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e (Xt)tez+ a Markov chain on € U O eventually absorbed by 0 :
() Tg=inf{t >0: Xy =0} < o0 as
(i) Xt =0 = Xeps = 0.

Definition

A Quasi-Stationary Distribution for X is a probability i on € such
that
Pu(X € |t < 75) = ().

Under appropriate assumptions, such a QSD exists and
Jim B(Xe €t < 75) = ()

Natural object in Population Dynamics because eventually everyone

gets killed...
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How to compute/estimate such a QSD 7

e A Classical approach is based on Fleming Viot Algorithms
(i) Run N independent particles until one is killed,

(i) replace the killed particle by an offspring whose
location is randomly chosen according the spatial
occupation measure of the other particles

Then (under appropriate assumptions)

LN
A}inmtlngoNzgéxlzﬂ'
=

~~ |dea explored by Burdzy, Holyst & March (2000); Del Moral &
Miclo (2000); Villemonais (2014); Cloez & Thai (2016)...
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e Alternative approach : Use a single particle and replace the
spatial occupation measure by the temporal occupation measure

Mt = %ZCSXS

s<t

(i) Run (X:) until it gets killed,
(i) Resuscitate it at a location randomly chosen
according to pit

~~ This original idea goes back to Aldous, Flannery & Palacios
(1988) and their approach relies on branching processes.

~+ Here we will revisit it using tools from stochastic approximation,
self-reinforced processes combined with recent ideas & results due
to Champagnat and Villemonais (2015)
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Notation & Hypotheses

e K the Sub-Markov Kernel of X on € :
K(x,-) =Px(X1 € ")

e H1 & is compact and K Feller;
o H2 0 is accessible :

Vx3n>0:K"(x,0) <1,

H1&H2 = Existence of (at least) one QSD
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e H3 There exists an open set U C 0 which is accessible:
Vx ZK”(X, U) > 0.
n

and petite :
Vx e U K'(x,) > eW()

where W is a probability on &

If K were Markov (i.e K(x,E) =1), H1, H2, H3 would ensure the
uniqueness of an invariant measure u But, this is not sufficient to
ensure uniqueness of a QSD !
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The Champagnat-Villemonais condition

e H4 There exists a non increasing convex function C : Rt — RT
satisfying

/000 C(s)ds = o0
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The Champagnat-Villemonais condition

e H4 There exists a non increasing convex function C : Rt — RT
satisfying

/000 C(s)ds = o0

such that o
(K"1) > C(n)

sup,ce K"1(x) —

e When C(n) = C, this condition is due to Champagnat and
Villemonais (2015)
e It ensures the uniqueness of the QSD.

Michel Benaim Neuchatel University



a,be(0,1)

Michel Benaim Neuchatel University



a,be(0,1)

o If a < b, C(t) = C and there is a unique QSD u = d;

Michel Benaim Neuchatel University



a,be(0,1)

o If a < b, C(t) = C and there is a unique QSD u = d;

elf a=0bC(t)= 1—% and there is a unique QSD p = 6>

Michel Benaim Neuchatel University



a,be(0,1)

o If a < b, C(t) = C and there is a unique QSD u = d;

elf a=0bC(t)= 1—% and there is a unique QSD p = 6>

e If 2 > b there is another QSD u* = f:gél + %_;262.

Michel Benaim Neuchatel University



a,be(0,1)

o If a < b, C(t) = C and there is a unique QSD u = d;

elf a=0bC(t)= 1—% and there is a unique QSD p = 6>

e If 2 > b there is another QSD u* = f:gél + %_;262.

Michel Benaim Neuchatel University



-
osl- s =
A
-
o8- e i
2
7
o071~ " -
3t
06— i i
e
e
05 2%
04 il
04l # g
7
2"

o3l - |

-

Cal

02 | i A
P
B
o1 37 i
2
A

o1 02 03 A 04 05 06 07 08 09 1

b a

Figure: b=1/3;a+ u(1),n*(1)

Michel Benaim Neuchatel University



e For each y probability on &

Ku(x, dy) = K(x, dy) + (1 — K(x, &))u(dy)
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Ku(x,dy) = K(x,dy) + (1 = K(x, €))u(dy)

= kernel of a chain which behaves like (X;) until it dies and, then is
redistributed according to .
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e For each y probability on &

Ku(x, dy) = K(x, dy) + (1 — K(x, &))u(dy)

= kernel of a chain which behaves like (X;) until it dies and, then is
redistributed according to .

e (1) the invariant probability measure of K,.

pG n
Np)=—=,6=)Y K"
(1) G1 %;

o {®;},cr+ the deterministic semiflow induced by the ODE
fo=—p+N(p)

(in a weak sense)
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Under hypotheses H1 (Feller) and H2 (O accessible), the limit set
of (un) is almost surely a Attractor Free set of

Set L is Attractor free means :
(i) Lis compact,
(ii) connected,
(iii) invariant : ®.(L) = L and
)

(iv) @[, has no proper attractor
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Set = x01 + (1 — x)d2. The ODE writes
(1—b)x
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Under the additional assumptions H3 and H4 (The Champagnat
Villemonais condition); ® has a global attractor given as the unique
QSD {p}. Hence, there is only one attractor free set {j1} and

L — f.
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Strategy of proof

(i) Show that t — [i; := pet is a Asymptotic Pseudo
Trajectory of ® i.e

lim sup diSt(ﬁ't—i-mq)s(:at)) =0.

t—o0 0<s<T

(ii) Use old results from the late 90s on the dynamics of
APT (B, B & Hirsch) :
e The limit set of an APT is attractor free
= If L is attractor free and meets the basin of
attraction of attractor A; Then L C A.
= If ® has a global attractor A; Then L C A.

(iii) Show that under H4, ® has the unique QSD of K as
global attractor
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