Semiclassical methods for Langevin dynamics at low temperature

L. Michel

Université de Bordeaux

Advances in Computational Statistical Physics CIRM, September 2018

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Plan

Introduction

- General framework
- Conjugation by the Maxwellian

2 Reversible equations

- Small eigenvalues of Witten Laplacian
- Strategy of proof
- Boundary value problems

3 Non reversible equations

- Kramers-Fokker-Planck equations
- Non-local FP equations

Introduction •••••• Reversible equations

Non reversible equations

General framework

Langevin equations

Let ϕ be a potential landscape on \mathbb{R}^d . Consider the Langevin equation describing the movement of a particle under a deterministic force $-\nabla \phi(x_t)$ and a random force given by the derivative of the Brownian motion B_t

$$\begin{cases} \dot{x}_t = m^{-1} v_t \\ \dot{v}_t = \nabla \phi(x_t) - \gamma \dot{x}_t + \sqrt{\gamma/\beta} \dot{B}_t \end{cases}$$
(1)

where m = mass of the particle, $\gamma =$ friction coefficient, $\beta^{-1} =$ temperature of the system.

For massless particle we obtain the overdamped Langevin equation

$$\dot{x}_t = -\gamma^{-1} \nabla \phi(x_t) + \sqrt{1/(\gamma\beta)} \dot{B}_t$$
(2)

Reversible equations

Non reversible equations

General framework

Macroscopic point of view

Let u be the probability density of presence of particle satisfying the Langevin equations. It satisfies the Fokker-Planck equation

 $h\partial_t u = \mathscr{L} u$

● Langevin equation ~→ Kramers-Fokker-Planck operator

 $\mathscr{L} = \mathscr{L}_{KFP} := -vh\partial_x + \nabla\phi(x)h\partial_v - h\partial_v \circ (h\partial_v + 2v)$

 Overdamped Langevin equation ~> Kramers-Smoluchovski operaror

$$\mathscr{L} = \mathscr{L}_{\mathsf{KS}} := h\partial_x \circ (h\partial_x + 2\nabla\phi(x))$$

where h is a rescaled parameter proportional to the temperature.

General framework

Assumptions on ϕ

Reversible equations

Non reversible equations

(日本本語を本書を本書を、「四本」

In the sequel we assume that

- $\phi: \mathbb{R}^d \to \mathbb{R}$ is a smooth Morse function.
- there exists C > 0 and a compact $K \subset \mathbb{R}^d$ such that for all $x \in \mathbb{R}^d \setminus K$, one has

 $|\nabla \phi(x)| \ge \frac{1}{C}, |\operatorname{Hess}(\phi(x))| \le C |\nabla \phi|^2, \text{ and } \phi(x) \ge C |x|.$

Non reversible equations

(日) (日) (日) (日) (日) (日) (日) (日)

General framework

These Fokker-Planck equations admit a global equilibrium \mathcal{M} :

- Kramers-Fokker-Planck $\rightsquigarrow \mathcal{M}(x, v) = \frac{1}{C}e^{-2(\phi(x)+v^2/2)/h}$
- Kramers-Smoluchovski $\rightsquigarrow \mathcal{M}(x) = \frac{1}{C}e^{-2\phi(x)/h}$

In other words

$$\mathscr{L}(\mathcal{M})=0$$

Under the preceding assumptions, $\mathcal{M} \in L^p$ for any $p \ge 1$ and one can chose C such that \mathcal{M} is a probability density. Under some spectral gap assumption any initial distribution u_0 , converges to equilibrium

$$e^{-t\mathscr{L}}u_0 o \mathcal{M}, ext{ when } t o \infty$$

Question

What is the speed of convergence in the above limit?

General framework

Eyring Kramer<u>s law</u>

(日) (日) (日) (日) (日) (日) (日) (日)

In a seminal paper, Kramers [1940] computed the average transition rate for a double well potential in 1D :

$$au_{\phi} \sim a_{\phi} e^{2S/h}$$

with

- S = the highest height a particle has to jump in order to reach the absolute minimum of ϕ
- a_{ϕ} explicit in terms of derivative of ϕ

Conjugation by the Maxwellian

Reversible equations

Non reversible equations

* ロ ト * 母 ト * ヨ ト * ヨ ト ・ ヨ ・ クタマ

Conjugation by the Maxwellian

We look at the evolution of initial densities of the form

 $u_0 = \tilde{u}_0 \mathcal{M}^{1/2}$

with $\tilde{u}_0 \in L^2(dx)$. The natural Hilbert space to study this question is $L^2(\mathcal{M}(x)^{-1}dx)$. Let

$$U_{\mathcal{M}}: L^{2}(\mathcal{M}(x)^{-1}dx) \to L^{2}(dx)$$
$$u \mapsto \mathcal{M}^{-\frac{1}{2}}u$$
(3)

then $U_{\mathcal{M}}$ is an isometry.

