Processes with reinforcement and approximation of Quasi-Stationary Distributions

> Michel Benaim Neuchâtel University

Luminy, September 2018

Michel Benaim Neuchâtel University

Talk based on recent collaborations with

Michel Benaim Neuchâtel University

2

日本・モン・モン

Talk based on recent collaborations with

Bertrand Cloez (Montpellier)

and Fabien Panloup (Anger) 🌆

Michel Benaim Neuchâtel University

Talk based on recent collaborations with

Bertrand Cloez (Montpellier)

and Fabien Panloup (Anger)

Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications Annals of Applied Probability, 2018

Michel Benaim Neuchâtel University

_ৰ ≣ ≯

э

• A. Wang (Oxford) , G. O Roberts (Warwick) and D. Steinsaltz (Oxford)

문 🕨 문

• A. Wang (Oxford) , G. O Roberts (Warwick) and D. Steinsaltz (Oxford)

An approximation Scheme for Quasistationary Distributions of Killed Diffusions arXiv August 23, 2018

• A. Wang (Oxford) , G. O Roberts (Warwick) and D. Steinsaltz (Oxford)

An approximation Scheme for Quasistationary Distributions of Killed Diffusions arXiv August 23, 2018

• C. Mailler (Bath) and D. Villemonais (Nancy)

• A. Wang (Oxford) , G. O Roberts (Warwick) and D. Steinsaltz (Oxford)

An approximation Scheme for Quasistationary Distributions of Killed Diffusions arXiv August 23, 2018

• C. Mailler (Bath) and D. Villemonais (Nancy)

Stochastic Approximation on non-compact measure spaces and application to measure-valued Polya Processes arXiv September 6, 2018

Michel Benaim Neuchâtel University

2

《口》《聞》《臣》《臣》

• \mathcal{E} a metric space, ∂ a *cemetery* point

э

æ

- $\bullet \ \mathcal{E}$ a metric space, ∂ a cemetery point
- ullet $(X_t)_{t\in\mathbb{Z}^+}$ a Markov chain on $\mathcal{E}\cup\partial$ eventually absorbed by ∂ :

→ ★ 문 ►

< E.

3

- $\bullet~\mathcal{E}$ a metric space, ∂ a cemetery point
- $(X_t)_{t \in \mathbb{Z}^+}$ a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂ : (i) $\tau_\partial = \inf\{t \ge 0 : X_t = \partial\} < \infty$ a.s (ii) $X_t = \partial \Rightarrow X_{t+s} = \partial$.

레이 에는 이 문어 이 문어 이

3

 $\bullet~\mathcal{E}$ a metric space, ∂ a cemetery point

•
$$(X_t)_{t \in \mathbb{Z}^+}$$
 a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂ :
(i) $\tau_\partial = \inf\{t \ge 0 : X_t = \partial\} < \infty$ a.s
(ii) $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A Quasi-Stationary Distribution for X is a probability μ on $\mathcal E$ such that

$$\mathbb{P}_{\mu}(X_t \in \cdot | t < \tau_{\delta}) = \mu(\cdot).$$

э

 $\bullet~\mathcal{E}$ a metric space, ∂ a cemetery point

•
$$(X_t)_{t \in \mathbb{Z}^+}$$
 a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂ :
(i) $\tau_\partial = \inf\{t \ge 0 : X_t = \partial\} < \infty$ a.s
(ii) $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A Quasi-Stationary Distribution for X is a probability μ on $\mathcal E$ such that

$$\mathbb{P}_{\mu}(X_t \in \cdot | t < \tau_{\delta}) = \mu(\cdot).$$

Under appropriate assumptions, such a QSD exists and

$$\lim_{t\to\infty}\mathbb{P}(X_t\in\cdot|t<\tau_{\delta})=\mu(\cdot)$$

 $\bullet~\mathcal{E}$ a metric space, ∂ a cemetery point

•
$$(X_t)_{t \in \mathbb{Z}^+}$$
 a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂ :
(i) $\tau_\partial = \inf\{t \ge 0 : X_t = \partial\} < \infty$ a.s
(ii) $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A Quasi-Stationary Distribution for X is a probability μ on $\mathcal E$ such that

