Advances in Computational Statistical Physics Trace process and metastability

Nils Berglund

Institut Denis Poisson, Université d'Orléans, France

CIRM, Marseille, September 20 2018

Joint work with Manon Baudel (Ecole des Ponts, Paris)

Nils Berglund

nils.berglund@univ-orleans.fr

http://www.univ-orleans.fr/mapmo/membres/berglund/

 $\triangleright \varepsilon = 0: P = \mathsf{Id}$

▷ $0 < \varepsilon \leq \varepsilon_{max}$: irreducible, aperiodic, not reversible

 $\triangleright \varepsilon = 0: P = \mathsf{Id}$

▷ $0 < \varepsilon \leq \varepsilon_{max}$: irreducible, aperiodic, not reversible Stationary distribution: $\pi_0 = \frac{1}{2(1+\varepsilon+\varepsilon^2)}(1, 1+\varepsilon, \varepsilon+2\varepsilon^2)$ Speed of convergence to π_0 ?

Trace process and metastability

 $\triangleright \ \varepsilon = 0$: $P = \mathsf{Id}$

▷ $0 < \varepsilon \leq \varepsilon_{max}$: irreducible, aperiodic, not reversible Stationary distribution: $\pi_0 = \frac{1}{2(1+\varepsilon+\varepsilon^2)}(1, 1+\varepsilon, \varepsilon+2\varepsilon^2)$ Speed of convergence to π_0 ?

Eigenvalues of P: $\lambda_0 = 1$ $\lambda_1 = 1 - 2\varepsilon^3 + \mathcal{O}(\varepsilon^5)$ $\lambda_2 = 1 - \varepsilon + \mathcal{O}(\varepsilon^2)$

Trace process and metastability

September 20, 2018

Main question

How to easily determine leading term of spectral gap $1 - \lambda_1$?

- Linear algebra/analytic methods (singular perturbation theory), e.g. [Schweitzer 68, Hassin & Haviv 92, Avrachenkov & Lasserre 99]
- Probabilistic methods, e.g. [Wentzell 72, Freidlin & Wentzell 70s, Beltran & Landim 2010, Cameron & Vanden-Eijnden 2014, Betz & Le Roux 2016, Cameron & Gan 2016]

Main question

How to easily determine leading term of spectral gap $1 - \lambda_1$?

- Linear algebra/analytic methods (singular perturbation theory), e.g. [Schweitzer 68, Hassin & Haviv 92, Avrachenkov & Lasserre 99]
- Probabilistic methods, e.g. [Wentzell 72, Freidlin & Wentzell 70s, Beltran & Landim 2010, Cameron & Vanden-Eijnden 2014, Betz & Le Roux 2016, Cameron & Gan 2016]

Some probabilistic tools:

- ▷ *W*-graphs
- Lumping of states
- Speeding up time

Main question

How to easily determine leading term of spectral gap $1 - \lambda_1$?

- Linear algebra/analytic methods (singular perturbation theory), e.g. [Schweitzer 68, Hassin & Haviv 92, Avrachenkov & Lasserre 99]
- Probabilistic methods, e.g. [Wentzell 72, Freidlin & Wentzell 70s, Beltran & Landim 2010, Cameron & Vanden-Eijnden 2014, Betz & Le Roux 2016, Cameron & Gan 2016]

Some probabilistic tools:

- ▷ *W*-graphs
- Lumping of states
- Speeding up time
- ▷ Here: trace process

Trace process and metastability

September 20, 2018

Trace process

 \mathcal{X} finite, $\{X_n\}_{n\in\mathbb{N}_0}$ irreducible aperiodic M.C., transition matrix P, $A \subset \mathcal{X}$

- ▷ Process killed upon leaving A: $P_A(x, y) = P(x, y) \mathbb{1}_{\{x, y \in A\}}$
- ▷ Trace process on A: process monitored only when in A

 $_{A}P(x,y) = \mathbb{P}^{x}\{X_{\tau_{A}^{+}=y}\}, \quad \tau_{A}^{+} = \inf\{n \ge 1 \colon X_{n} \in A\}$

Trace process

 \mathcal{X} finite, $\{X_n\}_{n\in\mathbb{N}_0}$ irreducible aperiodic M.C., transition matrix P, $A \subset \mathcal{X}$

