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. ε = 0: P = Id

. 0 < ε 6 εmax: irreducible, aperiodic, not reversible
Stationary distribution: π0 = 1

2(1+ε+ε2)
(1, 1 + ε, ε+ 2ε2)

Speed of convergence to π0?

Eigenvalues of P : λ0 = 1
λ1 = 1− 2ε3 +O(ε5)
λ2 = 1− ε+O(ε2)
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Main question

How to easily determine leading term of spectral gap 1− λ1?
. Linear algebra/analytic methods (singular perturbation theory), e.g.
[Schweitzer 68, Hassin & Haviv 92, Avrachenkov & Lasserre 99]

. Probabilistic methods, e.g. [Wentzell 72, Freidlin & Wentzell 70s, Beltràn
& Landim 2010, Cameron & Vanden–Eijnden 2014, Betz & Le Roux 2016,
Cameron & Gan 2016]
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Trace process
X finite, {Xn}n∈N0 irreducible aperiodic M.C., transition matrix P , A ⊂ X

. Process killed upon leaving A: PA(x , y) = P(x , y)1l{x ,y∈A}

. Trace process on A: process monitored only when in A

AP(x , y) = Px{Xτ+
A =y}, τ+

A = inf{n > 1 : Xn ∈ A}

AP(x , y) = Px{τ+
A = 1,Xτ+

A =y}+ Px{τ+
A > 2,Xτ+

A =y}

= P(x , y) +
∑
z∈Ac

P(x , z)
∑
n>1

Pz{τ+
A = n,Xτ+

A =y}

= PA(x , y) +
∑

z,z′∈Ac

P(x , z)
∑
n>1

Pn−1
Ac (z , z ′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
[1l−PAc ]−1(z,z′)

P(z ′, y)

Matrix representation (Schur complement)

P =

(
PA PAAc

PAcA PAc

)
⇒ AP = PA + PAAc [1l− PAc ]−1PAcA
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Application to the example
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A nice application of the trace process
Recall: the chain in not assumed to be reversible:
π0(x)P(x , y) 6= π0(y)P(y , x) in general

Proposition: ∀x , y ∈ A

π0(x)Px{τ+
y < τ+

x } = π0(y)Py{τ+
x < τ+

y }

. First proof in non-reversible case: [Betz & Le Roux 2016]
Using π0(x) = 1/Ex [τ+

x ]

. Alternative proof using trace process:
Remark: π0|A is invariant by AP
Take A = {x , y}. Then

π0(x) = (π0AP)(x)

= π0(x)Px{Xτ+
A

= x}+ π0(y)Py{Xτ+
A

= x}

= π0(x)
[
1− Px{τ+

y < τ+
x }
]

+ π0(y)Py{τ+
x < τ+

y }
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Good domains
Definition: For A ⊂ X , let

pin(A) = inf
x∈Ac

Px{X1 ∈ A}

pout(A) = sup
x∈A

Px{X1 ∈ Ac}

A is a good domain if lim
ε→0

pout(A)

pin(A)
= 0

Example:

1 2

3

ε4

ε3

ε2

ε

ε3

A = {1, 2}

pin(A) = ε

pout(A) = ε2

A is a good domain
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Main idea
For a good domain A,

P =

(
PA PAAc

PAcA PAc

)
is well-approximated by P̂ =

(
AP 0
PAcA PAc

)

Norm: ‖Q‖ = sup
‖ϕ‖∞=1

‖Qϕ‖∞ = sup
‖µ‖1=1

‖µQ‖1 = sup
x∈X

∑
y∈X
|Q(x , y)|

Lemma: ‖P − P̂‖ = 2pout(A)

Fact from spectral theory (using complex analysis, Riesz projector):
λ̂ simple eigenvalue of P̂ at distance > ‖P − P̂‖ from remaining spectrum
⇒ P has unique eigenvalue at distance O(‖P − P̂‖) from λ̂

Consequence: If Ac = {x} then pin(A) = 1− P(x , x) = 1− λ̂
⇒ 1− λ = 1− λ̂+O(pout(A)) = (1− λ̂)

[
1 +O

(pout(A)
pin(A)

)]
Example: λ̂2 = 1− ε perturbs to λ2 = 1− ε+O(ε2)
The argument does not suffice to compare spectra of PA and AP