Non reversible equations

Conjugation by the Maxwellian

For any
$$u_0 \in L^2(\mathcal{M}(x)^{-1}dx)$$
 we have

 $e^{-t\mathscr{L}}u_0 = U_{\mathcal{M}}^* e^{-tP} U_{\mathcal{M}}u_0$

the operators $P_ullet:=U_\mathcal{M}\mathscr{L}_ullet U_\mathcal{M}^*$ are given by

$$P_{KS} = -h^2 \Delta + |\nabla \phi|^2 - h \Delta \phi$$

and

$$P_{KFP} = -vh\partial_x + \partial_x\phi h\partial_v + (-h^2\Delta_v + v^2 - hd)$$

As a consequence for any probability density $u_0 = \mathcal{M}^{\frac{1}{2}} \tilde{u}_0$ with $\tilde{u}_0 \in L^2(dx)$ we have

$$\|e^{-t\mathscr{L}}u_0-\mathcal{M}\|_{L^2(\mathcal{M}^{-1}dx)}=\|e^{-t\mathcal{P}}\tilde{u}_0-\langle\tilde{u}_0,\mathcal{M}^{\frac{1}{2}}\rangle\mathcal{M}^{\frac{1}{2}}\|_{L^2(dx)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

Non reversible equations

(日) (日) (日) (日) (日) (日) (日) (日)

Conjugation by the Maxwellian

Some remarks on the generator P

- The operator P_{KS} is self-adjoint on L²(dx). It is the celebrated Witten Laplacian associated to φ.
- The operator P_{KFP} is not self-adjoint on $L^2(dxdv)$. This leads to serious complications
- In both cases, we will study the spectrum of *P* in order to get some information on the speed of return to equilibrium.

 Non reversible equations

Small eigenvalues of Witten Laplacian

Preliminary results on Witten Laplacians

Consider the semiclassical Witten Laplacian associated to ϕ :

 $\Delta_{\phi} = -h^{2}\Delta + |\nabla\phi|^{2} - h\Delta\phi = (-h\partial_{x} + \partial\phi) \circ (h\partial_{x} + \partial\phi)$

where $h \in]0,1]$ denotes the semiclassical parameter. Under the preceding assumptions, one has the following properties on Δ_{ϕ} .

- Δ_{ϕ} is essentially self-adjoint on $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})$.
- $\Delta_{\phi} \geq 0$
- there exists $C_0, h_0 > 0$ such that for all $0 < h < h_0$

$$\sigma_{ess}(\Delta_{\phi}) \subset [C_0,\infty[$$

• 0 is an eigenvalue of Δ_{ϕ} associated to the eigenstate $e^{-\phi/h}$.

Goal :

Study the small eigenvalues of Δ_{ϕ} .

Non reversible equations

Small eigenvalues of Witten Laplacian

Rough localization result

Theorem [Helffer-Sjöstrand-Witten, 80's]

Let $\mathcal{U}^{(0)}$ denote the set of minima of ϕ and $n_0 = \#\mathcal{U}^{(0)}$. There exists $\epsilon_0 > 0$ such that for h > 0 small enough :

- $\sigma(\Delta_{\phi}) \cap [0, \epsilon_0 h]$ has n_0 elements.
- these n_0 "small" eigenvalues are $\mathcal{O}(e^{-C/h})$.

Proof.

• Consider the quasimodes

$$f_{\mathbf{m}}^{(0)}(x) = h^{-rac{d}{4}} \chi_{\mathbf{m}}(x) e^{-(\phi(x) - \phi(\mathbf{m}))/h}, \ \mathbf{m} \in \mathcal{U}^{(0)}$$

for some cut-off functions $\chi_{\mathbf{m}}$ localized around \mathbf{m} .

