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Setting

Consider Stochastic Partial Differential Equations
W — Au+f(u)+¢& in(0,00)xD
u(t,-)=0, indD
u(0,-) = uo.

¢ is (Gaussian) space-time white noise.
Domain: D = (0,1).

Example: f(¢) = ¢ — ¢* (®* models).
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Setting

Consider Stochastic Partial Differential Equations

% Ayt Fu)+€ in (0,00 x D
U(t, ) = 07 in 0D
u(0,-) = uo.

¢ is (Gaussian) space-time white noise.
Domain: D = (0,1).

Example: f(¢) = ¢ — ¢* (®* models).

In this talk:

@ d = 1: well-posedness in a “classical” sense

@ f is globally Lipschitz continuous.
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Abstract setting

Consider u(t) = u(t,-) as a process with values in H = L2(0,1). It
satisfies a Stochastic Evolution Equation

du(t) = Au(t)dt + F(u(t))dt + dW(t), (1)

with solutions interpreted in the mild sense

t t
u(t) = e”uy +/ e(t_s)AF(u(s))ds +/ e(t_s)AdW(s).
0 0
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Abstract setting

Consider u(t) = u(t,-) as a process with values in H = L2(0,1). It
satisfies a Stochastic Evolution Equation

du(t) = Au(t)dt + F(u(t))dt + dW(t), (1)

with solutions interpreted in the mild sense

t t
u(t) = e”uy +/ el=94F (u(s))ds +/ e(=4dW/(s).
0 0

If Lip(F) is sufficiently small, this Markov process admits a unique
invariant distribution y, and u(t) — p in distribution.
t—00
Estimation of [ odu?
Cost in terms of temporal and spatial discretization errors?
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Assumptions

@ Linear operator: Ae, = —\,e,, for n € N, with \, = (wn)?,

en(z) = V/2sin(nmz).

It generates an analytic semi-group, e =3~ e " (e,, -)e,.

@ Nonlinear operator: F is Lipschitz continuous and bounded.
For ergodicity: assume Lip(F) < A;.

@ Noise: W(t) =), .nBn(t)en is a cylindrical Wiener process.
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Assumptions

@ Linear operator: Ae, = —\,e,, for n € N, with \, = (wn)?,
en(z) = V/2sin(nmz).
It generates an analytic semi-group, e =3~ e " (e,, -)e,.

@ Nonlinear operator: F is Lipschitz continuous and bounded.
For ergodicity: assume Lip(F) < A;.

@ Noise: W(t) =), .nBn(t)en is a cylindrical Wiener process.

1 1

Regularity of trajectories: 7 — ¢ Holder in time, 5 — e Holder in

space. In terms of Sobolev type spaces: E|(—A)*u(t)|> < oo if and
only if a < %.
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The invariant distribution

Ergodicity: synchronous coupling

2 1
Ldlu(t, o) — u(t, u§”)?

< (=M A+ Lip(F))u(t, u?) — u(t, u§?) 2.

2 dt
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The invariant distribution

Ergodicity: synchronous coupling

Ldlu(t, o) — u(t, u§”)?
2 dt

The gradient case: F = —DV. Then

< (=M +Lip(F)) |u(t, u§?) — u(t, u?) 2.

() = — exp(~2V(u)v(d)
where v is a Gaussian distribution on H:
UV = N(O, E(_A)_l)

v is the distribution of the Brownian Bridge on (0, 1).
Sampling conditioned diffusions, cf works by Hairer, Stuart & Voss.
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Numerical discretization

In time: linear implicit Euler scheme.

Unt1 = Up + AtAu, 1 + AtF(u,) + AW,
= Sattn + AtSpacF(un) + SarAW,,

with Sa, = (1 — AtA)™L.
In space: spectral Galerkin method (M modes).

du™(t) = AuM(t)dt + AtPyF(u™(t)) + PuAW,.

For simulations: finite differences (mesh size Ax).
Fully-discrete: ergodic Markov chain (u,(,M))n, the invariant
distribution is denoted by u2tM.
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Orders of convergence

Theorem (B. 2014,B.-Kopec 2016)
Forall o < %, ¢ : H— R of class C3,

| / pdu M / wdu] < Calllell2) (AL + Ay
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Orders of convergence

Theorem (B. 2014,B.-Kopec 2016)
Forall o < %, ¢ : H— R of class C3,

l/sodu“”” — /sodul < Gallloll2) (At + X).