Trace process and metastability September 20, 2018 7/14



Main idea
For a good domain A,

P =

(
PA PAAc

PAcA PAc

)
is well-approximated by P̂ =

(
AP 0
PAcA PAc

)
Norm: ‖Q‖ = sup

‖ϕ‖∞=1
‖Qϕ‖∞ = sup

‖µ‖1=1
‖µQ‖1 = sup

x∈X

∑
y∈X
|Q(x , y)|

Lemma: ‖P − P̂‖ = 2pout(A)

Fact from spectral theory (using complex analysis, Riesz projector):
λ̂ simple eigenvalue of P̂ at distance > ‖P − P̂‖ from remaining spectrum
⇒ P has unique eigenvalue at distance O(‖P − P̂‖) from λ̂

Consequence: If Ac = {x} then pin(A) = 1− P(x , x) = 1− λ̂
⇒ 1− λ = 1− λ̂+O(pout(A)) = (1− λ̂)

[
1 +O

(pout(A)
pin(A)

)]
Example: λ̂2 = 1− ε perturbs to λ2 = 1− ε+O(ε2)
The argument does not suffice to compare spectra of PA and AP

Trace process and metastability September 20, 2018 7/14



Main idea
For a good domain A,

P =

(
PA PAAc

PAcA PAc

)
is well-approximated by P̂ =

(
AP 0
PAcA PAc

)
Norm: ‖Q‖ = sup

‖ϕ‖∞=1
‖Qϕ‖∞ = sup

‖µ‖1=1
‖µQ‖1 = sup

x∈X

∑
y∈X
|Q(x , y)|

Lemma: ‖P − P̂‖ = 2pout(A)

Fact from spectral theory (using complex analysis, Riesz projector):
λ̂ simple eigenvalue of P̂ at distance > ‖P − P̂‖ from remaining spectrum
⇒ P has unique eigenvalue at distance O(‖P − P̂‖) from λ̂

Consequence: If Ac = {x} then pin(A) = 1− P(x , x) = 1− λ̂
⇒ 1− λ = 1− λ̂+O(pout(A)) = (1− λ̂)

[
1 +O

(pout(A)
pin(A)

)]
Example: λ̂2 = 1− ε perturbs to λ2 = 1− ε+O(ε2)
The argument does not suffice to compare spectra of PA and AP

Trace process and metastability September 20, 2018 7/14



Main idea
For a good domain A,

P =

(
PA PAAc

PAcA PAc

)
is well-approximated by P̂ =

(
AP 0
PAcA PAc

)
Norm: ‖Q‖ = sup

‖ϕ‖∞=1
‖Qϕ‖∞ = sup

‖µ‖1=1
‖µQ‖1 = sup

x∈X

∑
y∈X
|Q(x , y)|

Lemma: ‖P − P̂‖ = 2pout(A)

Fact from spectral theory (using complex analysis, Riesz projector):
λ̂ simple eigenvalue of P̂ at distance > ‖P − P̂‖ from remaining spectrum
⇒ P has unique eigenvalue at distance O(‖P − P̂‖) from λ̂

Consequence: If Ac = {x} then pin(A) = 1− P(x , x) = 1− λ̂
⇒ 1− λ = 1− λ̂+O(pout(A)) = (1− λ̂)

[
1 +O

(pout(A)
pin(A)

)]
Example: λ̂2 = 1− ε perturbs to λ2 = 1− ε+O(ε2)
The argument does not suffice to compare spectra of PA and AP
Trace process and metastability September 20, 2018 7/14



Laplace transforms
u ∈ C ⇒ Ex [euτ

+
A ] exists for |e−u| > 1− pin(A) (∗)

Proposition [Feynman–Kac type relation]
Under (∗), {

(Pφ)(x) = e−u φ(x) x ∈ Ac

φ(x) = φ̄(x) x ∈ A

admits unique solution φ(x) = Ex [euτA φ̄(XτA)], τA = inf{n > 0 : Xn ∈ A}

Corollary [Reduction to eigenvalue problem on A]

Under (∗), Pφ = e−u φ in X ⇔ AP
uφ = e−u φ in A

where AP
u(x , y) = Ex

[
eu(τ+

A −1) 1l{X
τ+
A

=y}
]
is such that AP

0 = AP

Proposition

‖APu − AP
0‖ 6

|1− e−u| supx∈A Ex [τ+
A − 1]

1− |1− e−u| supx∈Ac Ex [τ+
A ]

6
|1− e−u|pout(A)

pin(A)− |1− e−u|
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Main result
Theorem