$$\mathbb{P}_{\mu}(X_t \in \cdot | t < \tau_{\delta}) = \mu(\cdot).$$

Under appropriate assumptions, such a QSD exists and

$$\lim_{t\to\infty}\mathbb{P}(X_t\in\cdot|t<\tau_{\delta})=\mu(\cdot)$$

Natural object in Population Dynamics

 $\bullet~\mathcal{E}$ a metric space, ∂ a cemetery point

•
$$(X_t)_{t \in \mathbb{Z}^+}$$
 a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂ :
(i) $\tau_\partial = \inf\{t \ge 0 : X_t = \partial\} < \infty$ a.s
(ii) $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A Quasi-Stationary Distribution for X is a probability μ on $\mathcal E$ such that

$$\mathbb{P}_{\mu}(X_t \in \cdot | t < \tau_{\delta}) = \mu(\cdot).$$

Under appropriate assumptions, such a QSD exists and

$$\lim_{t\to\infty}\mathbb{P}(X_t\in\cdot|t<\tau_\delta)=\mu(\cdot)$$

Natural object in Population Dynamics because eventually everyone

.

gets killed...

• A Classical approach is based on *Fleming Viot Algorithms*

• A Classical approach is based on *Fleming Viot Algorithms* (i) Run *N* independent particles until one is killed,

- A Classical approach is based on Fleming Viot Algorithms
 - (i) Run N independent particles until one is killed,
 - (ii) replace the killed particle by an offspring whose location is randomly chosen according the spatial occupation measure of the other particles

- A Classical approach is based on *Fleming Viot Algorithms*
 - (i) Run N independent particles until one is killed,
 - (ii) replace the killed particle by an offspring whose location is randomly chosen according the spatial occupation measure of the other particles

Then (under appropriate assumptions)

$$\lim_{N\to\infty}\lim_{t\to\infty}\frac{1}{N}\sum_{i=1}^N\delta_{X_t^i}=\mu.$$

- A Classical approach is based on *Fleming Viot Algorithms*
 - (i) Run N independent particles until one is killed,
 - (ii) replace the killed particle by an offspring whose location is randomly chosen according the spatial occupation measure of the other particles

Then (under appropriate assumptions)

$$\lim_{N\to\infty}\lim_{t\to\infty}\frac{1}{N}\sum_{i=1}^N\delta_{X_t^i}=\mu.$$

→ Idea explored by Burdzy, Holyst & March (2000); Del Moral & Miclo (2000); Villemonais (2014); Cloez & Thai (2016)...

$$\mu_t = \frac{1}{t} \sum_{s < t} \delta_{X_s}$$

$$\mu_t = \frac{1}{t} \sum_{s < t} \delta_{X_s}$$

(i) Run (X_t) until it gets killed,

Michel Benaim Neuchâtel University

$$\mu_t = \frac{1}{t} \sum_{s < t} \delta_{X_s}$$

- (i) Run (X_t) until it gets killed,
- (ii) Resuscitate it at a location randomly chosen according to μ_t

$$\mu_t = \frac{1}{t} \sum_{s < t} \delta_{X_s}$$

- (i) Run (X_t) until it gets killed,
- (ii) Resuscitate it at a location randomly chosen according to μ_t

→ This original idea goes back to Aldous, Flannery & Palacios (1988) and their approach relies on branching processes.

$$\mu_t = \frac{1}{t} \sum_{s < t} \delta_{X_s}$$

- (i) Run (X_t) until it gets killed,
- (ii) Resuscitate it at a location randomly chosen according to μ_t

→ This original idea goes back to Aldous, Flannery & Palacios (1988) and their approach relies on branching processes.

