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Introduction

Sampling distribution over high-dimensional state-space has recently
attracted a lot of research efforts in computational statistics and machine
learning community...

Applications (non-exhaustive)

1. Bayesian inference for high-dimensional models,
2. Bayesian inverse problems (e.g., image restoration and deblurring),
3. Aggregation of estimators and experts,
4. Bayesian non-parametrics.

Most of the sampling techniques known so far do not scale to
high-dimension... Challenges are numerous in this area...
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Bayesian setting

A Bayesian model is specified by

1. the sampling distribution of the observed data conditional on its
parameters, often termed likelihood: Y ∼ L(·|θ)

2. a prior distribution π0 on the parameter space θ ∈ Rd

The inference is based on the posterior distribution:

π(dθ) =
π0(dθ)L(Y |θ)∫
L(Y |u)π0(du)

.

In most cases the normalizing constant is not tractable:

π(dθ) ∝ π0(dθ)L(Y |θ) .
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Logistic and probit regression

Likelihood: Binary regression set-up in which the binary observations
(responses) {Yi}n

i=1 are conditionally independent Bernoulli random variables
with success probability {F (βββT Xi )}n

i=1, where

1. Xi is a d dimensional vector of known covariates,
2. βββ is a d dimensional vector of unknown regression coefficient
3. F is the link function.

Two important special cases:

1. probit regression: F is the standard normal cumulative distribution
function,

2. logistic regression: F is the standard logistic cumulative distribution
function:

F (t) = et/(1 + et)
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Bayes 101

Bayesian analysis requires a prior distribution for the unknown regression
parameter

π0(βββ) ∝ exp

(
−1

2
βββ′Σ−1

βββ βββ

)
or π0(βββ) ∝ exp

(
−

d∑
i=1

αi |βi |

)
.

The posterior of βββ is up to a proportionality constant given by

π(βββ|(Y ,X )) ∝
n∏

i=1

F Yi (β′Xi )(1− F (β′Xi ))1−Yiπ0(βββ)
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Bayesian setting

Bayesian decision theory relies on computing expectations:

π(f ) =

∫
Rd

f (x)dπ(x) =

∫
Rd

f (x)π(x)dx

Generic problem: estimation of an integral π(f ), where

- π is known up to a multiplicative factor ;
- Sampling directly from π is not an option;

A solution is to approximate π(f ) by

n−1
n∑

i=1

f (Xi ) ,

where (Xi )i≥0 is a Markov chain associated with a Markov kernel P with
invariant distribution π.
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A daunting problem ?

For Gaussian prior (ridge regression), the potential log(π) is smooth strongly
convex.

For Laplace prior (Lasso our fused Lasso) regression, the potential log(π) is
non-smooth but still convex...

A wealth of efficient optimisation algorithms are now available to solve this
problem in very high-dimension...

(long term) Objective:

- Contribute to fill the gap between optimization and simulation. Good
optimization methods are in general a good source of inspiration to
design efficient sampler.

- Develop algorithms converging to the target distribution polynomially
with the dimension (more precise statements below)
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Framework

Denote by π a target density w.r.t. the Lebesgue measure on Rd , known up
to a normalisation factor

x 7→ e−U(x)/

∫
Rd

e−U(y)dy ,
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(Overdamped) Langevin diffusion

Langevin SDE:
dYt = −∇U(Yt)dt +

√
2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

Notation: (Pt)t≥0 the Markov semigroup associated to the Langevin
diffusion:

Pt(x ,A) = P(Yt ∈ A|Y0 = x) , x ∈ Rd ,A ∈ B(Rd ) .

π(x) ∝ exp(−U(x)) is the unique invariant probability measure.
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Discretized Langevin diffusion

Idea: Sample the diffusion paths, using the Euler-Maruyama (EM) scheme:

Xk+1 = Xk − γk+1∇U(Xk ) +
√

2γk+1Gk+1

where

- (Gk )k≥1 is i.i.d. N (0, Id )
- (γk )k≥1 is a sequence of stepsizes, which can either be held constant or

be chosen to decrease to 0 at a certain rate

Closely related to the (stochastic) gradient descent algorithm.

