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Free energy, density of states, and volume calculations:
why are these questions so difficult?

. Partition function and density of
states:

Z =
∑

xi :state

e−βE(xi )

=
∑

j :energy level

g(Ej )e
−βEj

EE

δE

X

g(δE)

. Computing the volume of a slice in phase space:
– Best possible method in simple cases, e.g. when the region is a polytope?
– Connection to randomized algorithms (MCMC) used in statistical physics?

Connection to random walks?

. Volume of polytopes, hardness: (Thm.) The volume of a polytope K ⊂ Rd

can be approximated within a relative error ε with probability 1− δ using
O?(n4) oracle calls.

.Ref: Dyer, Freeze, Kannan, J. ACM 38(1), 1991

.Ref: Lovász, Vempala, J. Comput. Syst. Sci., 71(2), 2006
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Volume of polytopes: definition and hardness
. Polytope K in Rn:

I H-polytope: (bounded) intersection of half-spaces
I V-polytope: convex hull of its vertices
I NB: for h facets, the max number of faces of all dimensions is O(hbn/2c)

. Polytope oracle:
I Membership oracle: answers p ∈ K (+ returns a linear separator when

p 6∈ K)
I Boundary oracle: intersecton between a line l and the boundary

. Volume computation hardness:
Any polynomial time computing an upper and lower bounds of the volume of a
convex body K ∈ Rn, ∃ constant c > 0 such that

Vol(K)

Vol(K)
≤
( cn

log n
)n (1)

cannot be guaranteed for n ≥ 2.

.Ref: Bollobás, in Favors of geometry, 1997



Randomized algorithms: typical results

. ε-approximation of the volume: for any parameter ε > 0, a number V

(1− ε)Vol(K) ≤ V ≤ (1 + ε)Vol(K).

. (ε, δ)-approximation algorithm: algorithm returning an ε-approximation with
a probability at least 1− δ.

. Complexity, the O?(n)otation:
I O(n4): upper bound as a function of the dimension n

I O?(n4): term in log n, ε, δ removed; focus on the dimension solely



Randomized algorithms: complexity
. Thm. For a convex body K given by a membership oracle, and such that
B ⊂ K ⊂ RB, an (ε, δ)− approximation can be obtained in time

O(
n4

ε2
log9 n

εδ
+ n4 log8 n

δ
logR) = O?(n4) (2)

. Volume estimated from:

Vol(K) =

∫
K

f0(x)dx

∫
K
f1(x)dx∫

K
f0(x)dx

. . .

∫
K
dx∫

K
fm−1(x)dx

≡
∫

K

f0(x)dx
∏

i=1,...,m

Ri (3)

. Cooling schedule:
I f0: sharply peaked in K

I fm−1: essentially the uniform distribution

. Complexity, overview: m = O?(
√
n) functions used. Each ratio in the

telescoping product is estimated (with guarantees) using O?(
√
n) samples. The

complexity of generating a given sample being O?(n3), the overall algorithm
has complexity O?(n4).

.Ref: Lovász, Vempala, J Comp. Syst. Sciences, 2006

.Ref: Cousins, Vempala, SIAM J. Comp., 2018



A practical algorithm: outline
. Method: multi-phase Monte-Carlo using m = O(

√
n) logconcave1 functions

{f0, . . . , fm−1}

(Exponential) fi (x) = e−aT
i x∫

K e
−aT

i
y

dy
(Gaussian) fi (x) = exp(−ai ‖x‖2)

.Ref: Cousins and Vempala, Math. Prog. Comp., 2016
1log f (αx + (1− α)y) ≥ α log f (x) + (1− α) log f (y)



Ingredient: importance sampling

. Classical Monte Carlo integration: using iid Xi ∼ p, estimate

Ep[f ] =

∫
Rn

f (x)p(x)dx . (4)

as

ZN =
1
N

N∑
i=1

f (Xi ). (5)

. Importance sampling: using iid RV Yi ∼ q, estimate

Ep[f ] =

∫
Rn

f (x)p(x)dx =

∫
Rn

f (x)p(x)

q(x)
q(x)dx = Eq[fp/q]

as

Z ′N =
1
N

N∑
i=1

f (Yi )p(Yi )

q(Yi )
. (6)

. Benefit: variance reduction

.Ref: Brooks et al, Handbook of MCMC



Application to the ratios Ri

. Recall Ri =
∫

K
fi (x)

fi−1(x)
fi−1(x)∫

K fi−1(x)dx
dx

. Define Y = fi (X )/fi−1(X ), with X ∼ fi−1(X ).

