Randomized algorithms for volume/density of states calculations in high-dimensional spaces

Augustin Chevallier, Sylvain Pion, Frédéric Cazals Inria, France

Randomized algorithms for volume / DoS calculations

Motivation: volume and DoS calculations

Background: polytope volume calculations

Background: HMC

Novel HMC random walk

Experiments

Randomized algorithms for volume / DoS calculations

Motivation: volume and DoS calculations

Background: polytope volume calculations

Background: HMC

Novel HMC random walk

Experiments

Free energy, density of states, and volume calculations:

 why are these questions so difficult?\triangleright Partition function and density of states:

$$
\begin{aligned}
Z & =\sum_{x_{i} \text { :state }} e^{-\beta E\left(x_{i}\right)} \\
& =\sum_{j: \text { energy level }} g\left(E_{j}\right) e^{-\beta E_{j}}
\end{aligned}
$$

\triangleright Computing the volume of a slice in phase space:

- Best possible method in simple cases, e.g. when the region is a polytope?
- Connection to randomized algorithms (MCMC) used in statistical physics? Connection to random walks?
\triangleright Volume of polytopes, hardness: (Thm.) The volume of a polytope $K \subset \mathbb{R}^{d}$ can be approximated within a relative error ε with probability $1-\delta$ using $O^{\star}\left(n^{4}\right)$ oracle calls.
\triangleright Ref: Dyer, Freeze, Kannan, J. ACM 38(1), 1991
\triangleright Ref: Lovász, Vempala, J. Comput. Syst. Sci., 71(2), 2006

Randomized algorithms for volume / DoS calculations

Motivation: volume and DoS calculations

Background: polytope volume calculations

Background: HMC

Novel HMC random walk

Experiments

Volume of polytopes: definition and hardness

\triangleright Polytope K in \mathbb{R}^{n} :

- H-polytope: (bounded) intersection of half-spaces
- V-polytope: convex hull of its vertices
- NB: for h facets, the max number of faces of all dimensions is $O\left(h^{\lfloor n / 2\rfloor}\right)$
\triangleright Polytope oracle:
- Membership oracle: answers $p \in K(+$ returns a linear separator when $p \notin K)$
- Boundary oracle: intersecton between a line I and the boundary
\triangleright Volume computation hardness:
Any polynomial time computing an upper and lower bounds of the volume of a convex body $K \in \mathbb{R}^{n}, \exists$ constant $c>0$ such that

$$
\begin{equation*}
\frac{\overline{\operatorname{Vol}(K)}}{\underline{\operatorname{Vol}(K)}} \leq\left(\frac{c n}{\log n}\right)^{n} \tag{1}
\end{equation*}
$$

cannot be guaranteed for $n \geq 2$.
\triangleright Ref: Bollobás, in Favors of geometry, 1997

Randomized algorithms: typical results

$\triangleright \varepsilon$-approximation of the volume: for any parameter $\varepsilon>0$, a number V

$$
(1-\varepsilon) \operatorname{Vol}(K) \leq V \leq(1+\varepsilon) \operatorname{Vol}(K)
$$

$\triangleright(\varepsilon, \delta)$-approximation algorithm: algorithm returning an ε-approximation with a probability at least $1-\delta$.
\triangleright Complexity, the $O^{\star}(n)$ otation:

- $O\left(n^{4}\right)$: upper bound as a function of the dimension n
- $O^{\star}\left(n^{4}\right)$: term in $\log n, \varepsilon, \delta$ removed; focus on the dimension solely

Randomized algorithms: complexity

\triangleright Thm. For a convex body K given by a membership oracle, and such that $B \subset K \subset R B$, an (ε, δ) - approximation can be obtained in time

$$
\begin{equation*}
O\left(\frac{n^{4}}{\varepsilon^{2}} \log ^{9} \frac{n}{\varepsilon \delta}+n^{4} \log ^{8} \frac{n}{\delta} \log R\right)=O^{\star}\left(n^{4}\right) \tag{2}
\end{equation*}
$$

\triangleright Volume estimated from:

$$
\begin{equation*}
\operatorname{Vol}(K)=\int_{K} f_{0}(x) d x \frac{\int_{K} f_{1}(x) d x}{\int_{K} f_{0}(x) d x} \cdots \frac{\int_{K} d x}{\int_{K} f_{m-1}(x) d x} \equiv \int_{K} f_{0}(x) d x \prod_{i=1, \ldots, m} R_{i} \tag{3}
\end{equation*}
$$

\triangleright Cooling schedule:

