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Motivation: conformation dynamics of biomolecules

? ?Protein folding

[Noé et al, PNAS, 2009]



Motivation: conformation dynamics of biomolecules

Given a Markov process (Xt)t≥0, discrete or continuous in time,
we want to estimate probabilities p � 1, such as

p = P (τ < T ) ,

with τ the time to reach the target conformation, free energies

F (β) = −β−1 logE
[
e−βW

]
, β > 0 .

or rates
k = (E[τ ])−1

where E[·] is the expectation with respect to P.



Illustrative example: bistable system

I Overdamped Langevin equation

dXt = −∇V (Xt)dt +
√

2εdBt .

I Standard estimator of MGF ψ = ψε

ψ̂N
ε =

1

N

N∑
i=1

e−ατ
i
C .

I Small noise asymptotics (Kramers)

lim
ε→0

ε logE[τC ] = ∆V .
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



Illustrative example, cont’d

I Relative error of the MC estimator

δε =

√
Var[ψ̂εN ]

E
[
ψ̂εN
]

I Varadhan’s large deviations principle

E
[
(ψ̂N

ε )2
]
� (E

[
ψ̂N
ε

]
)2 , ε small.

I Unbounded relative error as ε→ 0

lim sup
ε→0

δε =∞
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[Dupuis & Ellis, 1997]



Outline

Importance sampling of rare events

Duality of estimation and control

Least-squares Monte Carlo approach



Importance sampling of rare events

Duality of estimation and control

Least-squares Monte Carlo approach



Optimal change of measure: zero variance

Pick another probability measure Q with ϕ = dQ
dP > 0, under which

the rare event is no longer rare, e.g.

P(τ < T ) = E
[
1{τ<T}

]
= EQ

[
1{τ<T}ϕ

−1
]

Zero-variance change of measure is given by

ϕ∗ =
1{τ<T}

E
[
1{τ<T}

] , i.e. Q∗ = P( · | τ < T ) ,

but it depends on the quantity of interest P(τ < T ).
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Idea no. 1



Exponential tilting from large deviations asymptotics

If ψε ≈ ψ̂N
ε satisfies a large deviations principle, say,

lim
ε→0

ε logE[ψ̂N
ε ] = −γ

for some γ > 0. Then asymptotically efficient IS schemes can be
based on exponential family distributions Q = Qγ , such that

lim
ε→0

ε logEQ [(ψ̂N
ε )2ϕ−2] = −2γ

Log-asymptotic efficiency:

δε = eo(1/ε) as ε→ 0 ,

i.e. the relative error grows subexponentially as ε→ 0.

[Siegmund, Ann Stat, 1976], [Glasserman & Kou, AAP, 1997], [Dupuis & Wang, Stochastics, 2004]
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Idea no. 2



Exponential tilting from nonequilibrium forcing

Single molecule pulling experiments, figure courtesy of G. Hummer, MPI Frankfurt

In vitro/in silico free energy calculation from forcing:

F (β) = −β−1 logE
[
e−βW

]
, β > 0 .

Forcing generates a “nonequilibrium” path space measure Q with
typically suboptimal likelihood quotient ϕ = dQ/dP.

[Schlitter, J Mol Graph, 1994], [Hummer & Szabo, PNAS, 2001], Schulten & Park, JCP, 2004], ...



Importance sampling of rare events

Duality of estimation and control

Least-squares Monte Carlo approach



Variational characterization of free energy

Theorem (Donsker & Varadhan)

For any bounded and measurable function W it holds

− logE
[
e−W

]
= min

Q�P
{EQ [W ] + KL(Q,P)}

where KL(Q,P) ≥ 0 is the relative entropy between Q and P:

KL(Q,P) =


∫

log

(
dQ

dP

)
dQ if Q � P

∞ otherwise

Sketch of proof: Let ϕ = dP/dQ. Then

− log

∫
e−W dP = − log

∫
e−W+logϕdQ ≤

∫
(W − logϕ) dQ

[Boué & Dupuis, LCDS Report #95-7, 1995], [Dai Pra et al, Math Control Signals Systems, 1996]



Same same, but different. . .



Set-up: uncontrolled (“equilibrium”) diffusion process

Let X = (Xs)s≥0 be a diffusion process on Rn,

dXs = b(Xs , s)ds + σ(Xs)dBs , Xt = x ,

and

W (X ) =

∫ τ

0
f (Xs , s) ds + g(Xτ ) ,

for suitable functions f , g and a a.s. finite stopping time τ <∞.

Aim: Estimate the path functional

ψ(x , t) = E
[
e−W (X )

]



Set-up: controlled (“nonequilibrium”) diffusion process

Now given a controlled diffusion process X u = (X u
s )s≥0,

dX u
s = (b(X u

s , s) + σ(X u
s )us)ds + σ(X u

s )dBs , X u
t = x ,

and a probability Q � P on C ([0,∞)) with likelihood ratio

ϕ(X u) =
dQ

dP

∣∣∣∣
Fτ

= exp

(
−
∫ τ

0
us · dBs −

1

2

∫ τ

0
|us |2 ds

)
.