This algorithm is referred to as the Unadjusted Langevin Algorithm (ULA) in
Bayesian statistics or Langevin Monte Carlo (LMC).
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Discretized Langevin diffusion: constant stepsize

When the stepsize is held constant, i.e. γk = γ, then (Xk )k≥1 is an
homogeneous Markov chain with Markov kernel Rγ

Under some appropriate conditions, Rγ is irreducible, positive recurrent  
unique invariant distribution πγ which does not coincide with the target
distribution π.

Questions:

For a given precision ε > 0, how should I choose the stepsize γ > 0 and
the number of iterations n so that : d(δx Rn

γ , π) ≤ ε where d is some
distance [could be the TV or the Wasserstein distance]
Is there a way to choose the starting point x cleverly ?

CIRM, Advances in Computational Statistical Physics 13 / 54



14/54

Some (very incomplete) references: Early references

1. Statistical physics: Parisi, 1981, Correlation function and Computer
Simulations, Nuclear Physics.

2. Bayesian statistics: Grenander and Miller (in discussion Besag,
Representation of knowledge in Complex Systems, JRSS B). First theoretical
results given by Roberts and Tweedie, 1996, Exponential Convergence of
Langevin Distributions and Their Discrete Approximations, Bernoulli, Stramer
and Tweedie, Langevin-type models. I. Diffusions with given stationary
distributions and their discretizations., MCAP, 1999

3. Most of these results are qualitative (e.g. conditions upon which the sampler
is geometrically ergodic).
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(Very incomplete) existing results for ULA

1. Weak errors estimates Talay and Tubaro 1990; Lamberton and Pagès 2003.

2. Explicit errors Dalalyan 2014; Cheng and Bartlett 2017

3. These results are based on

the comparison between the discretization and the diffusion process
quantify how the error introduced by the discretization accumulate
throughout the algorithm.

4. In the following, we introduce a new interpretation of ULA, as an
optimization algorithm in the Wasserstein space.
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Coupling of probability measures

A coupling of two distributions ξ, ξ′ on (Rd ,B(Rd )) is a distribution ζ on
(Rd × Rd ,B(Rd )⊗ B(Rd )) satisfying

ζ(A× Rd ) = ξ(A) and ζ(Rd × A) = ξ′(A) for all A ∈ B(Rd ) .

The set of all couplings of ξ and ξ′ is denoted by Π(ξ, ξ′).

Let ξ, ξ′ be two probability measures on (Rd ,B(Rd )). Define the Wasserstein
distance of order 2 by

W 2
2 (ξ, ξ′) = inf

ζ∈Π(ξ,ξ′)

∫
Rd×Rd

‖x − x ′‖2
ζ(dxdx ′) .

P2(Rd ) = {µ ∈ P(Rd ) :
∫
Rd ‖x‖2

dµ(x) < +∞} equipped with W2 is a
Polish space, referred to as the Wasserstein space.

Pa
2 (Rd ) = {µ ∈ P2(Rd ) : µ << Leb}.
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A different representation of Langevin dynamics

Let µ0 ∈ Pa
2 (Rd ) and denote for any t ≥ 0, ρt = dµ0Pt/dLeb.

Jordan, Kinderlehrer, and Otto 1998 shows that (ρt)t>0 is the limit of a
minimization scheme on P2(Rd ) wrt F : P2(Rd )→ (−∞,+∞], the free
energy functional,

F = H + E .

H : P2(Rd )→ (−∞,+∞] is the Boltzmann H-functional:

H (µ) =

{∫
Rd

dµ
d Leb (x) log

(
dµ

d Leb (x)
)
dx if µ� Leb

+∞ otherwise .

E : P2(Rd )→ (−∞,+∞] is the potential energy functional:

E (µ) =

∫
Rd

U(x)dµ(x) .

π is the unique minimizer of F :

F (µ)−F (π) = KL (µ|π) .
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The minimization scheme of JKO

Let µ0 ∈ Pa
2 (Rd ) and a stepsize γ > 0.

For any ν ∈ Pa
2 (Rd ), the functional on Pa

2 (Rd )

µ 7→W 2
2 (ν, µ)/2 + γF (µ) ,

admits a unique minimizer.

Then we can consider the sequence (ρ̃k,γ)k∈N as follows.