- ▷ Process killed upon leaving A: $P_A(x, y) = P(x, y) \mathbb{1}_{\{x, y \in A\}}$
- ▷ Trace process on A: process monitored only when in A

 ${}_{A}P(x,y) = \mathbb{P}^{x}\{X_{\tau_{A}^{+}=y}\}, \quad \tau_{A}^{+} = \inf\{n \ge 1 \colon X_{n} \in A\}$

$$AP(x,y) = \mathbb{P}^{x} \{\tau_{A}^{+} = 1, X_{\tau_{A}^{+} = y}\} + \mathbb{P}^{x} \{\tau_{A}^{+} \ge 2, X_{\tau_{A}^{+} = y}\}$$
$$= P(x,y) + \sum_{z \in A^{c}} P(x,z) \sum_{n \ge 1} \mathbb{P}^{z} \{\tau_{A}^{+} = n, X_{\tau_{A}^{+} = y}\}$$
$$= P_{A}(x,y) + \sum_{z,z' \in A^{c}} P(x,z) \underbrace{\sum_{n \ge 1} P_{A^{c}}^{n-1}(z,z') P(z',y)}_{[\mathbb{I} - P_{A^{c}}]^{-1}(z,z')}$$

Trace process

 \mathcal{X} finite, $\{X_n\}_{n\in\mathbb{N}_0}$ irreducible aperiodic M.C., transition matrix P, $A \subset \mathcal{X}$

- ▷ Process killed upon leaving A: $P_A(x, y) = P(x, y) \mathbb{1}_{\{x, y \in A\}}$
- ▷ Trace process on A: process monitored only when in A

 ${}_{\mathcal{A}}P(x,y) = \mathbb{P}^{x}\{X_{\tau_{\mathcal{A}}^{+}=y}\}, \quad \tau_{\mathcal{A}}^{+} = \inf\{n \ge 1 \colon X_{n} \in \mathcal{A}\}$

$${}_{A}P(x,y) = \mathbb{P}^{x} \{\tau_{A}^{+} = 1, X_{\tau_{A}^{+} = y}\} + \mathbb{P}^{x} \{\tau_{A}^{+} \ge 2, X_{\tau_{A}^{+} = y}\}$$
$$= P(x,y) + \sum_{z \in A^{c}} P(x,z) \sum_{n \ge 1} \mathbb{P}^{z} \{\tau_{A}^{+} = n, X_{\tau_{A}^{+} = y}\}$$
$$= P_{A}(x,y) + \sum_{z,z' \in A^{c}} P(x,z) \underbrace{\sum_{n \ge 1} P_{A^{c}}^{n-1}(z,z') P(z',y)}_{[\mathbb{I} - P_{A^{c}}]^{-1}(z,z')}$$

Matrix representation (Schur complement)

$$P = \begin{pmatrix} P_A & P_{AA^c} \\ P_{A^cA} & P_{A^c} \end{pmatrix} \quad \Rightarrow \quad {}_{A}P = P_A + P_{AA^c} [\mathbb{1} - P_{A^c}]^{-1} P_{A^cA}$$

Trace process and metastability

Application to the example

$$P = \begin{pmatrix} 1 - \varepsilon^3 - \varepsilon^4 & \varepsilon^4 & \varepsilon^3 \\ \varepsilon^3 & 1 - \varepsilon^2 - \varepsilon^3 & \varepsilon^2 \\ 0 & \varepsilon & 1 - \varepsilon \end{pmatrix}$$
$$A = \{1, 2\}$$

Application to the example

Trace process and metastability

Application to the example

Trace process and metastability

September 20, 2018

4/14

Recall: the chain in **not** assumed to be reversible: $\pi_0(x)P(x, y) \neq \pi_0(y)P(y, x)$ in general

Recall: the chain in not assumed to be reversible: $\pi_0(x)P(x, y) \neq \pi_0(y)P(y, x)$ in general

Proposition: $\forall x, y \in A$

 $\pi_0(x)\mathbb{P}^x\{\tau_y^+ < \tau_x^+\} = \pi_0(y)\mathbb{P}^y\{\tau_x^+ < \tau_y^+\}$

Recall: the chain in **not** assumed to be reversible: $\pi_0(x)P(x, y) \neq \pi_0(y)P(y, x)$ in general