- f_{0} : sharply peaked in K
- f_{m-1} : essentially the uniform distribution
\triangleright Complexity, overview: $m=O^{\star}(\sqrt{n})$ functions used. Each ratio in the telescoping product is estimated (with guarantees) using $O^{\star}(\sqrt{n})$ samples. The complexity of generating a given sample being $O^{\star}\left(n^{3}\right)$, the overall algorithm has complexity $O^{\star}\left(n^{4}\right)$.
\triangleright Ref: Lovász, Vempala, J Comp. Syst. Sciences, 2006
\triangleright Ref: Cousins, Vempala, SIAM J. Comp., 2018

A practical algorithm: outline

\triangleright Method: multi-phase Monte-Carlo using $m=O(\sqrt{n})$ logconcave ${ }^{1}$ functions $\left\{f_{0}, \ldots, f_{m-1}\right\}$
(Exponential) $f_{i}(x)=\frac{e^{-\mathrm{a}_{i}^{T} x}}{\int_{K} e^{-\mathrm{a}_{i}^{T} y} d y}$
(Gaussian) $f_{i}(x)=\exp \left(-a_{i}\|x\|^{2}\right)$
$\operatorname{Volume}(K, \varepsilon)$: Convex body K, error parameter ε.
$-T=$ Round(body: K, steps: $8 n^{3}$), set $K^{\prime}=T \cdot K$.
$-\left\{a_{0}, \ldots, a_{m}\right\}=$ GetAnnealingSchedule(body: K^{\prime}).

- Set x to be random point from $f_{0} \cap K^{\prime}, \varepsilon^{\prime}=\varepsilon / \sqrt{m}$.
- For $i=1, \ldots, m$,
- Set $k=0, x_{0}=x$, converged $=$ false, $W=4 n^{2}+500$.
- While converged $=$ false,
- $k=k+1$.
- $x_{k}=$ HitAndRun(body: K, target distribution: f_{i-1}, current point: x_{k-1}).
- Set

$$
r_{k}=\frac{1}{k} \sum_{j=1}^{k} \frac{f_{i}\left(x_{j}\right)}{f_{i-1}\left(x_{j}\right)}
$$

- Set $W_{\max }=\max \left\{r_{k-W+1}, \ldots, r_{k}\right\}$ and $W_{\min }=\min \left\{r_{k-W+1}, \ldots, r_{k}\right\}$.
- If $W_{\text {max }}-W_{\text {min }} \leq \varepsilon^{\prime} / 2 \cdot W_{\text {max }} \rightarrow$ converged $=$ true.
- Set $R_{i}=r_{k}, x=x_{k}$.
- Return volume $=|T| \cdot\left(\pi / a_{0}\right)^{n / 2} \cdot R_{1} \ldots R_{m}$.
\triangleright Ref: Cousins and Vempala, Math. Prog. Comp., 2016

$$
{ }^{1} \log f(\alpha x+(1-\alpha) y) \geq \alpha \log f(x)+(1-\alpha) \log f(y)
$$

Ingredient: importance sampling

\triangleright Classical Monte Carlo integration: using iid $X_{i} \sim p$, estimate

$$
\begin{equation*}
\mathbb{E}_{p}[f]=\int_{\mathbb{R}^{n}} f(x) p(x) d x \tag{4}
\end{equation*}
$$

as

$$
\begin{equation*}
Z_{N}=\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right) \tag{5}
\end{equation*}
$$

\triangleright Importance sampling: using iid $\mathrm{RV} Y_{i} \sim q$, estimate

$$
\mathbb{E}_{p}[f]=\int_{\mathbb{R}^{n}} f(x) p(x) d x=\int_{\mathbb{R}^{n}} \frac{f(x) p(x)}{q(x)} q(x) d x=\mathbb{E}_{q}[f p / q]
$$

as

$$
\begin{equation*}
Z_{N}^{\prime}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(Y_{i}\right) p\left(Y_{i}\right)}{q\left(Y_{i}\right)} \tag{6}
\end{equation*}
$$

\triangleright Benefit: variance reduction
\triangleright Ref: Brooks et al, Handbook of MCMC

Application to the ratios R_{i}

\triangleright Recall $R_{i}=\int_{K} \frac{f_{i}(x)}{f_{i-\mathbf{1}}(x)} \frac{f_{i-\mathbf{1}}(x)}{J_{K} f_{i-\mathbf{1}}(x) d x} d x$
\triangleright Define $Y=f_{i}(X) / f_{i-1}(X)$, with $X \sim f_{i-1}(X)$.
\triangleright One has

$$
\begin{equation*}
\mathbb{E}[Y]=\int_{K} \frac{f_{i}(x)}{f_{i-1}(x)} \frac{f_{i-1}(x)}{\int_{K} f_{i-1}(x) d x} d x=\frac{\int_{K} f_{i}(x) d x}{\int_{K} f_{i-1}(x) d x} \tag{7}
\end{equation*}
$$