Set ρ0,γ = dµ0/d Leb.
for any k ∈ N∗,

ρ̃k,γ =
dµ̃k,γ

d Leb
, µ̃k,γ = argmin

µ∈Pa
2 (Rd )

W2(µ̃k,γ , µ) + γF (µ) .

Set ρ̄0,γ = dµ0/d Leb and ρ̄t,γ = ρ̃bt/γc,γ for t > 0.

Jordan, Kinderlehrer, and Otto 1998, Theorem 5.1 shows that for all t > 0,

ρ̄t,γ → ρt,γ weakly in L1(Rd ) as γ → 0 .
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Proximal optimization schemes

The previous scheme can be seen as a proximal type algorithm on the
Wasserstein space (P2(Rd ),W2) used to minimize the functional F
(Martinet 1970 and Rockafeller 1976).

Consider a real l.s.c convex function f on a Hilbert space H equipped with
〈·, ·〉 and ‖·‖, and assume that f admits a minimizer.

The proximal operator proxf : H→ H associated with f is

proxf (x) = arg min
y∈H

{‖x − y‖2
/2 + f (y)} .

The classical proximal scheme to minimize f is defined as follows.
Consider a sequence of stepsizes (γk )k∈N∗ satisfying

∑+∞
k=1 γk = +∞

and x0 ∈ H.
Then, for any k ∈ N,

xk+1 = proxγk+1f (xk ) = arg min
y∈H

{‖x − y‖2 + γk+1f (y)} .

Then, (f (xk ))k∈N is nonincreasing and converges to minH f .

(xk )k∈N converges weakly to a minimizer of f .
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A proximal scheme to sample from π?

We could think about minimizing F using the previous minimization scheme.

However, to our knowledge, finding explicit recursions (ρ̃k,γ)k∈N is as difficult
as minimizing F .

On the other hand, we can try to analyze ULA from this perspective.
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Assumptions

H1 (m)

U : Rd → R is m-convex, i.e. for all x , y ∈ Rd ,

U(tx + (1− t)y) ≤ tU(x) + (1− t)U(y)− t(1− t)(m/2) ‖x − y‖2

U admits a minimizer x?.

Note that H1(m) includes the case where U is only convex when m = 0.

H2

U is continuously differentiable and L-gradient Lipschitz, i.e. there exists L ≥ 0
such that for all x , y ∈ Rd , ‖∇U(x)−∇U(y)‖ ≤ L ‖x − y‖.
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Inexact gradient descent

Let f : Rd → R be a convex C1 objective function with

xf ∈ arg min
Rd

f

Consider the inexact or stochastic gradient descent algorithm used to
estimate f (xf )

xn+1 = xn − γn+1∇f (xn) + γn+1Ξ(xn) ,

where (γk )k∈N∗ is a non-increasing sequence of step sizes and Ξ : Rd → Rd

is a deterministic or/and stochastic perturbation of ∇f .

One possibility is to analyze the convergence of (f (xn))n∈N to f (xf ) is to
establish that the following inequality holds for any n:

2γn+1(f (xn+1)− f (xf )) ≤ ‖xn − xf ‖2 − ‖xn+1 − xf ‖2
2 + Cγ2

n+1 ,

for some constant C ≥ 0.

Or for any initial point x0,

2γ1(f (x1)− f (xf )) ≤ ‖x0 − xf ‖2 − ‖x1 − xf ‖2
2 + Cγ2

1 ,

for some constant C ≥ 0 independent of x0.
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Main result for ULA

Recall that for any γ > 0, Rγ is the Markov chain associated with ULA

Xk+1 = Xk − γ∇U(Xk ) +
√

2γGk+1 .

Theorem 1

Assume H1(m) for m ≥ 0 and H2. For all γ ∈ (0, L−1] and µ ∈ P2(Rd ), we have

2γ {F (µRγ)−F (π)} ≤ (1−mγ)W 2
2 (µ, π)−W 2

2 (µRγ , π) + 2γ2Ld .
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Proof of the main inequality

For our analysis, we decompose Rγ = SγTγ .