Proposition: $\forall x, y \in A$

$$\pi_0(x)\mathbb{P}^x\{\tau_y^+ < \tau_x^+\} = \pi_0(y)\mathbb{P}^y\{\tau_x^+ < \tau_y^+\}$$

▷ First proof in non-reversible case: [Betz & Le Roux 2016] Using $\pi_0(x) = 1/\mathbb{E}^x[\tau_x^+]$

Recall: the chain in **not** assumed to be reversible: $\pi_0(x)P(x, y) \neq \pi_0(y)P(y, x)$ in general

Proposition: $\forall x, y \in A$

$$\pi_0(x)\mathbb{P}^x\{\tau_y^+ < \tau_x^+\} = \pi_0(y)\mathbb{P}^y\{\tau_x^+ < \tau_y^+\}$$

- ▷ First proof in non-reversible case: [Betz & Le Roux 2016] Using $\pi_0(x) = 1/\mathbb{E}^x[\tau_x^+]$
- ▷ Alternative proof using trace process: **Remark:** $\pi_0|_A$ is invariant by $_AP$ Take $A = \{x, y\}$. Then

$$\begin{aligned} \pi_0(x) &= (\pi_{0A} P)(x) \\ &= \pi_0(x) \mathbb{P}^x \{ X_{\tau_A^+} = x \} + \pi_0(y) \mathbb{P}^y \{ X_{\tau_A^+} = x \} \\ &= \pi_0(x) \big[1 - \mathbb{P}^x \{ \tau_y^+ < \tau_x^+ \} \big] + \pi_0(y) \mathbb{P}^y \{ \tau_x^+ < \tau_y^+ \} \quad \Box \end{aligned}$$

Trace process and metastability

September 20, 2018

Good domains

A

Definition: For $A \subset \mathcal{X}$, let

$$p_{in}(A) = \inf_{x \in A^c} \mathbb{P}^x \{ X_1 \in A \}$$
$$p_{out}(A) = \sup_{x \in A} \mathbb{P}^x \{ X_1 \in A^c \}$$
A is a good domain if
$$\lim_{\varepsilon \to 0} \frac{p_{out}(A)}{p_{in}(A)} = 0$$

Good domains

Definition: For $A \subset \mathcal{X}$, let

$$p_{in}(A) = \inf_{x \in A^c} \mathbb{P}^x \{ X_1 \in A \}$$
$$p_{out}(A) = \sup_{x \in A} \mathbb{P}^x \{ X_1 \in A^c \}$$
$$A \text{ is a good domain if } \lim_{\varepsilon \to 0} \frac{p_{out}(A)}{p_{in}(A)} = 0$$

Example:

 $A = \{1, 2\}$

 $p_{in}(A) = \varepsilon$ $p_{out}(A) = \varepsilon^2$

A is a good domain

Trace process and metastability

For a good domain A,

$$P = \begin{pmatrix} P_A & P_{AA^c} \\ P_{A^cA} & P_{A^c} \end{pmatrix} \text{ is well-approximated by } \widehat{P} = \begin{pmatrix} AP & 0 \\ P_{A^cA} & P_{A^c} \end{pmatrix}$$

For a good domain A, $P = \begin{pmatrix} P_A & P_{AA^c} \\ P_{A^cA} & P_{A^c} \end{pmatrix}$ is well-approximated by $\widehat{P} = \begin{pmatrix} AP & 0 \\ P_{A^cA} & P_{A^c} \end{pmatrix}$ Norm: $\|Q\| = \sup_{\|\varphi\|_{\infty}=1} \|Q\varphi\|_{\infty} = \sup_{\|\mu\|_{1}=1} \|\mu Q\|_{1} = \sup_{x \in \mathcal{X}} \sum_{y \in \mathcal{X}} |Q(x, y)|$ Lemma: $\|P - \widehat{P}\| = 2p_{\text{out}}(A)$

For a good domain A, $P = \begin{pmatrix} P_A & P_{AA^c} \\ P_{A^cA} & P_{A^c} \end{pmatrix}$ is well-approximated by $\widehat{P} = \begin{pmatrix} AP & 0 \\ P_{A^cA} & P_{A^c} \end{pmatrix}$ Norm: $\|Q\| = \sup_{\|\varphi\|_{\infty}=1} \|Q\varphi\|_{\infty} = \sup_{\|\mu\|_{1}=1} \|\muQ\|_{1} = \sup_{x \in \mathcal{X}} \sum_{y \in \mathcal{X}} |Q(x, y)|$