\triangleright Associated estimator: with X_{i} a set of k iid $\mathrm{RV} \sim f_{i-\mathbf{1}}(x) / \int_{K} f_{i-\mathbf{1}}(y) d y$:

$$
\begin{equation*}
\tilde{R}_{i}=\frac{1}{k} \sum_{j} \frac{f_{i}\left(X_{j}\right)}{f_{i-1}\left(X_{j}\right)} \tag{8}
\end{equation*}
$$

\triangleright Importance sampling in disguise: R_{i} has the form $\int f(x) p(x) / q(x) q(x) d x$ with

$$
\begin{equation*}
p(x)=1 / \operatorname{Vol}(K), \quad f(x)=\frac{f_{i}(x) \operatorname{Vol}(K)}{\int_{K} f_{i-1}(y) d y} \quad q(x)=\frac{f_{i-1}(x)}{\int_{K} f_{i-1}(y) d y} \tag{9}
\end{equation*}
$$

Ingredient: sampling with random walks

\triangleright Typical problem:

- design random walk via Markov chain, with prescribed limit distribution
- iterate sufficiently many times (a polynomial number), and return the endpoint
\triangleright Examples: walking on a grid, ball walk, hit-and-run, billiard walk, ...
\triangleright Convergence assessment: distance between distribution after m steps and the limit distribution
\triangleright Def. Let f and g be two probability measures on a state space S - or a Markov chain. The total variation distance

$$
\begin{equation*}
d_{T V}(f, g)=\sup _{A \subset S}|f(A)-g(A)| \tag{10}
\end{equation*}
$$

Random walk: hit-and-run

\triangleright Goal: sample point in K according to a prescribed density f
\triangleright (Random-direction) hit-and-run: random point x_{W} after W steps

\triangleright Iteratively:

- pick a random vector
- move to random point on the chord $I \cap K$, chosen from the distribution induced by f on I
\triangleright Comments:
- risk of being trapped near a vertex
- large W helps forgetting the origin x_{0}
\triangleright Thm (Berbee et al) The limit distribution induced by HR is uniform in K.
\triangleright Thm (Lovász) Let r and R denote the radii of the largest inscribed and circumscribed balls for K. One sample generation: $O^{\star}\left(n^{3}\right)$.
\triangleright NB: precise statement in terms of total variation distance omitted
\triangleright Ref: Berbee et al, Math. Prog., 1987
\triangleright Ref: Lovász, Math. Prog. Ser. A, 1999
\triangleright Ref: Lovász, Vempala, SIAM J Comp., 2006

Convergence of HR to the uniform distribution π_{K} : details

\triangleright Thm. Let K such that $r B \subset K \subset R B$. Let σ be a starting distribution and σ^{m} the distrib. after m steps of HR. Let $\varepsilon>0$ and suppose that $d \sigma / d \pi_{K}$ is bounded by M except on a set S with $\sigma(S) \leq \varepsilon / 2$. For

$$
m>10^{10} \frac{n^{2} R^{2}}{r^{2}} \ln \frac{M}{\varepsilon}=O^{\star}\left(n^{2}\right)
$$

one has $d_{T V}\left(\sigma^{m}, \pi_{K}\right) \leq \varepsilon$.
\triangleright Thm. Under the same hypothesis, suppose that the starting distribution σ is concentrated on a point in K at distance d from the boundary. For

$$
m>10^{10} \frac{n^{3} R^{2}}{r^{2}} \ln \frac{M}{d \varepsilon}=O^{\star}\left(n^{3}\right)
$$

one has $d_{T V}\left(\sigma^{m}, \pi_{K}\right) \leq \varepsilon$.
\triangleright Ref: Lovász, Vempala, SIAM J Comp., 2006

Randomized algorithms for volume / DoS calculations

Motivation: volume and DoS calculations

Background: polytope volume calculations

Background: HMC

Novel HMC random walk

Experiments

Hamiltonian Monte Carlo (HMC)

\triangleright Hamiltonian: $H(p, q)=U(q)+K(p)$
\triangleright Hamiltonian dynamics:

- ODE

$$
\left\{\begin{array}{l}
\frac{d q_{i}}{d t}=\frac{\partial H}{\partial p_{i}}, \forall i=1, \ldots, n \\
\frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}}, \forall i=1, \ldots, n
\end{array}\right.
$$