. One has

E[Y ] =

∫
K

fi (x)

fi−1(x)

fi−1(x)∫
K
fi−1(x)dx

dx =

∫
K
fi (x)dx∫

K
fi−1(x)dx

. (7)

. Associated estimator: with Xi a set of k iid RV ∼ fi−1(x)/
∫

K fi−1(y)dy:

R̃i =
1
k

∑
j

fi (Xj )

fi−1(Xj )
. (8)

. Importance sampling in disguise: Ri has the form
∫

f (x)p(x)/q(x)q(x)dx with

p(x) = 1/Vol(K), f (x) =
fi (x)Vol(K)∫
K
fi−1(y)dy

q(x) =
fi−1(x)∫

K
fi−1(y)dy

. (9)



Ingredient: sampling with random walks

. Typical problem:
I design random walk via Markov chain, with prescribed limit distribution
I iterate sufficiently many times (a polynomial number), and return the

endpoint

. Examples: walking on a grid, ball walk, hit-and-run, billiard walk, . . .

. Convergence assessment: distance between distribution after m steps and the
limit distribution

. Def. Let f and g be two probability measures on a state space S – or a
Markov chain. The total variation distance

dTV (f , g) = sup
A⊂S
| f (A)− g(A) | . (10)



Random walk: hit-and-run
. Goal: sample point in K according to a prescribed density f

. (Random-direction) hit-and-run: random point xW after W steps

x0

Sn−1

K
x1

x2

x3

xW

v0

. Iteratively:
I pick a random vector
I move to random point on the chord

l ∩ K , chosen from the distribution
induced by f on l

. Comments:
I risk of being trapped near a vertex
I large W helps forgetting the origin x0

. Thm (Berbee et al) The limit distribution induced by HR is uniform in K .

. Thm (Lovász) Let r and R denote the radii of the largest inscribed and
circumscribed balls for K . One sample generation: O?(n3).

. NB: precise statement in terms of total variation distance omitted

.Ref: Berbee et al, Math. Prog., 1987

.Ref: Lovász, Math. Prog. Ser. A, 1999

.Ref: Lovász, Vempala, SIAM J Comp., 2006



Convergence of HR to the uniform distribution πK : details

. Thm. Let K such that rB ⊂ K ⊂ RB. Let σ be a starting distribution and
σm the distrib. after m steps of HR. Let ε > 0 and suppose that dσ/dπK is
bounded by M except on a set S with σ(S) ≤ ε/2. For

m > 1010 n
2R2

r2 ln
M

ε
= O?(n2),

one has dTV (σm, πK ) ≤ ε.

. Thm. Under the same hypothesis, suppose that the starting distribution σ is
concentrated on a point in K at distance d from the boundary. For

m > 1010 n
3R2

r2 ln
M

dε
= O?(n3)

one has dTV (σm, πK ) ≤ ε.

.Ref: Lovász, Vempala, SIAM J Comp., 2006
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Hamiltonian Monte Carlo (HMC)

. Hamiltonian: H(p, q) = U(q) + K(p)

. Hamiltonian dynamics:
I ODE 

dqi

dt
=
∂H

∂pi
,∀i = 1, . . . , n

dpi

dt
= −∂H

∂qi
, ∀i = 1, . . . , n

I Flow Φtq, p solution at time t with initial condition (q, p)

. Key properties preserved by the flow:
I Hamiltonian
I Lesbesgue measure of phase space

I Any measure of the form µ(q, p) = f (H(q, p))

I In particular, Boltzman measure
π(q, p) = exp(−H(q, p)/kBT ) is preserved

.Ref: Neal, in Handbook of MCMC



Using HMC to sample a distribution
. Goal: sample a distribution π(q)

I Define U(q) = −log(π(q)) and K(p) = 1/2‖p‖2 (Nb: unit masses)
I H(p, q) = U(q) + K(p)

I Invariant measure used: µ(q, p) = exp(−H(q, p)) = π(q) exp(−K(p)),
with π(q) = exp(−U(q))

. Sampling with HMC: algorithm
I fix travel time L > 0

I Iterate

I resample p ∼ N (0, In)
I (q(t+1), p(t+1)) = ΦL(q(t), p)

. Rmk: resampling p changes the energy
level

.Ref: Betancourt, ArXiv, 2018



Concentration in high-dimensional spaces
The hidden strength of HMC

. Example: volume of the cube

. Exploration: whole space vs typical set

Useless excursions, myopia HMC glides around the typical set

.Ref: Betancourt, ArXiv,2018



The Gaussian annulus theorem
. Density of the isotropic Gaussian:

fG (X ) =
1

(2π)d/2 e
−

x21+x22+···+x2d
2 . (11)

. Expectation of ‖X‖2:

E[‖X‖2] = E[
∑

i=1,...,d

x2
i ] =

∑
i=1,...,d

E[x2
i ] = dE[x2

1 ] = d . (12)

. Thm. Consider an isotropic d dimensional Gaussian with σ = 1. For any
β ≤
√
d , consider the annulus defined by

A = {X such that
√
d − β ≤ ‖X‖ ≤

√
d + β}. (13)

There exists a fixed positive constant c such that

P(Ac ) ≤ 3e−cβ2
. (14)

. Rmk: how come the mass concentrates around
√
d?

