

)
The KFP operator enjoys a supersymmetric structure

P = dA,∗
f ,h ◦ df ,h

where dA,∗
f ,h denotes the adjoint of df ,h for the non symmetric

skew-product
〈u, v〉A = 〈Au, v〉

for any u, v ∈ Ω1(R2d) with

A =

(
0 − Id
Id 1

2 Id

)
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Kramers-Fokker-Planck equations

Sketch of proof

Introduce a natural operator on 1-forms

P(1),A := dA,∗
f ,h ◦ df ,h + df ,h ◦ dA,∗

f ,h

Study the spectral theory of P(1),A.
Resolvent estimates
Quasimodes

Perform a ”singular value analysis” in the spirit of Witten
Laplacian. Compute

L := 〈df ,hf
(0)

m , f
(1)

s 〉A

Problem : the skew product 〈, 〉A is not symmetric.
; Solution : Use extra symmetry (PT symmetry) :

U∗PU = P∗

with Uf (x , v) = f (x ,−v).
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Non-local FP equations

Non-local Fokker-Planck equations

Consider the Fokker-Planck equation ∂tu = PQu with

PQu = vh∂x −∇φ(x)h∂v + Q(v) (4)

where the collision operator is a pseudodifferential operator
Q(u) := Opw

h (q)(u) such that Q(M) = 0.

A typical example is linear relaxation kernel

Q(u) := u − 〈u, φ0〉φ0

with φ0(v) = (2πh)−d/2e−v
2/(2h).

Goals

1) Prove exponential return to equilibrium. 2) Compute the
optimal rate.
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Non-local FP equations

Some partial results

Resolvent estimates for PQ and rough localization of
eigenvalues (V. Robbe 2015)

Construction of pseudodifferential supersymmetric structure
for PQ (Hérau-Michel 2018)

Resolvant estimates for the operator P
(1)
Q acting on 1-forms

(Hérau-Michel 2018)

Work in progress : Agmon estimates, small eigenvalues analysis.
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