Compute

$$\Delta_{\phi} f_{\mathbf{m}}^{(0)} = h^{-\frac{d}{4}} [h^2 \Delta, \chi_{\mathbf{m}}] e^{-(\phi(\mathbf{x}) - \phi(\mathbf{m}))/h} = \mathcal{O}(e^{-C/h})$$

• Use self-adjointness of Δ_{ϕ} to conclude (min-max).

(日) (日) (日) (日) (日) (日) (日) (日)

Small eigenvalues of Witten Laplacian

Exponentially small eigenvalues : log-limit

Denote $0 = \lambda_1(h) < \lambda_2(h) \leq \ldots \leq \lambda_{n_0}(h)$ the small eigenvalues of Δ_{ϕ} .

- Freidlin-Wentzell compute the limit of $h \log(\lambda_j(h))$ as $h \to 0$ (large deviations approach)
- On compact manifolds, Holley-Kusuoka-Stroock [89] proved (by functional inequalities approach) that

$$C_1 h e^{-2S/h} \leq \lambda_2(h) \leq C_2 h e^{-2S/h}$$

with S= highest height a particle has to jump in order to reach the absolute minimum of ϕ

• Mathieu [95], Miclo [95] generalized this result to λ_j , $j \ge 3$ (functional inequalities)

Small eigenvalues of Witten Laplacian

Remark

One aims to compute the exact prefactors. This is important

- from a mathematical point of view
- for applications : accelerated dynamics algorithms use these prefactors, see Voter [97,98].

Reversible equations

Non reversible equations

(日) (日) (日) (日) (日) (日) (日) (日)

Small eigenvalues of Witten Laplacian

Exponentially small eigenvalues : sharp result

Theorem

There exists a function $S: \mathcal{U}^{(0)} \to \mathbb{R}^*_+$ such that the n_0 small eigenvalues $(\lambda_{\mathbf{m}}(h))_{\mathbf{m} \in \mathcal{U}^{(0)}}$ satisfy

$$\lambda_{\mathbf{m}}(h) = h\zeta(\mathbf{m}, h)e^{-2S(\mathbf{m})/h}$$

where $\zeta(\mathbf{m}, h) \sim \sum_{r=0}^{\infty} h^r \zeta_r(\mathbf{m})$ and $\zeta_0(\mathbf{m})$ is explicit.

This theorem was proved by

- Bovier-Gayrard-Klein [04], potential theory approach. Non degeneracy assumption on the family of heights (S(m))_{m∈U⁽⁰⁾}.
- Helffer-Klein-Nier [04] by semiclassical methods. Non degeneracy assumption.
- Michel [17] in the full general case.

Non reversible equations

Small eigenvalues of Witten Laplacian

The labelling procedure I

Let $\mathcal{U}^{(1)}$ denote the set saddle points of ϕ . For any $\mathbf{s} \in \mathcal{U}^{(1)}$ and r > 0 small enough, the set

$$B(\mathbf{s},r) \cap \{x \in X, \ \phi(x) < \phi(\mathbf{s})\}$$

has exactly two connected components $C_j(\mathbf{s}, r)$, j = 1, 2.

Definition (Hérau-Hitrik-Sjöstrand, 2011)

- s ∈ U⁽¹⁾ is a separating saddle point (ssp) iff C₁(s, r) and C₂(s, r) are contained in two different connected components of {x ∈ X, φ(x) < φ(s)}. We denote by V⁽¹⁾ the set of ssp.
- $\sigma \in \mathbb{R}$ is a separating saddle value (ssv) if it is of the form $\sigma = \phi(\mathbf{s})$ with $\mathbf{s} \in \mathcal{V}^{(1)}$. We denote $\underline{\Sigma} = \phi(\mathcal{V}^{(1)}) = \{\sigma_2 > \sigma_3 > \ldots > \sigma_N\}.$

Reversible equations

Small eigenvalues of Witten Laplacian

Example of SSP I

Level set of a potential with 2 minima, 2 saddle points and 1 maximum

Reversible equations

Small eigenvalues of Witten Laplacian

Example of SSP II

(ロ)、

Reversible equations

Non reversible equations

Small eigenvalues of Witten Laplacian

Example of SSP II

 \mathbf{s}_1 is not separating

Reversible equations

Small eigenvalues of Witten Laplacian

Example of SSP III

Reversible equations

Small eigenvalues of Witten Laplacian

Example of SSP III

Reversible equations

Non reversible equations

Small eigenvalues of Witten Laplacian

The labelling procedure II

Add a fictive infinite saddle value $\sigma_1 = +\infty$ to $\underline{\Sigma}$ and let