Sγ and Tγ given for all x ∈ Rd and A ∈ B(Rd ) by

Sγ(x ,A) = δx−γ∇U(x)(A) ,

Tγ(x ,A) = (4πγ)−d/2

∫
A

exp
(
−‖y − x‖2

/(4γ)
)
dy .

S corresponds to the gradient step and T to the Gaussian step.

Consider then the following decomposition

F (µRγ)−F (π) = E (µRγ)−E (µSγ) +E (µSγ)−E (π) +H (µRγ)−H (π) .

The proof consists in bounding each terms separately.
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E (µRγ)− E (µSγ) = E (µSγTγ)− E (µSγ).

Lemma 2

Assume H2. For all µ ∈ P2(Rd ) and γ > 0,

E (µTγ)− E (µ) ≤ Ldγ .

For all x , x̃ ∈ Rd , we have

|U(x̃)− U(x)− 〈∇U(x), x̃ − x〉| ≤ (L/2) ‖x̃ − x‖2
.

Therefore, for all µ ∈ P2(Rd ) and γ > 0, we get

E (µTγ)− E (µ) = (4πγ)−d/2

∫
Rd

∫
Rd

{U(x + y)− U(x)} e−‖y‖2/(4γ)dydµ(x)

≤ (4πγ)−d/2

∫
Rd

∫
Rd

{
〈∇U(x), y〉+ (L/2) ‖y‖2

}
e−‖y‖2/(4γ)dydµ(x) ,
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E (µSγ)− E (π)

Lemma 3

Assume H1(m) for m ≥ 0 and H2. For all γ ∈ (0, L−1] and µ, ν ∈ P2(Rd ),

2γ {E (µSγ)− E (ν)} ≤ (1−mγ)W 2
2 (µ, ν)−W 2

2 (µSγ , ν) .

We start with the standard inequality from the convex optimization theory:

2γ {U(x − γ∇U(x))− U(y)} ≤ (1−mγ) ‖x − y‖2 − ‖x − γ∇U(x)− y‖2

− γ2(1− γL) ‖∇U(x)‖2
.

Let (X ,Y ) be an optimal coupling between µ and ν, and we get

2γ {E (µSγ)− E (ν)} ≤ (1−mγ)W 2
2 (µ, ν)−E

[
‖X − γ∇U(X )− Y ‖2

]
.

Using that W 2
2 (µSγ , ν) ≤ E[‖X − γ∇U(X )− Y ‖2] concludes the proof.
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H (µRγ)−H (π) = H (µSγTγ)−H (π)

Lemma 4

Let µ, ν ∈ P2(Rd ), H (ν) <∞. Then for all γ > 0,

2γ {H (µTγ)−H (ν)} ≤W 2
2 (µ, ν)−W 2

2 (µTγ , ν) .

The proof just relies on properties of the heat semigroup!
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Proof of Theorem 1

Let µ ∈ P2(Rd ) and γ ∈ R∗+ and recall

F (µRγ)−F (π) = E (µRγ)−E (µSγ) +E (µSγ)−E (π) +H (µRγ)−H (π) .

By Lemma 2, we get

E (µRγ)− E (µSγ) = E (µSγTγ)− E (µSγ) ≤ Ldγ .

By Lemma 3,

2γ {E (µSγ)− E (π)} ≤ (1−mγ)W 2
2 (µ, ν)−W 2

2 (µSγ , ν) .

By Lemma 4,

2γ {H (µRγ)−H (π)} = 2γ {H ((µSγ)Tγ)−H (π)}
≤W 2

2 (µSγ , π)−W 2
2 (µRγ , π) .

Adding all these bounds, we obtain

2γ {F (µRγ)−F (π)} ≤ (1−mγ)W 2
2 (µ, π)−W 2

2 (µRγ , π) + 2γ2Ld .
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Complexity for ULA when U is strongly convex and
gradient Lipschitz

For the fixed stepsize setting

Total variation Wasserstein distance KL divergence
Cheng and Bartlett, 2017 dO(ε−2) dO(ε−2) dO(ε−1)

Our results dO(ε−2) dO(ε−2) dO(ε−1)

Convergence in KL as (γk )k∈N∗ satisfies
∑
γk = +∞ and limk→+∞ γk = 0,

with explicit rates.
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Complexity for ULA when U is convex and gradient
Lipschitz