→ Here we will revisit it using tools from *stochastic approximation*, *self-reinforced processes* combined with recent ideas & results due to Champagnat and Villemonais (2015)

• *K* the Sub-Markov Kernel of *X* on *E* :

 $K(x, \cdot) = \mathbb{P}_x(X_1 \in \cdot)$

문 문 문

• *K* the Sub-Markov Kernel of *X* on *E* :

$$K(x,\cdot) = \mathbb{P}_x(X_1 \in \cdot)$$

• H1 & is compact and K Feller;

• *K* the Sub-Markov Kernel of *X* on *E* :

$$K(x,\cdot) = \mathbb{P}_x(X_1 \in \cdot)$$

- H1 & is compact and K Feller;
- H2 ∂ is accessible :

$$\forall x \exists n \geq 0 : K^n(x, \partial) < 1;$$

• *K* the Sub-Markov Kernel of *X* on *E* :

$$K(x,\cdot) = \mathbb{P}_x(X_1 \in \cdot)$$

- H1 & is compact and K Feller;
- H2 ∂ is accessible :

$$\forall x \exists n \geq 0 : K^n(x, \partial) < 1;$$

Remark

 $H1\&H2 \Rightarrow$ Existence of (at least) one QSD

Michel Benaim Neuchâtel University

3) J

 $\forall x \sum_{n} K^{n}(x, U) > 0.$

- 4 注 🕨 4 注 🕨 -

3

$$\forall x \sum_{n} K^{n}(x, U) > 0.$$

э

and *petite* :

Michel Benaim Neuchâtel University

$$\forall x \sum_{n} K^{n}(x, U) > 0.$$

and *petite* :

$$\forall x \in U \sum_{n} K^{n}(x, \cdot) \geq \epsilon \Psi(\cdot)$$

where Ψ is a probability on $\boldsymbol{\epsilon}$

$$\forall x \sum_{n} K^{n}(x, U) > 0.$$

and *petite* :

$$\forall x \in U \sum_{n} K^{n}(x, \cdot) \geq \epsilon \Psi(\cdot)$$

where Ψ is a probability on ${\mathcal E}$

Remark

If K were Markov (i.e $K(x, \mathcal{E}) = 1$), H1, H2, H3 would ensure the uniqueness of an invariant measure μ But, this is not sufficient to ensure uniqueness of a QSD !

• H4 There exists a non increasing convex function $C:\mathbb{R}^+\mapsto\mathbb{R}^+$ satisfying

$$\int_0^\infty C(s)ds = \infty$$

such that

$$\frac{\Psi(K^n\mathbf{1})}{\sup_{x\in\mathcal{E}}K^n\mathbf{1}(x)}\geq C(n)$$

★ 문 ► ★ 문 ►

э

• H4 There exists a non increasing convex function $C:\mathbb{R}^+\mapsto\mathbb{R}^+$ satisfying

$$\int_0^\infty C(s)ds = \infty$$

such that

$$\frac{\Psi(K^n\mathbf{1})}{\sup_{x\in\mathcal{E}}K^n\mathbf{1}(x)}\geq C(n)$$

Remark

• When C(n) = C, this condition is due to Champagnat and Villemonais (2015)

• H4 There exists a non increasing convex function $C:\mathbb{R}^+\mapsto\mathbb{R}^+$ satisfying

$$\int_0^\infty C(s)ds = \infty$$

such that

$$\frac{\Psi(K^n\mathbf{1})}{\sup_{x\in\mathcal{E}}K^n\mathbf{1}(x)}\geq C(n)$$

Remark

• When C(n) = C, this condition is due to Champagnat and Villemonais (2015)

• It ensures the uniqueness of the QSD.

2

《口》《聞》《臣》《臣》

문 문 문

• If a < b, C(t) = C and there is a unique QSD $\mu = \delta_2$

- If a < b, C(t) = C and there is a unique QSD $\mu = \delta_2$
- If $a = b, C(t) = rac{C}{1+t}$ and there is a unique QSD $\mu = \delta_2$

- ullet If a < b, C(t) = C and there is a unique QSD $\mu = \delta_2$
- If a=b, $C(t)=rac{C}{1+t}$ and there is a unique QSD $\mu=\delta_2$
- If a > b there is another QSD $\mu^{\star} = \frac{a-b}{1-b}\delta_1 + \frac{1-a}{1-b}\delta_2$.