 $\Sigma = \{\sigma_1\} \cup \underline{\Sigma} = \{\sigma_1 > \sigma_2 > \ldots > \sigma_N\}$

- To σ₁ = +∞ associate the unique connected component *E*_{1,1} = ℝ^d of {φ < σ₁}. In *E*_{1,1}, pick up *m*_{1,1} one (non necessarily unique) minimum of φ_{|E_{1,1}}.
- The set {φ < σ₂} has finitely many connected components. One of them contains m_{1,1}. The others are denoted E_{2,1},..., E_{2,N2}. In each of these CC, one choses one absolute minimum m_{2,j} of φ_{|E2,j}.
- The set {φ < σ_k} has finitely many CC. One denotes by *E*_{k,1},..., *E*_{k,Nk} those of these CC which do not contain any *m*_{i,j}, *i* < *k*. In each *E*_{k,j} one choses one absolute minimum *m*_{k,j} of φ<sub>|E_{k,j}.

 </sub>

Reversible equations

Non reversible equations

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Small eigenvalues of Witten Laplacian

The labelling procedure III

Let $\mathcal{O}(X)$ denote the connected open subsets of X. Using the preceding labelling one constructs the following applications :

- $\sigma : \mathcal{U}^{(0)} \to \Sigma$, defined by $\sigma(\mathbf{m}_{i,j}) = \sigma_i$.
- $E: \mathcal{U}^{(0)} \to \mathcal{O}(X)$, defined by $E(\mathbf{m}_{i,j}) = E_{i,j}$.
- $S = \sigma \phi$

Non reversible equations

(日本本語を本書を本書を、「四本」

Small eigenvalues of Witten Laplacian

The Generic case I

The following hypothesis introduced by Hérau-Hitrik-Sjöstrand (2011) is a generalization of Helffer-Klein-Nier assumption (2004).

Generic Assumption (GA) :

For all $\mathbf{m} \in \mathcal{U}^{(0)}$, the following hold true :

- i) $\phi_{|E(\mathbf{m})}$ has a unique point of minimum
- ii) for any connected component E of $\{\phi < \sigma(\mathbf{m})\}$

$$\mathsf{E}\cap\mathcal{V}^{(1)}
eq\emptyset\Longrightarrow\exists!\,\mathbf{s}\in\mathcal{V}^{(1)},\;\phi(\mathbf{s})=\sup\phi(\mathsf{E}\cap\mathcal{V}^{(1)})$$

This assumption yields a bijection

 $\boldsymbol{s}:\mathcal{U}^{(0)}\to\mathcal{V}^{(1)}\cup\{\infty\}$

We let

$$S(\mathbf{m}) = \phi(\mathbf{s}(\mathbf{m})) - \phi(\mathbf{m})$$

with the convention $\phi(\infty) = \infty$.

Non reversible equations

Small eigenvalues of Witten Laplacian

The Generic case II

Let us write $\lambda(\mathbf{m}, h)$, $\mathbf{m} \in \mathcal{U}^{(0)}$ the n_0 small eigenvalues of Δ_{ϕ} .

Theorem (Helffer-Klein-Nier 2004, Hérau-Hitrik-Sjöstrand 2011)

Suppose the the Generic Assumption is satisfied. Then the n_0 small eigenvalues of Δ_ϕ satisfy

$$\lambda(\mathbf{m},h) = h\zeta(\mathbf{m},h)e^{-2S(\mathbf{m})/h}$$

where $\zeta(\mathbf{m},h) \sim \sum_{r=0}^{\infty} h^r \zeta_r(\mathbf{m})$ and

$$\zeta_0(\mathbf{m}) = \pi^{-1} |\mu(\mathbf{s}(\mathbf{m}))| \sqrt{rac{|\det \phi''(\mathbf{m})|}{|\det \phi''(\mathbf{s}(\mathbf{m}))|}}$$

where $\mu(\mathbf{s})$ is the unique negative eigenvalue of ϕ'' in \mathbf{s} .