For the fixed stepsize setting

Total variation Wasserstein distance KL divergence
Cheng nad Bartlett 2017 dO(ε−6) - dO(ε−3)

Our results dO(ε−4) - dO(ε−2)

Table : Warm start

Total variation Wasserstein distance KL divergence
Our results d3O(ε−4) - d3O(ε−2)

Table : Starting from minimizer of U

Convergence in KL as (γk )k∈N∗ satisfies
∑
γk = +∞ and limk→+∞ γk = 0,

with explicit rates.
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Stochastic Gradient Langevin Dynamics (SGLD)

The ULA algorithm is a discretization of the overdamped Langevin diffusion,
which leaves invariant the target distribution π.

To further reduce the computational cost, SGLD uses unbiased estimators of
the gradient of the log-posterior based on subsampling.

This method, initially proposed in Welling and Teh 2011 has triggered a huge
number of works.
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SGLD Algorithm

We are interested in situations where the target distribution π arises as the
posterior distribution in a Bayesian inference problem with prior density π0(θ)
and a large number N � 1 of i.i.d. observations zi with likelihoods p(zi |θ):

π(θ) = π0(θ)
N∏

i=1

p(zi |θ) .

We denote Ui (θ) = − log(p(zi |θ)) for i ∈ {1, . . . ,N}, U0(θ) = − log(π0(θ)),

U =
∑N

i=0 Ui .

the cost of one iteration is Nd which is prohibitively large for massive
datasets.
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SGLD Algorithm

Welling and Teh 2011 suggested to replace ∇U with an unbiased estimate

HS (θ) = ∇U0(θ) + (N/p)
∑
i∈S

∇Ui (θ)

where S is a minibatch of {1, . . . ,N} with replacement of size p.

A single update of SGLD is then given by

θk+1 = θk − γHSk+1
(θk ) +

√
2γGk+1 .

The idea of using only a fraction of data points to compute an unbiased
estimate of the gradient at each iteration comes from Stochastic Gradient
Descent (SGD) which is a popular algorithm to minimize the potential U.

Generalization of this method to non-smooth convex function.

Can we derive new schemes to sample from non-smooth potential U?
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Stochastic Sub-Gradient Langevin Dynamics

H3

I The potential U is M-Lipschitz, i.e. for all x , y ∈ Rd ,
|U(x)− U(y)| ≤ M ‖x − y‖.

II There exists a measurable space (Z,Z), a probability measure η on (Z,Z)
and a measurable function Θ : Rd × Z→ Rd for all x ∈ Rd ,∫

Z

Θ(x , z)dη(z) ∈ ∂U(x) .

III The variance of the stochastic subgradient is bounded by D: for any x ∈ Rd ,∫
Rd×Z

∥∥∥∥Θ(x , z)−
∫

Z

Θ(x , z̃)dη(z̃)

∥∥∥∥2

dη(z) < D .
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Complexity of SSGLD

Stochastic Sub-Gradient Langevin Dynamics (SSGLD)

X̄n+1 = X̄n − γn+1Θ(X̄n,Zn+1) +
√

2γn+2Gn+1 ,

where (Zk )k∈N∗ be a sequence of i.i.d. random variables distributed according
to η, (γk )k∈N∗ be a sequence of non-increasing step sizes.

For the fixed step size setting.

Starting from a warm start, we find that the complexity of SSGLD to
obtain a sample ε close from π in KL is of order (M2 + D2)O(ε−2).
If for all x ∈ Rd , x 6∈ B(x?,Mη),

U(x)− U(x?) ≥ η ‖x − x?‖

then starting from δx? , we get the overall complexity of SSGLD for the
KL:

(η−2d2 + M2
η)(M2 + D2)O(ε−2) .

Convergence as γk → 0 as k → +∞ (with appropriate conditions).
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Stochastic Proximal Gradient Langevin Dynamics

H4 (m)

There exists U1 : Rd → R and U2 : Rd → R such that U = U1 + U2 and satisfying
the following assumptions:

1. U1 satisfies H1(m) and H2. In addition, there exists a measurable space
(Z̃, Z̃), a probability measure η̃1 on (Z̃, Z̃) and a measurable function
Θ̃1 : Rd × Z→ Rd such that for all x ∈ Rd ,∫

Z̃

Θ̃1(x , z̃)dη̃1(z̃) = ∇U1(x) .