I Concentration thm: the mass concentrates near
√

E[‖X‖2] =
√
d

I The density fG is max. at the origin; but integrating over the unit ball ...
no mass since the volume of the unit ball tends to 0. (prop. seen earlier.)

I In going well beyond
√
d : the density fG gets too small.
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HMC in a polytope: a curved billiard walk

. Method:
I HMC with

U(q) = exp(−a ‖q‖2)

I Reflexions on boundaries of K
I Analytical solutions for

trajectories: harmonic
oscillator

. Parameters:
I Travel time L

I Max number of reflexions
Maxreflex should be large for
the RW to forget its origin
and mix

−nHi

Φ̃
(q)
tci

(q(0), p)

p(t+ci)

p(t−ci)

K

Hi

Hj
Hk

Φ̃
(q)
tcj

(q(0), p)
Φ̃

(q)
tck

(q(0), p)

Φ̃
(q)
tci

(q(0), p) = q(1)

q(0)



Robust implementation based on multi-precision intervals

. Input convex K : in matrix form AX ≤ B (A and B: rational entries)

. Geometric operations:
I (Predicate) Membership oracle: q ∈ K

I (Construction) Intersection point trajectory ∩ hyper-plane Hi

I (Construction) Main oracle: intersection point with nearest hyper-plane

. Numerically:
I Implementation with doubles fails ⇒ multi-precision needed

I Using iRRAM:

I real numbers represented as a sequence of intervals with
rational endpoints i.e. {(l0, r0), (l1, r1), . . . }

I bounds refined on demand to satisfy operations e.g. x < y
I backend for li , ri : multiple precision arithmetic from GMP or

MPFR
I n-dimensional points: nested boxes

.Ref: Müller, Computability and Complexity in Analysis, 2001



HMC in a polytope: conservation properties

. Theorem: invariance of π
I one step of HMC with reflections preserves π
I detailed balance in space of positions (but not phase space)

. Theorem: convergence to π
I Markov chain uniformly ergodic: dTV (P t(x , .), π(.)) ≤ (1− ε)t

I Proof ingredients: convex well connected; high initial velocities ⇒ almost
straight trajectories
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Sampling a target distribution with HMC:
illustration of mixing properties

. Setup:
I Cube [−1, 1]n, n = 5, 10, 50
I Target distribution π(q): flat isotropic Gaussian (σ2

i = 500)

I Starting point q(0): q
(0)
i = 0.9, ∀i , return q(10)

I Repeat 500 times
I Plots: projection i.e. first 2 coordinates

. HAR vs HMC

H
A
R

H
M
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Embedding HMC into the volume algorithm

HMC

Window sizes:
n0, n1, n

√
n, n2

. Stop condition: the window size
W sets the stop criterion

. Stats monitored:
I Relative error
| V − Vol(K) | /Vol(K)

I # calls to the oracle

. Polytopes tested in Rn, for n = 10, . . . , 50:
I Cube: a must
I Simplex: standard simplex,isotropic simplex
I Halfball, ellipsoid

.Ref: Cousins and Vempala, Math. Prog. Comp., 2016



Volume calculation: relative error

. Relative errors on volume: HR (left) vs HMC (right)



Volume calculation: number of calls to the oracle

. Complexity i.e. number of calls to the oracle HR: (left) vs HMC (right)



Software

. Structural Bioinformatics Library: http://sbl.inria.fr
I Package on HMC: in preparation

. Other packages of interest, see http://sbl.inria.fr/applications

I Landscape explorer
I Energy landscape analysis
I Energy landscape comparison
I Molecular distances flexible
I Structural motifs

http://sbl.inria.fr
http://sbl.inria.fr/applications


Conclusion

. Hamiltonian Monte Carlo versus Hit-and-run:
I Mixes faster, scales better
I One volume calculation: ∼ minute

I Oracle calls more expensive, but still beneficial

I Reflexions instrumental to escape from corners
I Multi-precision numbers mandatory – systematic failures otherwise

. Open problems, theory:
I Role of travel time L and max. num. reflexions Maxreflex

I Convergence analysis with reflections (current proof skips them ... loose
bound)

I Error bounds: scaling with dimension

. Open problems, applications:
I Coupling polytope sampling to rejection sampling
I Computing DoS and partition functions on a per-basin basis
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