Lemma: $||P - \widehat{P}|| = 2p_{out}(A)$

Fact from spectral theory (using complex analysis, Riesz projector): $\hat{\lambda}$ simple eigenvalue of \hat{P} at distance $> \|P - \hat{P}\|$ from remaining spectrum $\Rightarrow P$ has unique eigenvalue at distance $\mathcal{O}(\|P - \hat{P}\|)$ from $\hat{\lambda}$

For a good domain A, $P = \begin{pmatrix} P_A & P_{AA^c} \\ P_{A^cA} & P_{A^c} \end{pmatrix}$ is well-approximated by $\widehat{P} = \begin{pmatrix} AP & 0 \\ P_{A^cA} & P_{A^c} \end{pmatrix}$

Norm:
$$||Q|| = \sup_{\|\varphi\|_{\infty}=1} ||Q\varphi\|_{\infty} = \sup_{\|\mu\|_{1}=1} ||\mu Q||_{1} = \sup_{x \in \mathcal{X}} \sum_{y \in \mathcal{X}} |Q(x, y)|$$

Lemma: $||P - \widehat{P}|| = 2p_{\text{out}}(A)$

Fact from spectral theory (using complex analysis, Riesz projector): $\hat{\lambda}$ simple eigenvalue of \hat{P} at distance $> \|P - \hat{P}\|$ from remaining spectrum $\Rightarrow P$ has unique eigenvalue at distance $\mathcal{O}(\|P - \hat{P}\|)$ from $\hat{\lambda}$

Consequence: If $A^c = \{x\}$ then $p_{in}(A) = 1 - P(x, x) = 1 - \hat{\lambda}$ $\Rightarrow 1 - \lambda = 1 - \hat{\lambda} + \mathcal{O}(p_{out}(A)) = (1 - \hat{\lambda}) \Big[1 + \mathcal{O}(\frac{p_{out}(A)}{p_{in}(A)}) \Big]$

Example: $\hat{\lambda}_2 = 1 - \varepsilon$ perturbs to $\lambda_2 = 1 - \varepsilon + \mathcal{O}(\varepsilon^2)$ The argument does not suffice to compare spectra of P_A and $_AP$

Trace process and metastability

September 20, 2018

Laplace transforms

 $u \in \mathbb{C} \Rightarrow \mathbb{E}^{\times}[e^{u\tau_A^+}]$ exists for $|e^{-u}| > 1 - p_{in}(A)$ (*)

Proposition [Feynman–Kac type relation]

Under (*),

$$\begin{cases}
(P\phi)(x) = e^{-u} \phi(x) & x \in A^c \\
\phi(x) = \overline{\phi}(x) & x \in A
\end{cases}$$

admits unique solution $\phi(x) = \mathbb{E}^{x}[e^{u\tau_{A}} \overline{\phi}(X_{\tau_{A}})], \tau_{A} = \inf\{n \ge 0 \colon X_{n} \in A\}$

Laplace transforms

 $u \in \mathbb{C} \Rightarrow \mathbb{E}^{\times}[e^{u\tau_A^+}]$ exists for $|e^{-u}| > 1 - p_{in}(A)$ (*)

Proposition [Feynman–Kac type relation]

$$\begin{cases} (P\phi)(x) = e^{-u} \phi(x) & x \in A^c \\ \phi(x) = \overline{\phi}(x) & x \in A \end{cases}$$

admits unique solution $\phi(x) = \mathbb{E}^{x}[e^{u\tau_{A}} \overline{\phi}(X_{\tau_{A}})], \tau_{A} = \inf\{n \ge 0 \colon X_{n} \in A\}$

Corollary [Reduction to eigenvalue problem on A] Under (*), $P\phi = e^{-u}\phi$ in $\mathcal{X} \Leftrightarrow {}_{A}P^{u}\phi = e^{-u}\phi$ in A where ${}_{A}P^{u}(x, y) = \mathbb{E}^{\times} \left[e^{u(\tau_{A}^{+}-1)} \mathbb{1}_{\{X_{\tau_{A}^{+}}=y\}} \right]$ is such that ${}_{A}P^{0} = {}_{A}P$