2. U2 satisfies H1(0) and is M2-Lipschitz.

3. The variance of the stochastic subgradient is bounded by D: for any x ∈ Rd ,∫
Rd×Z̃

∥∥∥∥Θ̃1(x , z)−
∫

Z̃

Θ̃1(x , z̃)dη(z̃)

∥∥∥∥2

dη(z) < D .

CIRM, Advances in Computational Statistical Physics 38 / 54



39/54

Complexity of SPGLD

Stochastic Proximal Gradient Langevin Dynamics (SPGLD)

X̃n+1 = proxU2
γn+1

(X̃n)− γn+2Θ̃1{proxγn+1U2
(X̃n), Z̃n+1}+

√
2γn+2Gn+1 ,

where (Z̃k )k∈N∗ be a sequence of i.i.d. random variables distributed according
to η1.

In the fixed stepsize setting

Starting from a warm start we get that the complexity of SPGLD to
obtain a sample ε close from π in KL is of order (d + M2 + D2)O(ε−2).
If for all x ∈ Rd , x 6∈ B(x?,Mη),

U(x)− U(x?) ≥ η ‖x − x?‖

then starting at δx? , we get the overall complexity of SPGLD for the KL:

(η−2d2 + M2
η)(d + M2

2 + D2)O(ε−2) .
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Summary

We give a new interpretation of ULA and use it to get bounds on the
Kullback-Leibler divergence from π to the iterates of ULA.

We recover the dependence on the dimension of Cheng and Bartlett 2017 in
the strongly convex case. We also give computable bounds when U is only
convex which improves the results of Dalalyan 2014 and Cheng and Bartlett
2017.

We propose two new methodologies to sample from a non-smooth potential
U and make a non-asymptotic analysis of them. These two new algorithms
are generalizations of SGLD.
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Normalizing constants

Let U : Rd → R. We aim at estimating Z =
∫
Rd e
−U(x)dx < +∞.

Z is the normalizing constant of the probability density π associated with the
potential U.

Many applications in Bayesian inference (Bayes factors) and statistical
physics (free energy) .

In Bayesian inference, models can be compared Bayes factors which is the
ratio of two normalizing constants.

Wealth of contribution: Chen, Shao, and Ibrahim 2000, chapter 5, Marin and
Robert 2009, Friel and Wyse 2012, Ardia et al. 2012, Dutta, Ghosh, et al.
2013, Knuth et al. 2015, Zhou, Johansen, and Aston 2015...

Few theoretical guarantees are available for these algorithms.

Assumption U is a continuously differentiable convex function, min U = 0.
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Multistage sampling

Idea: decompose the original problem in a sequence of problems which are
easier to solve.

Multistage sampling method Gelman and Meng 1998, Section 3.3,

Z
Z0

=
M−1∏
i=0

Zi+1

Zi
,

where

1. M ∈ N? is the number of stages,
2. Z0 is the initial normalizing constant (should be easy to compute)
3. Zi+1/Zi are the ratios of normalisations constants (that should also be

easy to estimate).
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A Gaussian annealing algorithm

M ∈ N? number of stages.

Let {σ2
i }M

i=0 be an increasing sequence of positive numbers and set
σ2

M = +∞.

Consider the sequence of functions {Ui}M
i=0 defined for all i ∈ {0, . . . ,M} and

x ∈ Rd by

Ui (x) =
‖x‖2

2σ2
i

+ U(x) ,

with the convention 1/∞ = 0.

Note that UM = U, since σM = +∞.

If σ0 is small enough, then U0(x) ≈ ‖x‖2
/(2σ0).
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A Gaussian annealing algorithm

Define sequence of probability densities {πi}M
i=0 for i ∈ {0, . . . ,M} and

x ∈ Rd by

πi (x) = Z−1
i e−Ui (x) , Zi =

∫
Rd

e−Ui (y)dy .

