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Randomized algorithms for volume / DoS calculations

Motivation: volume and DoS calculations



Free energy, density of states, and volume calculations:

why are these questions so difficult?

> Partition function and density of
states:

7 = Z e*ﬁE(Xi)

xj:state

= > glEe s

J:energy level

> Computing the volume of a slice in phase space:
— Best possible method in simple cases, e.g. when the region is a polytope?
— Connection to randomized algorithms (MCMC) used in statistical physics?
Connection to random walks?

> Volume of polytopes, hardness: (Thm.) The volume of a polytope K C R
can be approximated within a relative error £ with probability 1 — § using
0*(n*) oracle calls.

>Ref: Dyer, Freeze, Kannan, J. ACM 38(1), 1991
>Ref: Lovasz, Vempala, J. Comput. Syst. Sci., 71(2), 2006



Randomized algorithms for volume / DoS calculations

Background: polytope volume calculations



Volume of polytopes: definition and hardness

> Polytope K in R"™:
> H-polytope: (bounded) intersection of half-spaces
> V-polytope: convex hull of its vertices

» NB: for h facets, the max number of faces of all dimensions is O(hl"/2))

> Polytope oracle:

> Membership oracle: answers p € K (+ returns a linear separator when
P K)
> Boundary oracle: intersecton between a line / and the boundary

> Volume computation hardness:
Any polynomial time computing an upper and lower bounds of the volume of a
convex body K € R", 3 constant ¢ > 0 such that

Vol(K) cn \n

TR (L 1

Vol(K) — (Iogn) (1)
cannot be guaranteed for n > 2.

>Ref: Bollobas, in Favors of geometry, 1997



Randomized algorithms: typical results

> e-approximation of the volume: for any parameter € > 0, a number V

(1 —e)Vol(K) < V < (1+¢)Vol(K).

> (e, d)-approximation algorithm: algorithm returning an e-approximation with
a probability at least 1 — 6.

> Complexity, the O*(n)otation:
> O(n*): upper bound as a function of the dimension n

> O*(n*): term in log n, e, removed; focus on the dimension solely



Randomized algorithms: complexity

> Thm. For a convex body K given by a membership oracle, and such that
B C K C RB, an (g,0)— approximation can be obtained in time

mﬁb91+4msﬁomfo%ﬂ ()
62g€§ng5g—n

> Volume estimated from:

voltk) = [ ad e P~ [ e [T R @)

fK fo(x)dx fK fr—1(x)dx

> Cooling schedule:
> fo: sharply peaked in K

> fn_1: essentially the uniform distribution

> Complexity, overview: m = O*(1/n) functions used. Each ratio in the
telescoping product is estimated (with guarantees) using O*(y/n) samples. The
complexity of generating a given sample being O*(n®), the overall algorithm
has complexity O*(n*).

>Ref: Lovasz, Vempala, J Comp. Syst. Sciences, 2006
>Ref: Cousins, Vempala, SIAM J. Comp., 2018



A practical algorithm: outline

> Method: multi-phase Monte-Carlo using m = O(1/n) logconcave® functions
{fos., fm-1}
TX

(Exponential) fi(x) = f

o (Gaussian) fi(x) = exp(—aj ||x||?)

Volume( K, ¢): Convex body I, error parameter .

— T = Round(body: K, steps: 8n*), set K =T - K.

— {ap,..., am} = GetAnnealingSchedule(body: K').
— Set z to be random point from fo N K, " = z/m
— Fori=1,..., m,

— Set k= 0,19 = x, converged = false, W = 4n® + 500.
— While converged = false,

o k=Fk+1
o zp=HitAndRun(body: K, target distribution: f;_,, current point: @p_1).
e Set
k .
= l fi(zy)
= fim1(z))
o Set Wiae = mdt{r;_u Al ees ri} and Wi = min{ri—wi1.. .., Tk}

o I Wiae = Winin < &'/2 Wae — converged = true.
— Set R; = rp,x = xp.
— Return volume = |T'| - (Tr/(zu)“'f2 Ry R,

>Ref: Cousins and Vempala, Math. Prog. Comp., 2016
Hog f(ax + (1 — a)y) > alog f(x) + (1 — a) log f(y)




Ingredient: importance sampling

> Classical Monte Carlo integration: using iid Xi ~ p, estimate

E,[f] = / (R

1 N
Zv=4 Zl £(X).

> Importance sampling: using iid RV Y; ~ g, estimate

Bolfl = | FGoptla = [ %q(xw = Eqlfo/d]

as

1= F(Y)p(Y)
ZN*N; a(vi)

> Benefit: variance reduction
D>Ref: Brooks et al, Handbook of MCMC

()



Application to the ratios R;

> Recall R; _fK i ﬁ(’%(xdx

> Define Y = ﬁ(X)/f;_1( ), with X ~ fi_1(X).