Reversible equations

Non reversible equations

Small eigenvalues of Witten Laplacian

A simple example

Suppose that the following hypothesis are verified :

- The set of minimal values is reduced to one point : $\exists c_0, \forall \mathbf{m} \in \mathcal{U}^{(0)}, \phi(\mathbf{m}) = c_0$
- The set of saddle values is reduced to one point : $\exists c_1, \ \forall \mathbf{m} \in \mathcal{U}^{(1)}, \ \phi(\mathbf{m}) = c_1$

FIGURE – The sublevel set $\{\varphi < \sigma\}$ (dashed region) associated to a potential φ satisfying the assumptions. The x's represent local minima, the o's, local maxima.

Non reversible equations

Small eigenvalues of Witten Laplacian

Theorem (Michel 2017)

The n_0 small eigenvalues of Δ_{ϕ} satisfy $\lambda_1 = 0$ and for all $k = 2, \dots, n_0$,

$$\lambda_k(h) = h\zeta_k(h)e^{-2S/h}$$

where $S = c_1 - c_0$ and

$$\zeta_k(h) \sim \sum_{r=0}^{\infty} h^r \zeta_{k,r}$$

and $\zeta_{k,0}$ are the non zero eigenvalues of the weighted graph ${\mathcal{G}}$ defined by

- The vertices of the graph are the minima $\mathbf{m} \in \mathcal{U}^{(0)}$.
- The edges between two vertices \mathbf{m} , \mathbf{m}' are the saddle points $\mathbf{s} \in \mathcal{V}^{(1)}$ such that $\mathbf{s} \in \overline{E}(\mathbf{m}) \cap \overline{E}(\mathbf{m}')$.
- The weights explicitly depend on the values of ϕ'' on $\mathcal{U}^{(0)}$ and $\mathcal{U}^{(1)}$.

Small eigenvalues of Witten Laplacian

FIGURE – The sublevel set $\{\varphi < \sigma\}$ (dashed region) associated to a potential φ satisfying the assumptions. The x's represent local minima, the o's, local maxima.

FIGURE – The graph associated to the potential represented in Figure 2

Non reversible equations

Strategy of proof

Finite dimensional reduction

The general strategy of Helffer-Klein-Nier is the following :

- Introduce
 - $F^{(0)}$ = eigenspace associated to the n_0 low lying eigenvalues on 0-forms
 - $\Pi^{(0)} = \text{projector on } F^{(0)}$.
 - M = restriction of Δ_{ϕ} to $F^{(0)}$.

We have to compute the eigenvalues of M.

• We compute suitable BKW approximated eigenfunctions $f_m^{(0)}$ indexed by $\mathbf{m} \in \mathcal{U}^{(0)}$, and show that

$$\Pi^{(0)} f_{\mathbf{m}}^{(0)} = f_{\mathbf{m}}^{(0)} + error$$

and compute the matrix of *M* in the base $\Pi^{(0)} f_{\mathbf{m}}^{(0)}$.

- Doing that leads to error terms which are too big.
- In order to overcome this difficulty, they use the supersymmetric structure.

Reversible equations

Non reversible equations

(日) (日) (日) (日) (日) (日) (日) (日)

Strategy of proof

Supersymmetric structure

- For 0 ≤ p ≤ d, let Ω^p denote the space of p-differential forms on ℝ^d and let d : Ω^p → Ω^{p+1} denote the exterior derivative.
- Introduce the twisted semiclassical derivative

$$d_{\phi}=e^{-\phi/h}\circ h d\circ e^{\phi/h}=h d+\partial\phi\wedge$$

• the semiclassical Witten Laplacian on p forms is

$$\Delta^{(p)}_\phi = d^*_\phi \circ d_\phi + d_\phi \circ d^*_\phi$$

• for p = 0, we recover

$$\Delta_{\phi}^{(0)} = -h^2 \Delta + |\nabla \phi|^2 - h \Delta \phi$$

Reversible equations

Non reversible equations

Strategy of proof

The Witten Laplacian on 1-forms

The operator $\Delta_{\phi}^{(1)}$ is essentially self-adjoint on $C_c^{\infty}(\Omega^1)$ and non negative. Morever, one has

$$\Delta^{(1)}_{\phi} = \Delta^{(0)}_{\phi} \otimes \mathsf{Id} + h \,\mathsf{Hess}(\phi)$$

• there exists $C_0, h_0 > 0$ such that for all $0 < h < h_0$

$$\sigma_{ess}(\Delta_{\phi}^{(1)}) \subset [C_0,\infty[$$

- $\sigma(\Delta_{\phi}^{(1)}) \cap [0, \epsilon_0 h]$ has n_1 elements.
- the eigenfunctions associated to the n_1 small eigenvalues of $\Delta_{\phi}^{(1)}$ are exponentially localized near the saddle points $\mathbf{s} \in \mathcal{U}^{(1)}$ (Agmon estimates).