. Non-degenerate case: ∃A1 ⊂ A2 ⊂ · · · ⊂ An = X s.t.
#(Ak+1 \ Ak) = 1, each Ak good set for Ak+1P
Renumber states s.t. Ak = {1, . . . , k}. Then

♦ λ0 = 1, λk = 1− Pk+1{τ+
Ak
< τ+

k+1}
[
1 +O

(
pout(Ak |Ak+1)
pin(Ak |Ak+1)

)]
∈ R

♦ kth right eigenvector φk close to Px{τk+1 < τAk
}

♦ kth left eigenvector πk close to QSD of PAk

. Degenerate case: Ak reached with same prob from several states in Ac
k

Use decomposition with blocks of size > 1
Difficulty: intertwining of eigenvalues

Spectral decomposition in nondegenerate case:

Pn(x , y) =
n∑

k=1

λnk φk(x)πk(y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Πk (x ,y)
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Continuous-space Markov chains
(Xn)n∈N0 Markov chain in X ⊂ Rd with kernel Kσ:

P{Xn+1 ∈ A|Xn = x} = Kσ(x ,A) =

∫
A
Kσ(x , dy)

. K0(x ,A) = 1l{Π(x)∈A} defined by deterministic map Π : X → X

. For σ > 0, Kσ admits continuous density kσ

Example 1: Randomly perturbed map

Xn+1 = Π(Xn) + σξn+1

(ξn)n>1 i.i.d. r.v. with density (e.g. σξn Gaussian of variance σ2)

Example 2: Random Poincaré map
SDE

dxt = f (xt) dt + σg(xt) dWt

Xn suitably defined location of nth return to surface of section Σ ⊂ X
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Assumptions
Assumption 1: Deterministic dynamics
Π : X → X admits positively invariant compact set X0 ⊂ X , finitely many
limit sets in X0, all hyperbolic fixed points, N of which are stable

Assumption 2: Large-deviation principle

Kσ satisfies LDP with good rate function I (Kσ(x ,A) ∼ e− infA I (x ,·)/σ2
)

I (x , y) = 0⇔ y = Π(x)

Assumption 3: Positive Harris recurrence

In particular Ex [τ+
A ] <∞ for A ⊂ X0 of positive Lebesgue measure

Assumption 4: Uniform positivity (Doeblin-type condition)
∀x?i stable fixed point, ∃Bi nbh of x?i s.t. ki = B1∪···∪Bi

kBi
satisfies

sup
x∈Bi

kni (x , y) 6 L inf
x∈Bi

kni (x , y) ∀y ∈ Bi for some L ∈ (1, 2), n(σ) ∈ N
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Main result
Theorem

. Non-degenerate case (x?1 , . . . , x
?
N in metastable order)

♦ Eigenvalues of Kσ:

λ0 = 1

λk = 1− Pπ̊
k+1
0 {τ+

B1∪···∪Bk
< τ+

Bk+1
}
[
1 +O(e−θ/σ

2
)
]
∈ R 1 6 k < N

|λk | < 1− c

log(σ−1)
k > N

where π̊k+1
0 is a certain QSD on Bk+1 and c , θ > 0

♦ kth right eigenfunction φk close to Px{τBk+1 < τB1∪···∪Bk
}

♦ kth left eigenfunction πk close to QSD of K(B1∪···∪Bk )c

. Degenerate case: similar to finite chain. . .
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Approximation result
Theorem: Approximation by a finite Markov chain

∃m(σ), (signed) measures µi s.t. ‖µi − π̊Bi
0 ‖1 6 e−θ/σ

2
:

Pµi{Xτ+,nm
B1∪···∪BN

∈ Bj} = P i{Yn = j}+O(e−θ/σ
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
uniform in n

where (Yn)n∈N0 Markov chain with matrix

Pij = Pπ̊
Bi
0 {Xτ+,nm

B1∪···∪BN
∈ Bj}[1 +O(e−θ/σ

2
)]

Truncated spectral decomposition of B1∪···∪BN
K :

K 0
trunc(x , dy) =

N−1∑
k=0

λ0kφ
0
k(x)π0k(dy)

Then Pij = µi (K
0
trunc)

mψj where ‖ψj − 1lBj
‖∞ 6 e−θ/σ

2
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Outlook
. Finite X case: simple algorithm to obtain eigenvalues and vectors
(complexity O(n2), n = #(X ))

. Continuous-space Markov chains: eigen-elements in terms of
committors and QSDs

. Needed: better ways to approximate QSDs and committors

. See also poster by Manon Baudel: link between QSD and reactive
entrance distribution
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