> One has
; fi(x)d;
E[Y] :/ i) fial) S filddx (7)
Fa () T FoaG)an ™ = Ty frabd
> Associated estimator: with X; a set of k iid RV ~ fi—1()/f, f_;(y)dy:

5 1y~ f(X)
R;—Z;ﬂ;l(xj). Q)

> Importance sampling in disguise: R; has the form [ f()P()/g(x)q(x)dx with

(x) Vol(K) ()
Lt 0= 9)

p(x) = 1/Vol(K), f(x)= S fia(y)dy”
K -1



Ingredient: sampling with random walks

> Typical problem:
» design random walk via Markov chain, with prescribed limit distribution
> iterate sufficiently many times (a polynomial number), and return the

endpoint

> Examples: walking on a grid, ball walk, hit-and-run, billiard walk, ...

> Convergence assessment: distance between distribution after m steps and the
limit distribution

> Def. Let f and g be two probability measures on a state space S —or a
Markov chain. The total variation distance

drv(f,g) = sup | f(A) —g(A) |- (10)



Random walk: hit-and-run

> Goal: sample point in K according to a prescribed density f

> (Random-direction) hit-and-run: random point xy after W steps

K > Iteratively:
> pick a random vector
% > move to random point on the chord
I'N K, chosen from the distribution
— induced by f on /
V > Comments:
> risk of being trapped near a vertex
> large W helps forgetting the origin xo
> Thm (Berbee et al) The limit distribution induced by HR is uniform in K.

> Thm (Lovasz) Let r and R denote the radii of the largest inscribed and
circumscribed balls for K. One sample generation: O*(n?).

> NB: precise statement in terms of total variation distance omitted
>Ref: Berbee et al, Math. Prog., 1987

>Ref: Lovasz, Math. Prog. Ser. A, 1999

>Ref: Lovasz, Vempala, SIAM J Comp., 2006



Convergence of HR to the uniform distribution m: details

> Thm. Let K such that rB C K C RB. Let o be a starting distribution and
o™ the distrib. after m steps of HR. Let € > 0 and suppose that 99/dry is
bounded by M except on a set S with o(S) < /2. For

wnR?, M

r 3

0" (n%),

one has drv (o™, k) < e.

> Thm. Under the same hypothesis, suppose that the starting distribution o is
concentrated on a point in K at distance d from the boundary. For

352
10"/; In % = 0*(n®)

m > 10
one has drv(o™, k) < e.

>Ref: Lovasz, Vempala, SIAM J Comp., 2006



Randomized algorithms for volume / DoS calculations

Background: HMC



Hamiltonian Monte Carlo (HMC)

> Hamiltonian: H(p, q) = U(q) + K(p)

> Hamiltonian dynamics:

> ODE d OH
qi .
= =1
ot apl_,Vl , ,n
doi  OH .
W = aqi,vl = ].7 ,n

> Flow ®.q, p solution at time t with initial condition (g, p)

> Key properties preserved by the flow:
> Hamiltonian
> Lesbesgue measure of phase space
> Any measure of the form u(q, p) = f(H(q, p))
» In particular, Boltzman measure

7(q, p) = exp(—H(q, p)/kg T) is preserved

D>DRef: Neal, in Handbook of MCMC



Using HMC to sample a distribution
> Goal: sample a distribution 7(q)
> Define U(q) = —log(n(q)) and K(p) = 1/2||p||* (Nb: unit masses)

> H(p,q) = U(q) + K(p)

> Invariant measure used: p(q, p) = exp(—H(q, p)) = 7(q) exp(—K(p)).
with 7(q) = exp(—U(q))

> Sampling with HMC: algorithm
> fix travel time L > 0
> lterate
» resample p ~ N(0, /,)
> (gt p(t+t1)) = &, (¢, p) o —

> Rmk: resampling p changes the energy T —37”
level

D>DRef: Betancourt, ArXiv, 2018



Concentration in high-dimensional spaces
The hidden strength of HMC

> Example: volume of the cube

ot

|4— Unit radius sphere

-----

Nearly all the volume

<— Vertex of hypercube

> Exploration: whole space vs typical set

Useless excursions, myopia HMC glides around the typical set

>Ref: Betancourt, ArXiv,2018



The Gaussian annulus theorem

> Density of the isotropic Gaussian:
1 e Rt ]

()= Gy ¢ (11)

> Expectation of || X||*:

E[IXIP]=E[ > x= Y E[x]=dE[x]=d. (12)

i=1,....d i=1,...,d

> Thm. Consider an isotropic d dimensional Gaussian with ¢ = 1. For any
B < V/d, consider the annulus defined by

A= {X such that Vid — 8 < || X|| < Vd + B}. (13)
There exists a fixed positive constant ¢ such that
P(A°) < 367" (14)
> Rmk: how come the mass concentrates around v/d?

» Concentration thm: the mass concentrates near \/E[[| X||*] = v/d

> The density f¢ is max. at the origin; but integrating over the unit ball ...
no mass since the volume of the unit ball tends to 0. (prop. seen earlier.)