Laplace transforms

 $u \in \mathbb{C} \Rightarrow \mathbb{E}^{\times}[e^{u\tau_A^+}]$ exists for $|e^{-u}| > 1 - p_{in}(A)$ (*)

Proposition [Feynman–Kac type relation]

$$\begin{cases} (P\phi)(x) = e^{-u} \phi(x) & x \in A^c \\ \phi(x) = \overline{\phi}(x) & x \in A \end{cases}$$

admits unique solution $\phi(x) = \mathbb{E}^{x}[e^{u\tau_{A}} \overline{\phi}(X_{\tau_{A}})], \tau_{A} = \inf\{n \ge 0 \colon X_{n} \in A\}$

Corollary [Reduction to eigenvalue problem on A] Under (*), $P\phi = e^{-u}\phi$ in $\mathcal{X} \Leftrightarrow {}_{A}P^{u}\phi = e^{-u}\phi$ in A where ${}_{A}P^{u}(x, y) = \mathbb{E}^{\times} \left[e^{u(\tau_{A}^{+}-1)} \mathbb{1}_{\{X_{\tau_{A}^{+}}=y\}} \right]$ is such that ${}_{A}P^{0} = {}_{A}P$

Proposition

$$\|_{A}P^{u} - {}_{A}P^{0}\| \leqslant \frac{|1 - e^{-u}|\sup_{x \in A} \mathbb{E}^{x}[\tau_{A}^{+} - 1]}{1 - |1 - e^{-u}|\sup_{x \in A^{c}} \mathbb{E}^{x}[\tau_{A}^{+}]} \leqslant \frac{|1 - e^{-u}|p_{\mathsf{out}}(A)}{p_{\mathsf{in}}(A) - |1 - e^{-u}|}$$

Trace process and metastability

Theorem

▷ Non-degenerate case: $\exists A_1 \subset A_2 \subset \cdots \subset A_n = \mathcal{X}$ s.t. $\#(A_{k+1} \setminus A_k) = 1$, each A_k good set for $A_{k+1}P$ Renumber states s.t. $A_k = \{1, \dots, k\}$. Then

$$\diamond \quad \lambda_0 = 1, \ \lambda_k = 1 - \mathbb{P}^{k+1} \big\{ \tau_{A_k}^+ < \tau_{k+1}^+ \big\} \Big[1 + \mathcal{O}\Big(\frac{p_{\mathsf{out}}(A_k | A_{k+1})}{p_{\mathsf{in}}(A_k | A_{k+1})} \Big) \Big] \quad \in \mathbb{R}$$

- $\diamond \quad k \text{th right eigenvector } \phi_k \text{ close to } \mathbb{P}^{\times} \{ \tau_{k+1} < \tau_{A_k} \}$
- \diamond kth left eigenvector π_k close to QSD of P_{A_k}

Theorem

▷ Non-degenerate case: $\exists A_1 \subset A_2 \subset \cdots \subset A_n = \mathcal{X}$ s.t. $\#(A_{k+1} \setminus A_k) = 1$, each A_k good set for $A_{k+1}P$ Renumber states s.t. $A_k = \{1, \dots, k\}$. Then

$$\diamond \quad \lambda_0 = 1 \text{, } \lambda_k = 1 - \mathbb{P}^{k+1} \{ \tau_{A_k}^+ < \tau_{k+1}^+ \} \Big[1 + \mathcal{O} \Big(\frac{p_{\mathsf{out}}(A_k | A_{k+1})}{p_{\mathsf{in}}(A_k | A_{k+1})} \Big) \Big] \quad \in \mathbb{R}$$

- $\diamond \quad k \text{th right eigenvector } \phi_k \text{ close to } \mathbb{P}^{\times} \{ \tau_{k+1} < \tau_{A_k} \}$
- \diamond kth left eigenvector π_k close to QSD of P_{A_k}
- Degenerate case: A_k reached with same prob from several states in A^c_k Use decomposition with blocks of size > 1 Difficulty: intertwining of eigenvalues