@ Strategy: analysis of the weak error (Kolmogorov or Poisson
equation approach), cf Talay, Mattingly-Stuart-Tretyakov, etc...

@ Extension to SPDEs: specific regularity properties
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Orders of convergence

Theorem (B. 2014,B.-Kopec 2016)
Forall o < %, ¢ : H— R of class C3,

l/sodu“”” — /sodul < Gallloll2) (At + X).

@ Strategy: analysis of the weak error (Kolmogorov or Poisson

equation approach), cf Talay, Mattingly-Stuart-Tretyakov, etc...

@ Extension to SPDEs: specific regularity properties
o If ¢ is only Ci or CP: weak order is degraded,

|/wdu“”"’ - /wdu\ < Galllpllh) (At% + A7),

limsup  sup ‘/(pdﬂAt’M—/de > 1.
At—0,M—oo|¢]lo<1
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Cost of a Monte-Carlo simulation

Natural estimator of [ du is % Zk 190( M)k)_
To have a mean-square error of size €2, cost is of size

T _ !Iog( )| gt _
K—M 2 -5,
At > € Ea

—F € 2“0(6
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Cost of a Monte-Carlo simulation

Natural estimator of [ du is % Zk lgp( M)k)_
To have a mean-square error of size €2, cost is of size

|
KlMoce_zy og( )’e 2 oc € 0T,
At 604

Objective: improve the order of convergence with respect to the
time-step size.
Analysis with no spatial discretization.

Two ideas: postprocessing and preconditioning.
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First technique: Post-processing
Postprocessed scheme [B.-Vilmart 2016]:

Upi1 = SAt(u,, + AtF(u,, + %SAtAW,,) + AW,,).

1
Post-processing: Uy = uy + QJNA Wy,

with linear operators

At
Sar= (I — AtA)Y, | Jar=(I - 7A)-1/2.

New approximation for [ pdpue: Elp(u,)] — [ edust.
n—o0
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First technique: Post-processing
Postprocessed scheme [B.-Vilmart 2016]:

Upi1 = SAt(u,, + AtF(u,, + %SAtAWn) + AW,,).

1
Post-processing: Uy = uy + QJNA Wy,

with linear operators

At

Sar= (I — AtA)Y, | Jar=(I - 7A)-1/2.

New approximation for [ pdpue: Elp(u,)] — [ edust.
n—o0

If F=0, then 2 = u = v.
Proof: ¢(u) = (u, e)?,

1 2 1
dito — dplt = —(1— — =) = E(Z Ja, AW, 2.
/so 1 /w oo 2A,,( 2—|—/\pAt) <2JAt N, €p)

C-E Bréhier (CNRS-Lyon) Sampling invariant laws of SPDEs CIRM, September 2018

9/21



NI

Numerical simulations. Conjecture: order

Case f(u) =0 Case f(u) = —u
10_1; relative error 10.%relative error
F Euler metho 4 s F guler MY .
10° o 102 P
E slope 1/2 E dope 1/2 " \oRE Ze
L L et e
10’3; 10‘3; e
F EoTe
new method
r trap. meth stepsue h L « stepsize h
| | Ll L sl 1l Ll I
o 102 10t 10 102 10t
Case f(u) = —u — sin(u) Case f(u) = —2u—u?
,[ relative error ,[ relative error
10~ E 107 E \ met\'\od
£ = Euler U L
10'2; 10'2;
10°F 10k
10—4; 107
£ e stepsize h £ stepsize h
sl vl R | - L | M | P
o 102 10t 10 102 10t

Figure: Orders of convergence, ¢(u) = exp(—||u||?).
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Qualitative behavior

One realization of the standard and of the postprocessed schemes:

0.6 0.6
04 0.4
0.2 0.2
i 0 i 0
E E
0.2 0.2
0.4 04
0.6 0.6
0 0.2 0.4 0.6 0.8 1 ] 0.2 0.4 0.6 0.8 1
X X

Figure: f(u) = —u —sin(u), T =1, At =0.01, Ax = 0.01.
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Qualitative behavior

One realization of the standard and of the postprocessed schemes:

0.6 0.6
04 0.4
0.2 0.2
%o Zo
E E
0.2 0.2
0.4 04
0.6 0.6
0 0.2 0.4 06 08 1 0 0.2 0.4 06 08 1
X X

Figure: f(u) = —u —sin(u), T =1, At =0.01, Ax = 0.01.