Reversible equations

Non reversible equations

Strategy of proof

Using Supersymmetry

The fondamental remarks are the following :

•
$$\Delta_{\phi}^{(p+1)} d_{\phi}^{(p)} = d_{\phi}^{(p)} \Delta_{\phi}^{(p)}$$
 and $d_{\phi}^{(p),*} \Delta_{\phi}^{(p+1)} = \Delta_{\phi}^{(p)} d_{\phi}^{(p),*}$

• Denote $F^{(1)}$ the eigenspace associated to low lying eigenvalues on 1 forms, then $d_{\phi}^{(0)}(F^{(0)}) \subset F^{(1)}$ and $d_{\phi}^{(0),*}(F^{(1)}) \subset F^{(0)}$. Hence

$$M = L^*L$$

where L is the matrix of $d_{\phi}^{(0)}: F^{(0)} \to F^{(1)}$.

• The matrix L is well approximated $L = (1 + \mathcal{O}(e^{-lpha/h}))\mathcal{L}$ with

$$\mathcal{L} := (\langle d_{\phi}^{(0)} f_{\mathbf{m}}^{(0)}, f_{\mathbf{s}}^{(1)} \rangle)_{\mathbf{s} \in \mathcal{U}^{(1)} \mathbf{m} \in \mathcal{U}^{(0)}}$$

where $f_s^{(1)}$ are BKW approximated eigenfunctions on 1-form.

Reversible equations

Non reversible equations

Strategy of proof

Singular values analysis

- The eigenvalues of M are the singular values of $L = (1 + O(e^{-lpha/h}))\mathcal{L}$
- The fondamental point is that the error terms induced by change of basis, etc. result in multiplicative errors thanks to the following

Lemma (Fan inequalities)

Let A,B be two matrices and denote by μ_n the singular values of any matrix. Then

$$\mu_n(AB) \leq \|B\|\mu_n(A)$$

$$\mu_n(AB) \leq \|A\|\mu_n(B)\|$$

where $\|C\|$ denotes the norm of $C : \mathbb{R}^p \to \mathbb{R}^q$ with \mathbb{R}^{\bullet} endowed with ℓ^2 norms.

Non reversible equations

Boundary value problems

Exit event from a domain

Let Ω be a basin of attraction for the deterministic dynamic $\dot{x} = -2\nabla\phi(x)$ and let $\mathcal{D} \subset \Omega$. Let (X_t) be driven by overdamped Langevin equation with X_0 distributed according to the stationary measure of \mathcal{D} . We want to compute

- the mean first exit time from \mathcal{D} for the dynamic (X_t)
- the law of the first exit point

Let (λ_1, u_1) be the first eigenpair of the infinitesimal generator \mathscr{L}_{KS} with Dirichlet boundary conditions on $\partial \mathcal{D}$:

$$\begin{cases} -2\nabla\phi \cdot h\nabla u_1 + h^2\Delta u_1 = -\lambda_1 u_1 \text{ on } \mathcal{D}, \\ u_1 = 0 \text{ on } \partial \mathcal{D}. \end{cases}$$

Then

- mean exit time = λ_1
- the law of the first exit point is proportional to $-\partial_n u_1 d\sigma_{\partial D}$.

Boundary value problems

Some results

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

After conjugation by $e^{-\phi/h}$, we are lead to consider the Witten Laplacian with boundary conditions.

- Helffer-Nier [06] : Small eigenvalues for Dirichlet boundary cond.
- Le Peutrec [10] : Small eigenvalues for Neumann BC
- di Gesu-Lelièvre-Le Peutrec-Nectoux [17] : computation of $\partial_n u_1$ up to the boundary

Reversible equations

Non reversible equations •000000000

4日 × 日 × 日 × 日 × 日 × 日 × 1000

Kramers-Fokker-Planck equations

Kramers-Fokker-Planck equations

Consider the Kramers-Fokker-Planck operator acting on $L^2(\mathbb{R}^d_x \times \mathbb{R}^d_v)$

 $P = -vh\partial_x + \partial_x\phi h\partial_v + (-h^2\Delta_v + v^2 - hd)$

This operator is (look at the x variable)

- non elliptic
- non self-adjoint

This has serious consequences. We don't know

- what is the nature of the spectrum of *P*.
- how to go from quasimodes to eigenfunctions.