- Flow $\Phi_{t} q, p$ solution at time t with initial condition (q, p)
\triangleright Key properties preserved by the flow:
- Hamiltonian
- Lesbesgue measure of phase space
- Any measure of the form $\mu(q, p)=f(H(q, p))$
- In particular, Boltzman measure

$$
\pi(q, p)=\exp \left(-H(q, p) / k_{B} T\right) \text { is preserved }
$$

\triangleright Ref: Neal, in Handbook of MCMC

Using HMC to sample a distribution

\triangleright Goal: sample a distribution $\pi(q)$

- Define $U(q)=-\log (\pi(q))$ and $K(p)=1 / 2\|p\|^{2}(\mathrm{Nb}$: unit masses)
- $H(p, q)=U(q)+K(p)$
- Invariant measure used: $\mu(q, p)=\exp (-H(q, p))=\pi(q) \exp (-K(p))$, with $\pi(q)=\exp (-U(q))$
\triangleright Sampling with HMC: algorithm
- fix travel time $L>0$
- Iterate
- resample $p \sim \mathcal{N}\left(0, I_{n}\right)$
- $\left(q^{(t+1)}, p^{(t+1)}\right)=\Phi_{L}\left(q^{(t)}, p\right)$
\triangleright Rmk: resampling p changes the energy level

Concentration in high-dimensional spaces
 The hidden strength of HMC

Δ Example: volume of the cube

\triangleright Exploration: whole space vs typical set

Useless excursions, myopia

HMC glides around the typical set
\triangleright Ref: Betancourt, ArXiv,2018

The Gaussian annulus theorem

\triangleright Density of the isotropic Gaussian:

$$
\begin{equation*}
f_{G}(X)=\frac{1}{(2 \pi)^{d / 2}} e^{-\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}}{2}} \tag{11}
\end{equation*}
$$

\triangleright Expectation of $\|X\|^{2}$:

$$
\begin{equation*}
\mathbb{E}\left[\|X\|^{2}\right]=\mathbb{E}\left[\sum_{i=1, \ldots, d} x_{i}^{2}\right]=\sum_{i=1, \ldots, d} \mathbb{E}\left[x_{i}^{2}\right]=d \mathbb{E}\left[x_{1}^{2}\right]=d \tag{12}
\end{equation*}
$$

\triangleright Thm. Consider an isotropic dimensional Gaussian with $\sigma=1$. For any $\beta \leq \sqrt{d}$, consider the annulus defined by

$$
\begin{equation*}
\mathcal{A}=\{X \text { such that } \sqrt{d}-\beta \leq\|X\| \leq \sqrt{d}+\beta\} \tag{13}
\end{equation*}
$$

There exists a fixed positive constant c such that

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{A}^{c}\right) \leq 3 e^{-c \beta^{2}} \tag{14}
\end{equation*}
$$

\triangleright Rmk: how come the mass concentrates around \sqrt{d} ?

- Concentration thm: the mass concentrates near $\sqrt{\mathbb{E}\left[\|X\|^{2}\right]}=\sqrt{d}$
- The density f_{G} is max. at the origin; but integrating over the unit ball no mass since the volume of the unit ball tends to 0 . (prop. seen earlier.)
- In going well beyond \sqrt{d} : the density f_{G} gets too small.

Randomized algorithms for volume / DoS calculations

Motivation: volume and DoS calculations

Background: polytope volume calculations

Background: HMC

Novel HMC random walk

Experiments

HMC in a polytope: a curved billiard walk

\triangle Method:

- HMC with

$$
U(q)=\exp \left(-a\|q\|^{2}\right)
$$

- Reflexions on boundaries of K
- Analytical solutions for trajectories: harmonic oscillator
\triangleright Parameters:
- Travel time L

- Max number of reflexions Max $_{\text {reflex }}$ should be large for the RW to forget its origin and mix

Robust implementation based on multi-precision intervals

\triangleright Input convex K : in matrix form $A X \leq B$ (A and B : rational entries $)$
\triangleright Geometric operations:

- (Predicate) Membership oracle: $q \in K$
- (Construction) Intersection point trajectory \cap hyper-plane H_{i}
- (Construction) Main oracle: intersection point with nearest hyper-plane
\triangleright Numerically:
- Implementation with doubles fails \Rightarrow multi-precision needed
- Using iRRAM:
- real numbers represented as a sequence of intervals with rational endpoints i.e. $\left\{\left(l_{0}, r_{0}\right),\left(l_{1}, r_{1}\right), \ldots\right\}$
- bounds refined on demand to satisfy operations e.g. $x<y$
- backend for l_{i}, r_{i} : multiple precision arithmetic from GMP or MPFR
- n-dimensional points: nested boxes
\triangleright Ref: Müller, Computability and Complexity in Analysis, 2001