Noise (/ — At A)~2 AW, is rougher than (I — AA) 1AW,
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Qualitative behavior

One realization of the standard and of the postprocessed schemes:

0.6 0.6
04 0.4
0.2 0.2
%o Zo
E E
0.2 0.2
0.4 04
0.6 0.6
0 0.2 0.4 06 08 1 0 0.2 0.4 06 08 1
X X

Figure: f(u) = —u —sin(u), T =1, At =0.01, Ax = 0.01.

Noise (/ — At A)~2 AW, is rougher than (I — AA) 1AW,
The postprocessing gives the correct regularity.
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Analysis of Postprocessing for SDEs
Stochastic Differential Equation: dX; = f(X;)dt + dB;.

Infinitesimal generator: L¢(x) = (f(x), Dg(x)) + 3A¢(x).
Weak Taylor expansion:

E[o(X(M)] = (79)(x) = 9 + hLp(x) + = £26(x) + O(H?)

One-step integrator x — Xi:

Ex[o(X1)] = ¢(x) + hLp(x) + h*Arp(x) + O(h)

Postprocessing: x — X3

E. [‘P(Xl)} = o(x) + hA1p(x) + O(h%)
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Error analysis
@ Integrator X = ®"(Xi_1) = (®")*(Xo); compute Xi, ..., X,.
@ Postprocessing: Xp = & (X,).

@ Convergence to invariant distributions: X, — puf and X, — 7.
n—oo n—r

o0
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Error analysis
@ Integrator X = ®"(Xi_1) = (®")*(Xo); compute Xi, ..., X,.

@ Postprocessing: X, = $h(Xn).
—h

@ Convergence to invariant distributions: X, — pf and X, — 7.
n—oo n

— 00

Results
o Weak order is equal to 1: [ @du’. — [ pdus = O(h)
@ Leading order term [Talay-Tubaro 1990]:

/sodu';o - /soduoo = C(p)h + O(h*)

@ With a postprocessing [Vilmart 2015]:

/@dﬁﬁo — /soduoo = C(p)h+O(h%)
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Error analysis
Results:

® Weak order 1: [ wdul, — [ @dpe = O(h)
@ Leading order: [du, — [pdus = C(p)h+ O(h?)

@ Postprocessing: [ dnl, — [ pdus = C(p)h+ O(h?)

with the expressions

Co) =~ [ Mvdue . T@ =~ [ (A+ [£A])Wdpn.

where W is solution of the Poisson equation LV = ¢ — [ ¢d i

W(x) = — / TE[p(X (1)) - / o] dt
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Order conditions

Clp) = _/Alwd,uoo , Clp) = —/(A1 + [£, A1) Vdpioe,

Order conditions
o [wdul — [pdus. = O(h?) for all ¢ iff Afpo = 0.
o [pdail, — [ odus = O(h?) for all ¢ iff (A;+ [£,A1]) oo = 0.

These conditions are weaker than requiring order 2, i.e. Ay = %2
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Examples: gradient SDEs
Gradient SDE: dX; = —V V(X,)dt + dB::

1 _ 1
Xos1 = X, — AV V(X, + E\/Egn) +vVheE, , Xo=X, + Ex/ﬁgn.

Introduced in [Leimkuhler-Matthews 13], in the non-Markovian form
7n+1 - 7,7 - hV V(Yn) + 4(§n + €n+1).
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Examples: gradient SDEs
Gradient SDE: dX; = —V V(X,)dt + dB::

1 _ 1
Xos1 = X, — AV V(X, + Eﬁgn) +vVheE, , Xo=X, + Exfhgn.