Now: Estimate the reweigthed path functional

E
[
e−W (X )

]
= E

[
e−W (X u)(ϕ(X u))−1

]



Variational characterization of free energies, cont’d

Theorem (H, 2012/2017)

Technical details aside, let u∗ be a minimiser of the cost functional

J(u) = E
[
W (X u) +

1

2

∫ τ

t
|us |2 ds

]
under the controlled dynamics

dX u
s = (b(X u

s , s) + σ(X u
s )us)ds + σ(X u

s )dBs , X u
t = x .

The minimiser is unique with J(u∗) = − logψ(x , t). Moreover,

ψ(x , t) = e−W (X u∗ )(ϕ(X u∗))−1 (a.s.) .

[H & Schütte, JSTAT, 2012], [H et al, Entropy, 2017]



Illustrative example, cont’d

I Exit problem: f = α, g = 0, τ = τC :

J(u∗) = min
u

E
[
ατuC +

1

4ε

∫ τuC

0
|us |2 ds

]
I Recovering original statistics by, e.g.,

E[τC ] =
d

dα

∣∣∣∣
α=0

J(u∗)

I Optimally tilted potential

U∗(x , t) = V (x)− u∗t x

with stationary feedback u∗t = c(X u∗
t ).
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Sketch of proof (smooth case w/ classical solution)

By the Feynman-Kac formula,

ψ(x , t) = E
[

exp

(
−
∫ τ

0
f (Xt , t)dt − g(Xτ )

) ∣∣∣∣Xt = x

]
solves the linear parabolic BVP on Ω ⊂ [0,∞)× Rn

(A− f )ψ = f ψ , ψ|∂Ω = exp(−g) with A =
∂

∂t
− L

The corresponding semilinear BVP for F = − logψ reads

AF − 1

2
|∇F |2a + f = 0 , F |∂Ω = g with a = σσT

[H et al, JSTAT, 2012]; cf. [Fleming, SIAM J Control, 1978], [Boué & Dupuis, Ann Probab., 1998]
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Sketch of proof, cont’d

The semilinear Hamilton-Jacobi-Bellmann PDE

AF − 1

2
|∇F |2a + f = 0 , F |∂Ω = g (a = σσT )

is the dynamic programming equation for our stochastic control
problem; it solution is the value function

F (x , t) = min{J(u) : X u
t = x}

If F ∈ C 2,1 the optimal control has gradient form, i.e.

u∗t = −σ(X u∗
t )T∇F (X u∗

t , t) ,

Generalizations: degenerate diffusions, Markov chains, . . . .

[Schütte et al, Math Prog, 2012], [Banisch & Hartmann, MCRF, 2016], [H et al, Entropy, 2017]
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From dynamic programming to FBSDE

Let Ω ⊂ [0,T ]× Rn be bounded. The semilinear HJB equation

∂F

∂t
+ LF + h(x ,F , σT∇F ) = 0 , F |∂Ω = g

for F ∈ C 2,1 is equivalent to the forward-backward SDE

dXs = b(Xs , s)ds + σ(Xs)dBs , Xt = x

dYs = −h(Xs ,Ys ,Zs)ds + Zs · dBs , Yτ = g(Xτ ) ,

where t ≤ s ≤ τ ≤ T and

Ys = F (Xs , s) , Zs = σ(Xs)T∇F (Xs , s).

Formal derivation: Itô’s Lemma

[Pardoux & Peng, LNCIS 176, 1992], [Kobylanski, Ann Probab, 2000]



Some remarks

I The solution is a triplet (X ,Y ,Z ) where the pair (Ys ,Zs)s
is adapted to the filtration generated by (Xs)s .

I Hence Yt = F (x , t) is a deterministic function of the initial
data (x , t), and −Zt is the optimal control u∗ at time t.

I The backward SDE is not a
time-reversed SDE; e.g. for
h ≡ 0 and YT = XT , the pair
(Ys ,Zs) ≡ (XT , 0) satisfies

dYs = Zs · dBs ,

but it is not adapted.
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I A fix: L2 projection onto the filtration generated by (Xs)s .

[Pardoux & Peng, LNCIS 176, 1992], [Kobylanski, Ann Probab, 2000]
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Numerical discretisation of FBSDE

The FBSDE is decoupled and an explicit scheme can be based on

X̂n+1 = X̂n + ∆t b(X̂n, tn) +
√

∆t σ(X̂n)ξn+1

Ŷn+1 = Ŷn −∆t h(X̂n, Ŷn, Ẑn) +
√

∆t Ẑn · ξn+1

Since Ŷn is adapted we have Ŷn = E
[
Ŷn|Fn

]
and thus

Ŷn = E
[
Ŷn+1 + ∆t h(X̂n, Ŷn, Ẑn)|Fn

]
≈ E

[
Ŷn+1 + ∆t h(X̂n, Ŷn+1, Ẑn+1)|Fn

]
where Fn = σ(X̂0, . . . , X̂n) using that Ẑn is independent of ξn+1.