Reversible equations

Non reversible equations

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kramers-Fokker-Planck equations

Hypoellipticity

One has

$$P = X_0 + b^* b$$

with $X_0 = -vh\partial_x + \partial_x\phi h\partial_v$ and $b = h\partial_v + v$. We have the following relations

$$[b, X_0] = a, \ [[b, X_0], X_0] = [a, X_0] = -\operatorname{Hess}(\phi)b$$

with $a = h\partial_x + \partial_x \phi$. This implies

 $[a^*b, X_0] = a^*a - hb^* \operatorname{Hess}(V)b$

 One wants to use these relations in the spirit of Hörmander's hypoellipticity theorem.

Non reversible equations

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Kramers-Fokker-Planck equations

Consider the operator Λ defined by

$$egin{aligned} & \Lambda^2 := 1 + a^*a + b^*b \ &= 1 + \Delta_\phi + \Delta_{rac{v^2}{2}} \end{aligned}$$

Theorem (Hérau-Nier [04])

There exists C > 0 such that for any $u \in C^{\infty}_{c}(\mathbb{R}^{d})$ we have

$$\|\Lambda^{\frac{2}{3}}u\|^{2} \leq C(\|Pu\|^{2} + \|u\|^{2})$$

Corollary

Assume that $\nabla \phi$ grows sufficiently fast at infinity, then *P* has compact resolvent.

Non reversible equations

(日) (日) (日) (日) (日) (日) (日) (日)

Kramers-Fokker-Planck equations

Resolvant estimate

Theorem (Hérau-Nier [04])

Let $\epsilon = \min(\frac{1}{8}, \frac{1}{8d-4})$. There exists some constants c, C, C' > 0 such that the following holds true :

i) The spectrum of P is contained in the infinite cusp $S \cap \{\operatorname{Re} z \ge 0\}$ with

 $S = \{z \in \mathbb{C}, \text{ Re } z \ge c |z|^{\epsilon} \text{ or } |z| \le C\}$

ii) For any $z \notin S$ we have

$$\|(P-z)^{-1}\|_{L^2 \to L^2} \le C' |z|^{-\epsilon}$$

Non reversible equations

(日) (日) (日) (日) (日) (日) (日) (日)

Kramers-Fokker-Planck equations

Return to equilibrium

In the following, we denote by Π_0 the orthogonal projector (in $L^2(\mathbb{R}^{2d})$) on the vector space generated by the half-Maxwellian $\mathcal{M}(x, v)^{\frac{1}{2}}$.

Theorem (Hérau-Nier [04])

Under the preceding assumptions, there exists $C, \alpha_1 > 0$ such that

$$\|e^{-tP}u_0 - \Pi_0 u_0\| \le Ce^{-\alpha_1 t}\|u_0\|$$

for all $u_0 \in L^2(\mathbb{R}^{2d})$.

Reversible equations

Non reversible equations

Kramers-Fokker-Planck equations

Contour integral

Write

$$e^{-tP} = \frac{1}{2i\pi} \int_{\partial S} e^{-tz} (P-z)^{-1} dz$$

where the integral converges in L^2 sense thanks to the cusp shape of S and the resolvent estimate.

Modify the integration contour

$$e^{-tP} = \frac{1}{2i\pi} \int_{|z|=C} e^{-tz} (P-z)^{-1} dz + \frac{1}{2i\pi} \int_{\partial S'} e^{-tz} (P-z)^{-1} dz$$
$$= \Pi_0 + \frac{1}{2i\pi} \int_{\partial S'} e^{-tz} (P-z)^{-1} dz = \Pi_0 + \mathcal{O}_{L^2} (e^{-\alpha_1 t})$$

since $S' \subset {\operatorname{Re} z \ge \alpha_1}$ for some $\alpha_1 > 0$.

Remark

To find the best α_1 we need to compute the small eigenvalues of *P*.