Theorem

▷ Non-degenerate case: $\exists A_1 \subset A_2 \subset \cdots \subset A_n = \mathcal{X}$ s.t. $\#(A_{k+1} \setminus A_k) = 1$, each A_k good set for $A_{k+1}P$ Renumber states s.t. $A_k = \{1, \dots, k\}$. Then

$$\diamond \quad \lambda_0 = 1 \text{, } \lambda_k = 1 - \mathbb{P}^{k+1} \{ \tau_{A_k}^+ < \tau_{k+1}^+ \} \Big[1 + \mathcal{O} \Big(\tfrac{p_{\mathsf{out}}(A_k | A_{k+1})}{p_{\mathsf{in}}(A_k | A_{k+1})} \Big) \Big] \quad \in \mathbb{R}$$

- $\diamond \quad k \text{th right eigenvector } \phi_k \text{ close to } \mathbb{P}^{\times} \{ \tau_{k+1} < \tau_{A_k} \}$
- \diamond kth left eigenvector π_k close to QSD of P_{A_k}
- Degenerate case: A_k reached with same prob from several states in A^c_k Use decomposition with blocks of size > 1 Difficulty: intertwining of eigenvalues

Spectral decomposition in nondegenerate case:

$$P^{n}(x,y) = \sum_{k=1}^{n} \lambda_{k}^{n} \underbrace{\phi_{k}(x)\pi_{k}(y)}_{=\Pi_{k}(x,y)}$$

Continuous-space Markov chains

 $(X_n)_{n \in \mathbb{N}_0}$ Markov chain in $\mathcal{X} \subset \mathbb{R}^d$ with kernel K_{σ} :

$$\mathbb{P}\{X_{n+1} \in A | X_n = x\} = K_{\sigma}(x, A) = \int_A K_{\sigma}(x, dy)$$

- $\vdash K_0(x,A) = \mathbb{1}_{\{\Pi(x) \in A\}} \text{ defined by deterministic map } \Pi : \mathcal{X} \to \mathcal{X}$
- \triangleright For $\sigma > 0$, K_{σ} admits continuous density k_{σ}

Continuous-space Markov chains

 $(X_n)_{n \in \mathbb{N}_0}$ Markov chain in $\mathcal{X} \subset \mathbb{R}^d$ with kernel K_{σ} :

$$\mathbb{P}\{X_{n+1} \in A | X_n = x\} = K_{\sigma}(x, A) = \int_A K_{\sigma}(x, dy)$$

K₀(x, A) = 1_{Π(x)∈A} defined by deterministic map Π : X → X
 For σ > 0, K_σ admits continuous density k_σ

Example 1: Randomly perturbed map

 $X_{n+1} = \Pi(X_n) + \sigma \xi_{n+1}$

 $(\xi_n)_{n\geq 1}$ i.i.d. r.v. with density (e.g. $\sigma\xi_n$ Gaussian of variance σ^2)

Continuous-space Markov chains

 $(X_n)_{n\in\mathbb{N}_0}$ Markov chain in $\mathcal{X}\subset\mathbb{R}^d$ with kernel K_{σ} :

$$\mathbb{P}\{X_{n+1} \in A | X_n = x\} = K_{\sigma}(x, A) = \int_A K_{\sigma}(x, dy)$$

K₀(x, A) = 1_{Π(x)∈A} defined by deterministic map Π : X → X
 For σ > 0, K_σ admits continuous density k_σ

Example 1: Randomly perturbed map

 $X_{n+1} = \Pi(X_n) + \sigma \xi_{n+1}$

 $(\xi_n)_{n\geq 1}$ i.i.d. r.v. with density (e.g. $\sigma\xi_n$ Gaussian of variance σ^2)

Example 2: Random Poincaré map SDE

$$dx_t = f(x_t) dt + \sigma g(x_t) dW_t$$

 X_n suitably defined location of *n*th return to surface of section $\Sigma \subset \mathcal{X}$

Assumption 1: Deterministic dynamics

 $\Pi : \mathcal{X} \to \mathcal{X}$ admits positively invariant compact set $\mathcal{X}_0 \subset \mathcal{X}$, finitely many limit sets in \mathcal{X}_0 , all hyperbolic fixed points, N of which are stable

Assumption 1: Deterministic dynamics

 $\Pi : \mathcal{X} \to \mathcal{X}$ admits positively invariant compact set $\mathcal{X}_0 \subset \mathcal{X}$, finitely many limit sets in \mathcal{X}_0 , all hyperbolic fixed points, N of which are stable