> In going well beyond v/d: the density f; gets too small.



Randomized algorithms for volume / DoS calculations

Novel HMC random walk



HMC in a polytope: a curved billiard walk

> Method: X
» HMC with
U(q) = exp(—alq]l?)
> Reflexions on boundaries of K

> Analytical solutions for
trajectories: harmonic
oscillator 9 (q0,p)

i)ff’)(q(“),p)
> Parameters:

» Travel time L

» Max number of reflexions
Maxefiex should be large for
the RW to forget its origin
and mix



Robust implementation based on multi-precision intervals

> Input convex K: in matrix form AX < B (A and B: rational entries)

> Geometric operations:
> (Predicate) Membership oracle: g € K
> (Construction) Intersection point trajectory N hyper-plane H;

> (Construction) Main oracle: intersection point with nearest hyper-plane

> Numerically:
> Implementation with doubles fails = multi-precision needed
»> Using iRRAM:
» real numbers represented as a sequence of intervals with
rational endpoints i.e. {(lo, r0), (h,r),...}
» bounds refined on demand to satisfy operations e.g. x < y
» backend for /;, rj: multiple precision arithmetic from GMP or

MPFR
» n-dimensional points: nested boxes

>Ref: Miller, Computability and Complexity in Analysis, 2001



HMC in a polytope: conservation properties

> Theorem: invariance of 7
> one step of HMC with reflections preserves 7

> detailed balance in space of positions (but not phase space)

> Theorem: convergence to
> Markov chain uniformly ergodic: drv(P'(x,.),7(.)) < (1 —¢)*

> Proof ingredients: convex well connected; high initial velocities = almost
straight trajectories



Randomized algorithms for volume / DoS calculations

Experiments



Sampling a target distribution with HMC:
illustration of mixing properties

> Setup:
» Cube [-1,1]", n = 5,10, 50
> Target distribution m(g): flat isotropic Gaussian (c? = 500)
> Starting point q(o): qfo) = 0.9, Vi, return q(lo)
» Repeat 500 times
> Plots: projection i.e. first 2 coordinates
> HAR vs HMC
weh S - : b
x . ) N
I
O
=
I

dim. =10



Embedding HMC into the volume algorithm

Volume(K, z): Convex body K, error parameter &.

\\'indo\\‘ sizes: | > Stop condition: the window size
— T = Round(body: K, steps: 8n%), set K’ =T - K. 1. = .2 .
~ {aon- . am) = GetAnnealmgSchedule(l)c)(h A’) ,n,ny/n,n”| W sets the stop criterion
— Set « to be random point from fo N K”, /
— Fori m, . .
et b2 o 2 comperged = fﬂm > Stats monitored:
— While converged = false, .
e k=k+L ) S » > Relative error
o 1 =HitAndRun(body: K, target distribution: f,_,, current point: z_,).
* St FMC k | V= Vol(K) | /Vol(K)
’ L fily)
" TG
ki fimle) > +# calls to the oracle
o St Winas 71)1\‘((” Witreo o7} and Wi = min{re w1, ... 75}
o If IV, Vinin < €'/2- “ nax — converged = true.
— Set R; = ry, 3

Tk
— Return volume = |T| - (/ag)™?- Ry ... Rm.

> Polytopes tested in R”, for n = 10, ...,50:
» Cube: a must
> Simplex: standard simplex,isotropic simplex

» Halfball, ellipsoid

>Ref: Cousins and Vempala, Math. Prog. Comp., 2016



Volume calculation: relative error

> Relative errors on volume: HR (left) vs HMC (right)
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Volume calculation: number of calls to the oracle

> Complexity i.e. number of calls to the oracle HR: (left) vs HMC (right)

calls to oracle

10°

complexity for HAR

W=10+0n"0

2x 10!
dimension

3x10!

4x10!

calls to oracle

10°

10°
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— W=30+4n"05
— W=30+4n"1
— W=30+4n"15
— W=30+4n"2

10! 2x10! 3x100  4x10!
dimension




Software

> Structural Bioinformatics Library: http://sbl.inria.fr
> Package on HMC: in preparation

> Other packages of interest, see http://sbl.inria.fr/applications

v

Landscape explorer

Energy landscape analysis

>

> Energy landscape comparison
» Molecular distances flexible
>

Structural motifs


http://sbl.inria.fr
http://sbl.inria.fr/applications

Conclusion

> Hamiltonian Monte Carlo versus Hit-and-run:

> Mixes faster, scales better

» One volume calculation: ~ minute

» Oracle calls more expensive, but still beneficial

» Reflexions instrumental to escape from corners

» Multi-precision numbers mandatory — systematic failures otherwise
> Open problems, theory:

» Role of travel time L and max. num. reflexions Max;efiex

> Convergence analysis with reflections (current proof skips them ... loose
bound)

» Error bounds: scaling with dimension
> Open problems, applications:
> Coupling polytope sampling to rejection sampling

» Computing DoS and partition functions on a per-basin basis
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