Kramers-Fokker-Planck equations

Small eigenvalues of Kramers-Fokker-Plank operators

Theorem (Hérau-Hitrik-Sjöstrand [08-11])

Suppose that ϕ is a Morse function satisfying the Generic Assumption. Then

- There exists ϵ_0 , $h_0 > 0$ such that for any $0 < h < h_0$, P has exactly n_0 eigenvalues in $\{0 \le \text{Re } z \le \epsilon_0 h\}$.
- These n_0 small eigenvalues satisfy $\lambda(\mathbf{m}, h) = h\zeta(\mathbf{m}, h)e^{-2S(\mathbf{m})/h}$ where $\zeta(\mathbf{m}, h) \sim \sum_{r=0}^{\infty} h^r \zeta_r(\mathbf{m})$ and

$$\zeta_0(\mathbf{m}) = \pi^{-1} |\mu(\mathbf{s}(\mathbf{m}))| \sqrt{rac{|\det \phi''(\mathbf{m})|}{|\det \phi''(\mathbf{s}(\mathbf{m}))|}}$$

where $\mu(\mathbf{s})$ is the unique negative eigenvalue of the matrix $\left(\begin{array}{cc} 0 & \mathrm{Id} \\ \mathrm{Hess}\,\phi(\mathbf{s}) & \mathrm{Id} \end{array}\right)$.

Reversible equations

Kramers-Fokker-Planck equations

Supersymmetry for KFP

Let $f(x, v) = \phi(x) + \frac{v^2}{2}$ and introduce the twisted exterior derivatives $d_{f,h}$ mapping 0-forms to 1-forms on $\mathbb{R}^{2d}_{x,v}$. Using the basis of 1-forms $dx_1, \ldots, dx_d, dv_1, \ldots, dv_d$ this reads

$$d_{f,h} = \left(\begin{array}{c} h\partial_x + \partial_x V\\ h\partial_v + v \end{array}\right)$$

The KFP operator enjoys a supersymmetric structure

$$\mathsf{P} = d_{f,h}^{A,*} \circ d_{f,h}$$

where $d_{f,h}^{A,*}$ denotes the adjoint of $d_{f,h}$ for the non symmetric skew-product

$$\langle u, v \rangle_A = \langle Au, v \rangle$$

for any $u, v \in \Omega^1(\mathbb{R}^{2d})$ with

$$A = \begin{pmatrix} 0 & -\mathsf{Id} \\ \mathsf{Id} & \frac{1}{2} \mathsf{Id} \end{pmatrix}$$

Reversible equations

Non reversible equations

Kramers-Fokker-Planck equations

Sketch of proof

• Introduce a natural operator on 1-forms

$$P^{(1),A} := d_{f,h}^{A,*} \circ d_{f,h} + d_{f,h} \circ d_{f,h}^{A,*}$$

- Study the spectral theory of $P^{(1),A}$.
 - Resolvent estimates
 - Quasimodes
- Perform a "singular value analysis" in the spirit of Witten Laplacian. Compute

$$L := \langle d_{f,h} f_{\mathbf{m}}^{(0)}, f_{\mathbf{s}}^{(1)} \rangle_{\mathcal{A}}$$

Problem : the skew product ⟨, ⟩_A is not symmetric.
 → Solution : Use extra symmetry (PT symmetry) :

$$U^*PU = P^*$$

with Uf(x, v) = f(x, -v).

Reversible equations

Non reversible equations

Non-local FP equations

Non-local Fokker-Planck equations

• Consider the Fokker-Planck equation $\partial_t u = P_Q u$ with

$$P_Q u = v h \partial_x - \nabla \phi(x) h \partial_v + Q(v) \tag{4}$$

where the collision operator is a pseudodifferential operator $Q(u) := \operatorname{Op}_{h}^{w}(q)(u)$ such that $Q(\mathcal{M}) = 0$.

• A typical example is linear relaxation kernel

$$Q(u) := u - \langle u, \phi_0 \rangle \phi_0$$

with $\phi_0(v) = (2\pi h)^{-d/2} e^{-v^2/(2h)}$.

Goals

1) Prove exponential return to equilibrium. 2) Compute the optimal rate.

Non reversible equations

Non-local FP equations

Some partial results

- Resolvent estimates for P_Q and rough localization of eigenvalues (V. Robbe 2015)
- Construction of pseudodifferential supersymmetric structure for P_Q (Hérau-Michel 2018)
- Resolvant estimates for the operator $P_Q^{(1)}$ acting on 1-forms (Hérau-Michel 2018)

Work in progress : Agmon estimates, small eigenvalues analysis.