It defines (Zi )
M
i=1 in the decomposition

Z
Z0

=
M−1∏
i=0

Zi+1

Zi
,

For i ∈ {0, . . . ,M − 1}, we get

Zi+1

Zi
=

∫
Rd

gi (x)πi (x)dx = πi (gi ) ,

where gi : Rd → R+ is defined for any x ∈ Rd by

gi (x) = exp
(

ai ‖x‖2
)
, ai =

1

2

(
1

σ2
i

− 1

σ2
i+1

)
.
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Multistage methods

Multistage sampling type algorithms are widely used and known under
different names: multistage sampling Valleau and Card 1972, (extended)
bridge sampling Gelman and Meng 1998, annealed importance sampling
(AIS) Neal 2001, thermodynamic integration Oates, Papamarkou, and
Girolami 2016, power posterior Behrens, Friel, and Hurn 2012.

For the stability and accuracy of the method, the choice of the parameters
(in our case {σ2

i }
M−1
i=0 ) is crucial and is known to be difficult.

Indeed, the issue has been pointed out in several articles under the names of
tuning tempered transitions Behrens, Friel, and Hurn 2012, temperature
placement Friel, Hurn, and Wyse 2014, annealing sequence Beskos et al.
2014, Sections 3.2.1, 4.1, temperature ladder Oates, Papamarkou, and
Girolami 2016, Section 3.3.2, effects of grid size Dutta, Ghosh, et al. 2013,
cooling schedule Cousins and Vempala 2015.

In Brosse, Durmus, and Moulines 2018, we explicitly define the sequence
{σ2

i }
M−1
i=0 .
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Multistage Langevin

Compute for all i ∈ {1, . . . ,M − 1},

Zi+1

Zi
=

∫
Rd

gi (x)πi (x)dx = πi (gi ) .

The quantity πi (gi ) is estimated by the Unadjusted Langevin Algorithm
(ULA) targeting πi .

For all i ∈ {1, . . . ,M}, consider

Xi,k+1 = Xi,k − γi∇Ui (Xi,k ) +
√

2γi Zi,k+1 , Xi,0 = 0 .

For i ∈ {0, . . . ,M − 1}, consider the following estimator of Zi+1/Zi ,

π̂i (gi ) =
1

ni

Ni +ni∑
k=Ni +1

gi (Xi,k ) ,

where ni ≥ 1 is the sample size and Ni ≥ 0 the burn-in period.
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ULA algorithm

We want to compute for all i ∈ {1, . . . ,M − 1},

Zi+1

Zi
=

∫
Rd

gi (x)πi (x)dx = πi (gi ) ,

For i ∈ {0, . . . ,M − 1}, consider the following estimator of Zi+1/Zi ,

π̂i (gi ) =
1

ni

Ni +ni∑
k=Ni +1

gi (Xi,k ) ,

where ni ≥ 1 is the sample size and Ni ≥ 0 the burn-in period.

Ẑ the following estimator of Z,

Ẑ = (2πσ2
0)d/2(1 + σ2

0m)−d/2

{
M−1∏
i=0

π̂i (gi )

}
,
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Theoretical analysis

Denote by S the set of simulation parameters,

S =
{

M, {σ2
i }M−1

i=0 , {γi}M−1
i=0 , {ni}M−1

i=0 , {Ni}M−1
i=0

}
.

Ẑ the following estimator of Z,

Ẑ = (2πσ2
0)d/2(1 + σ2

0m)−d/2

{
M−1∏
i=0

π̂i (gi )

}
.

cost of the algorithm: cost =
∑M−1

i=0 {Ni + ni}.

Theorem 5 (Brosse, Durmus, and Moulines 2018)

Let µ, ε ∈ (0, 1). There exists an explicit choice of the simulation parameters S
such that the estimator Ẑ satisfies

P
(∣∣∣Ẑ/Z − 1

∣∣∣ > ε
)
≤ µ .

Moreover, the cost of the algorithm is polynomial in the dimension d, ε−1 and
η−1.
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Numerical experiments
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Figure : Boxplots of the logarithm of the normalizing constants of a multivariate
Gaussian distribution in dimension d ∈ {10, 25, 50}.
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Numerical experiements II
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Figure : Boxplot of the log evidence for a mixture of 4 Gaussian distributions in
dimension 2.
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