HMC in a polytope: conservation properties

\triangleright Theorem: invariance of π

- one step of HMC with reflections preserves π
- detailed balance in space of positions (but not phase space)
\triangleright Theorem: convergence to π
- Markov chain uniformly ergodic: $d_{T V}\left(P^{t}(x,),. \pi().\right) \leq(1-\epsilon)^{t}$
- Proof ingredients: convex well connected; high initial velocities \Rightarrow almost straight trajectories

Randomized algorithms for volume / DoS calculations

Motivation: volume and DoS calculations

Background: polytope volume calculations

Background: HMC

Novel HMC random walk

Experiments

Sampling a target distribution with HMC:

illustration of mixing properties
\triangleright Setup:

- Cube $[-1,1]^{n}, n=5,10,50$
- Target distribution $\pi(q)$: flat isotropic Gaussian $\left(\sigma_{i}^{2}=500\right)$
- Starting point $q^{(0)}: q_{i}^{(0)}=0.9, \forall i$, return $q^{(10)}$
- Repeat 500 times
- Plots: projection i.e. first 2 coordinates
\triangleright HAR vs HMC

Embedding HMC into the volume algorithm

Volume (K, ε): Convex body K, error parameter ε.

$-T=$ Round(body: K, steps: $8 n^{3}$), set $K^{\prime}=T \cdot K$.
$-\left\{a_{0}, \ldots, a_{m}\right\}=$ GetAnnealingSchedule(body: K^{\prime}).

- Set x to be random point from $f_{0} \cap K^{\prime}, \varepsilon^{\prime}=\varepsilon / \sqrt{m}$.
- For $i=1, \ldots, m$,
- Set $k=0, x_{0}=x$, converged $=$ false,$W=4 n^{2}+500$.
- While converged $=$ false,
- $k=k+1$.
- $x_{k}=$ HitAndRun(body: K, target distribution: f_{i-1}, current point: x_{k-1}).
- Set HMC

$$
r_{k}=\frac{1}{k} \sum_{j=1}^{k} \frac{f_{i}\left(x_{j}\right)}{f_{i-1}\left(x_{j}\right)}
$$

Window sizes:
$n^{0}, n^{1}, n \sqrt{n}, n^{2}$
\triangleright Stop condition: the window size
W sets the stop criterion
\triangleright Stats monitored:

- Relative error

$$
|V-\operatorname{Vol}(K)| / \operatorname{Vol}(K)
$$

- \# calls to the oracle
- Set $W_{\max }=\max \left\{r_{k-W+1}, \ldots, r_{k}\right\}$ and $W_{\min }=\min \left\{r_{k-W}, 1, \ldots, r_{k}\right\}$.
- If $W_{\max }-W_{\min } \leq \varepsilon^{\prime} / 2 \cdot W_{\max } \rightarrow$ converged $=$ true.
 - Set $R_{i}=r_{k}, x=x_{k}$.
- Return volume $=|T| \cdot\left(\pi / a_{0}\right)^{n / 2} \cdot R_{1} \ldots R_{m}$.
\triangleright Polytopes tested in \mathbb{R}^{n}, for $n=10, \ldots, 50$:
- Cube: a must
- Simplex: standard simplex,isotropic simplex
- Halfball, ellipsoid
\triangleright Ref: Cousins and Vempala, Math. Prog. Comp., 2016

Volume calculation: relative error

\triangleright Relative errors on volume: HR (left) vs HMC (right)

Volume calculation: number of calls to the oracle

Complexity i.e. number of calls to the oracle HR: (left) vs HMC (right)

Software

\triangleright Structural Bioinformatics Library: http://sbl.inria.fr

- Package on HMC: in preparation
\triangleright Other packages of interest, see http://sbl.inria.fr/applications
- Landscape explorer
- Energy landscape analysis
- Energy landscape comparison
- Molecular distances flexible
- Structural motifs

Conclusion

\triangleright Hamiltonian Monte Carlo versus Hit-and-run:

- Mixes faster, scales better
- One volume calculation: ~ minute
- Oracle calls more expensive, but still beneficial
- Reflexions instrumental to escape from corners
- Multi-precision numbers mandatory - systematic failures otherwise
\triangleright Open problems, theory:
- Role of travel time L and max. num. reflexions Max reflex
- Convergence analysis with reflections (current proof skips them ... loose bound)
- Error bounds: scaling with dimension
\triangleright Open problems, applications:
- Coupling polytope sampling to rejection sampling
- Computing DoS and partition functions on a per-basin basis