Assumption 2: Large-deviation principle

 K_{σ} satisfies LDP with good rate function $I(K_{\sigma}(x, A) \sim e^{-\inf_{A}I(x, \cdot)/\sigma^{2}})$ $I(x, y) = 0 \Leftrightarrow y = \Pi(x)$

Assumption 1: Deterministic dynamics

 $\Pi: \mathcal{X} \to \mathcal{X}$ admits positively invariant compact set $\mathcal{X}_0 \subset \mathcal{X}$, finitely many limit sets in \mathcal{X}_0 , all hyperbolic fixed points, N of which are stable

Assumption 2: Large-deviation principle

 K_{σ} satisfies LDP with good rate function $I(K_{\sigma}(x, A) \sim e^{-\inf_{A}I(x, \cdot)/\sigma^{2}})$ $I(x, y) = 0 \Leftrightarrow y = \Pi(x)$

Assumption 3: Positive Harris recurrence

In particular $\mathbb{E}^{\times}[\tau_A^+] < \infty$ for $A \subset \mathcal{X}_0$ of positive Lebesgue measure

Assumption 1: Deterministic dynamics

 $\Pi: \mathcal{X} \to \mathcal{X} \text{ admits positively invariant compact set } \mathcal{X}_0 \subset \mathcal{X}, \text{ finitely many limit sets in } \mathcal{X}_0, \text{ all hyperbolic fixed points, } N \text{ of which are stable}$

Assumption 2: Large-deviation principle

 K_{σ} satisfies LDP with good rate function $I(K_{\sigma}(x, A) \sim e^{-\inf_{A} I(x, \cdot)/\sigma^{2}})$ $I(x, y) = 0 \Leftrightarrow y = \Pi(x)$

Assumption 3: Positive Harris recurrence In particular $\mathbb{E}^{\times}[\tau_A^+] < \infty$ for $A \subset \mathcal{X}_0$ of positive Lebesgue measure

Assumption 4: Uniform positivity (Doeblin-type condition) $\forall x_i^* \text{ stable fixed point, } \exists B_i \text{ nbh of } x_i^* \text{ s.t. } k_i = B_1 \cup \dots \cup B_i k_{B_i} \text{ satisfies}$ $\sup_{x \in B_i} k_i^n(x, y) \leq L \inf_{x \in B_i} k_i^n(x, y) \quad \forall y \in B_i \quad \text{for some } L \in (1, 2), n(\sigma) \in \mathbb{N}$

Theorem

- ▷ Non-degenerate case $(x_1^{\star}, \ldots, x_N^{\star}$ in metastable order)
 - ♦ Eigenvalues of K_{σ} :

$$\lambda_{0} = 1$$

$$\lambda_{k} = 1 - \mathbb{P}^{\hat{\pi}_{0}^{k+1}} \{ \tau_{B_{1} \cup \dots \cup B_{k}}^{+} < \tau_{B_{k+1}}^{+} \} [1 + \mathcal{O}(e^{-\theta/\sigma^{2}})] \in \mathbb{R} \quad 1 \leq k < N$$

$$|\lambda_{k}| < 1 - \frac{c}{\log(\sigma^{-1})} \qquad k \ge N$$

where $\mathring{\pi}_{0}^{k+1}$ is a certain QSD on B_{k+1} and $c, \theta > 0$

- $\diamond \quad k \text{th right eigenfunction } \phi_k \text{ close to } \mathbb{P}^{\times} \{ \tau_{B_{k+1}} < \tau_{B_1 \cup \cdots \cup B_k} \}$
- ♦ kth left eigenfunction π_k close to QSD of $K_{(B_1 \cup \cdots \cup B_k)^c}$