Introduced in [Leimkuhler-Matthews 13], in the non-Markovian form
7n+1 - 7,7 - hV V(Yn) + 4(£n + €n+1).

Construction of an IMEX scheme for gradient SPDEs:
1
Upy1 = 5At<Un - AtVV(u,, + ESAtAWn) + SAtAWn>7

1
Uy = Uy + EJAtAWNv

Proved results:

@ Order 2 for a SDE dX; = AX;dt — VV(X;)dt + dB;.
@ Well-posed, ergodic for SPDEs.
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Second technique: Preconditioning
Gradient SPDE:

du(t) = Au(t)dt — DV/(u(t))dt + dW(t).
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Second technique: Preconditioning
Gradient SPDE:

du(t) = Au(t)dt — DV (u(t))dt + dW(t).
Preconditioned SPDE:

dv(t) = —v(t)dt + (—A) DV (v(t))dt + (—A)"2dW(t).

Key observation

The unique invariant distribution of (v(t‘))t>0 is equal to .

Improvements:
@ A is replaced with the bounded operator —/,
@ noise is trace-class, Tr(A) < co.
@ Trajectories of v are almost %-Hblder continuous in time.

A©
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Construction of numerical schemes

Strategy

SDE integrators (and postprocessing) may be applied to the
preconditioned SPDE to sample the invariant distribution fis.
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Construction of numerical schemes

Strategy

SDE integrators (and postprocessing) may be applied to the
preconditioned SPDE to sample the invariant distribution fis.

Example: preconditioned Crank-Nicolson (pCN)

e B ey L Cayiaw
Vil = —Vp + ——(— Vy) + ———(— -
BT TS 1+ 5

With F = 0, this is the only known proposal kernel for MCMC
simulation in infinite dimension, cf Stuart&al..
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Three schemes of order 2 — ongoing work

Explicit Euler scheme and postprocessing

Vail = Vo — At(Vo + 2(—A)TEAW,) + At(—A)1F (va + 3(—A)TEAW,)
+H(=A) AW,
VN = VN + %(—A)_%AWN.

Explicit Euler scheme
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Three schemes of order 2 — ongoing work

Linear-Implicit Euler scheme and postprocessing

1 _1

Vnt1l = 1+At Vn + 1+At( A)tv(va + 2(1+At)(_A) :AW,)

_1
A 1+At (=A) : AW,
VN = vy + A)T2 AWy.
o A:)z r(-A)
v
109 Linear Implicit Euler scheme
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Three schemes of order 2 — ongoing work

Runge-Kutta method with weak order 2

{K,, = (1= At)v, + At(—A)LF(v) + (—A) "2 AW,

Vh+l = Vi = % (—Vn - Kn + (_A)_IF(Vn) + (_A)_IF(KH)) + (_A)_%AW”

Runge-Kutta method of weak order 2
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The three methods of order 2

Methods of order 2
-3
10 T
1074 F E
g
& 105k i
o 10
<
15
H
108 F —— Explicit+Postprocessing B
—&— Implicit+Postprocessing
—5— Runge-Kutta
— — Order 1
— — Order2
107 '
10 102 107

Data of the experiment: Ax = 0.02, F(u) = —u — 5cos(u) — 2sin(2u),
o(u) = fol e >u() dx.
Multilevel Monte-Carlo is used to reduce the variance (107 realizations per level).
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Conclusion

For gradient SPDEs, methods of order 2 for the invariant
distribution can be built using preconditioning and postprocessing
techniques.
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Conclusion

For gradient SPDEs, methods of order 2 for the invariant
distribution can be built using preconditioning and postprocessing

techniques.
Improvement of the Monte-Carlo cost: with methods of order 2,

T
e_QEI\/I — 32,
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Conclusion

For gradient SPDEs, methods of order 2 for the invariant
distribution can be built using preconditioning and postprocessing
techniques.

Improvement of the Monte-Carlo cost: with methods of order 2,

T 1
€2—M=¢3"2",

At

Ongoing work and perspectives:
@ theoretical analysis
@ non-globally Lipschitz drift F?
@ improve results for non-smooth test functions?

Thanks for your attention.
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