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]



Numerical discretisation of FBSDE, cont’d

The conditional expectation

Ŷn := E
[
Ŷn+1 + ∆t h(X̂n, Ŷn+1, Ẑn+1)|Fn

]
can be computed by least-squares:

E
[
S |Fn

]
= argmin

Y∈L2,Fn-measurable

E[|Y − S |2] .

Specifically,

Ŷn ≈ argmin
Y=YK (X̂n)

1

M

M∑
m=1

∣∣∣Y − Ŷ
(m)
n+1 −∆t h

(
X̂

(m)
n , Ŷ

(m)
n+1, Ẑ

(m)
n+1

)∣∣∣2 ,
where YK (x) = α1φ1(x) + . . .+ αKφK (x).

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]
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]
can be computed by least-squares:

E
[
S |Fn

]
= argmin

Y∈L2,Fn-measurable

E[|Y − S |2] .

Specifically,
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More remarks

I The scheme is strongly convergent of order 1/2 in ∆t → 0
as M,K →∞.

I A (fictitious) zero-variance change of measure is given by

dQ

dP

∣∣∣∣
Fτ

= exp

(∫ τ

0
Zs · dBu

s +
1

2

∫ τ

0
|Zs |2 ds

)
,

for τ ≤ T and the discretisation bias can be further reduced
by using importance sampling.

I Generalisations include unbounded & random τ , singular
terminal condition, least-squares w/ change of drift.

I Alternative algorithms: stochastic gradient descent,
cross-entropy minimisation, approximate policy iteration.

[Turkedjiev, PhD thesis, 2013], [Kruse & Popier, SPA, 2016], [Kebiri & H, Preprint, 2018]



Numerical illustration



Example I: hitting probabilities

Probability of hitting the set C ⊂ R before time T :

− logP(τ ≤ T ) = min
u

E
[

1

4

∫ τ∧T

0
|ut |2 dt − log 1∂C (X u

τ∧T )

]
,

with τ denoting the first hitting time of C under the dynamics

dX u
t = (ut −∇V (X u

t )) dt +
√

2ε dBt

.
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[Zhang et al, SISC, 2014], [Richter, MSc thesis, 2016], [H et al, Nonlinearity, 2016]



Example I, cont’d

Probability of hitting C ⊂ R before time T , starting from x = −1:

− logP(τ ≤ T ) = min
u

E
[

1

4

∫ τ∧T

0
|ut |2 dt − log 1∂C (X u

τ∧T )

]
,

(BSDE with singular terminal condition and random stopping time)

Simulation parameters Fε
ref (0, x) F̄ε(0, x) Var

K = 8, M = 300, T = 5, ∆t = 10−3, ε = 1 0.3949 0.3748 10−3

K = 5, M = 300, T = 1, ∆t = 10−3, ε = 1 1.7450 1.6446 0.0248

K = 5,M = 400, T = 1,∆t = 10−4, ε = 0.6 4.3030 4.5779 10−3

K = 6,M = 450, T = 1,∆t = 10−4, ε = 0.5 4.5793 4.6044 5 · 10−4

with K the number of Gaussians and M the number of realisations of the forward SDE.

[Ankirchner et al, SICON, 2014], [Kruse & Popier, SPA, 2016], [Kebiri et al, Proc IHP, 2018]



Example II: High-dimensional PDE

First exit time of a Brownian motion from an n-sphere of radius r :

τ = inf{t > 0: x + Bt /∈ Sn
r }

Cumulant generating function of first exit time satisfies

− logEx [exp(−ατ)] = min
u

Ex

[
ατu +

1

2

∫ τu

0
|ut | dt

]

I BSDE on random time horizon with
homogeneous terminal condition

I mean first exit time Ex [τ ] = r2−|x |2
n

I Least-squares MC w/ K = 3,M ∼ 102

n = 3 n = 10 n = 100 n = 1000
exact 1.00 1.00 1.00 1.00
CMC 0.98 0.99 1.08 1.04
LSMC 0.99 1.01 0.96 0.98

[Kebiri & H, Preprint, 2018]



Conclusions, outlook and open problems

I Adaptive importance sampling scheme based on dual
variational formulation; resulting control problem features
short trajectories with minimum variance estimators.

I Variational problem boils down to an uncoupled FBSDE
with only one additional spatial dimension.

I Error analysis for unbounded stopping time & singular
terminal condition is open, least-squares algorithm requires
some fine-tuning (ansatz functions, change of drift, . . . ).

I Clever choice of ansatz functions should involve dimension
reduction—preliminary results for slow-fast systems

sup{|Ŷ δ
t − Yt | : 0 ≤ t ≤ T} ≤ CM,K ,∆t

√
δ δ =

τfast

τslow

as ∆t = O(δ)→ 0 and M,K →∞ (analogously for Ẑt).
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