Theorem

- ▷ Non-degenerate case $(x_1^{\star}, \ldots, x_N^{\star}$ in metastable order)
 - ♦ Eigenvalues of K_{σ} :

$$\begin{split} \lambda_0 &= 1\\ \lambda_k &= 1 - \mathbb{P}^{\check{\pi}_0^{k+1}} \{ \tau_{B_1 \cup \dots \cup B_k}^+ < \tau_{B_{k+1}}^+ \} \big[1 + \mathcal{O}(\mathrm{e}^{-\theta/\sigma^2}) \big] \in \mathbb{R} \quad 1 \leqslant k < N\\ |\lambda_k| &< 1 - \frac{c}{\log(\sigma^{-1})} \qquad \qquad k \geqslant N \end{split}$$

where $\mathring{\pi}_{0}^{k+1}$ is a certain QSD on B_{k+1} and $c, \theta > 0$

- $\diamond \quad k \text{th right eigenfunction } \phi_k \text{ close to } \mathbb{P}^{\times} \{ \tau_{B_{k+1}} < \tau_{B_1 \cup \cdots \cup B_k} \}$
- ♦ kth left eigenfunction π_k close to QSD of $K_{(B_1 \cup \cdots \cup B_k)^c}$
- ▷ Degenerate case: similar to finite chain...

Approximation result

Theorem: Approximation by a finite Markov chain $\exists m(\sigma)$, (signed) measures μ_i s.t. $\|\mu_i - \mathring{\pi}_0^{B_i}\|_1 \leq e^{-\theta/\sigma^2}$: $\mathbb{P}^{\mu_i}\{X_{\tau_{B_1\cup\cdots\cup B_{n_i}}^{+,n_m}}\in B_j\}=\mathbb{P}^i\{Y_n=j\}+\mathcal{O}(\mathrm{e}^{-\theta/\sigma^2})$ uniform in n where $(Y_n)_{n \in \mathbb{N}_0}$ Markov chain with matrix θ/σ^2)]

$$P_{ij} = \mathbb{P}^{\mathring{\pi}_0^{B_i}} \{ X_{\tau^{+,nm}_{B_1 \cup \dots \cup B_N}} \in B_j \} [1 + \mathcal{O}(\mathrm{e}^{-\ell}$$

Approximation result

Theorem: Approximation by a finite Markov chain $\exists m(\sigma)$, (signed) measures μ_i s.t. $\|\mu_i - \mathring{\pi}_0^{B_i}\|_1 \leq e^{-\theta/\sigma^2}$: $\mathbb{P}^{\mu_i} \{ X_{\tau_{B_1 \cup \cdots \cup B_N}^{+,nm}} \in B_j \} = \mathbb{P}^i \{ Y_n = j \} + \underbrace{\mathcal{O}}(e^{-\theta/\sigma^2})_{\text{uniform in } n}$ where $(Y_n)_{n \in \mathbb{N}_0}$ Markov chain with matrix

$$\mathsf{P}_{ij} = \mathbb{P}^{\mathring{\pi}_0^{B_i}} \{ X_{\tau^{+,nm}_{B_1 \cup \dots \cup B_N}} \in B_j \} [1 + \mathcal{O}(\mathrm{e}^{-\theta/\sigma^2})]$$

Truncated spectral decomposition of $B_1 \cup \cdots \cup B_N K$:

$$\mathcal{K}_{\text{trunc}}^{0}(x, \text{d}y) = \sum_{k=0}^{N-1} \lambda_{k}^{0} \phi_{k}^{0}(x) \pi_{k}^{0}(\text{d}y)$$

Then $P_{ij} = \mu_{i} (\mathcal{K}_{\text{trunc}}^{0})^{m} \psi_{j}$ where $\|\psi_{j} - \mathbb{1}_{B_{j}}\|_{\infty} \leq e^{-\theta/\sigma^{2}}$

Trace process and metastability

Outlook

- ▷ Finite \mathcal{X} case: simple algorithm to obtain eigenvalues and vectors (complexity $\mathcal{O}(n^2)$, $n = \#(\mathcal{X})$)
- Continuous-space Markov chains: eigen-elements in terms of committors and QSDs
- ▷ Needed: better ways to approximate QSDs and committors
- ▷ See also poster by Manon Baudel: link between QSD and reactive entrance distribution

Reference:

▷ Manon Baudel & N.B., Spectral theory for random Poincaré maps, SIAM J. Math. Analysis 49, 4319–4375 (2017)

Related:

- N.B. & Damien Landon, Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model, Nonlinearity 25, 2303-2335 (2012)
- N.B., Barbara Gentz & Christian Kuehn, From random Poincaré maps to stochastic mixed-mode-oscillation patterns, J. Dynam. Diff. Eq. 27, 83–136 (2015)

Trace process and metastability

September 20, 2018