- ullet If a < b, C(t) = C and there is a unique QSD $\mu = \delta_2$
- If a=b, $C(t)=rac{C}{1+t}$ and there is a unique QSD $\mu=\delta_2$
- If a > b there is another QSD $\mu^{\star} = \frac{a-b}{1-b}\delta_1 + \frac{1-a}{1-b}\delta_2$.

Figure: b = 1/3; $a \mapsto \mu(1), \mu^*(1)$

イロン イヨン イヨン -

2

 \bullet For each μ probability on $\mathcal E$

$$K_{\mu}(x,dy) = K(x,dy) + (1 - K(x,\mathcal{E}))\mu(dy)$$

2

《口》《聞》《臣》《臣》

 \bullet For each μ probability on $\mathcal E$

$$K_{\mu}(x,dy) = K(x,dy) + (1 - K(x,\mathcal{E}))\mu(dy)$$

= kernel of a chain which behaves like (X_t) until it dies and, then is redistributed according to μ .

 \bullet For each μ probability on $\mathcal E$

$$K_{\mu}(x,dy) = K(x,dy) + (1 - K(x, \mathcal{E}))\mu(dy)$$

= kernel of a chain which behaves like (X_t) until it dies and, then is redistributed according to μ .

• $\Pi(\mu)$ the invariant probability measure of K_{μ} .

 \bullet For each μ probability on $\mathcal E$

$$K_{\mu}(x,dy) = K(x,dy) + (1 - K(x, \mathcal{E}))\mu(dy)$$

= kernel of a chain which behaves like (X_t) until it dies and, then is redistributed according to μ .

• $\Pi(\mu)$ the invariant probability measure of K_{μ} .

$$\Pi(\mu) = \frac{\mu G}{\mu G \mathbf{1}}, G = \sum_{n \ge 0} K^n.$$

 \bullet For each μ probability on $\mathcal E$

$$K_{\mu}(x,dy) = K(x,dy) + (1 - K(x,\mathcal{E}))\mu(dy)$$

= kernel of a chain which behaves like (X_t) until it dies and, then is redistributed according to μ .

• $\Pi(\mu)$ the invariant probability measure of K_{μ} .

$$\Pi(\mu) = \frac{\mu G}{\mu G \mathbf{1}}, G = \sum_{n \ge 0} K^n.$$

 $\bullet\;\{\Phi_t\}_{t\in\mathbb{R}^+}$ the deterministic semiflow induced by the ODE

$$\dot{\mu} = -\mu + \Pi(\mu)$$

(in a weak sense)

Under hypotheses H1 (Feller) and H2 (∂ accessible), the limit set of (μ_n) is almost surely a Attractor Free set of Φ

3 🖒 3

Under hypotheses H1 (Feller) and H2 (∂ accessible), the limit set of (μ_n) is almost surely a Attractor Free set of Φ

Set L is Attractor free means :

Under hypotheses H1 (Feller) and H2 (∂ accessible), the limit set of (μ_n) is almost surely a Attractor Free set of Φ

Set L is Attractor free means :

(i) L is compact,

Under hypotheses H1 (Feller) and H2 (∂ accessible), the limit set of (μ_n) is almost surely a Attractor Free set of Φ

Set L is Attractor free means :

(i) L is compact,(ii) connected,

Under hypotheses H1 (Feller) and H2 (∂ accessible), the limit set of (μ_n) is almost surely a Attractor Free set of Φ

Set L is Attractor free means :

(i) L is compact,
(ii) connected,
(iii) invariant : Φ_t(L) = L and

Under hypotheses H1 (Feller) and H2 (∂ accessible), the limit set of (μ_n) is almost surely a Attractor Free set of Φ

Set L is Attractor free means :

(i) L is compact, (ii) connected, (iii) invariant : $\Phi_t(L) = L$ and (iv) $\Phi|_L$ has no proper attractor

Example

æ

イロト イヨト イヨト イヨト

æ

Set
$$\mu = x\delta_1 + (1-x)\delta_2$$
. The ODE writes $\dot{x} = -x + rac{(1-b)x}{(1-a)+(1-b)x}.$

Set
$$\mu = x\delta_1 + (1-x)\delta_2$$
. The ODE writes

$$\dot{x} = -x + rac{(1-b)x}{(1-a) + (1-b)x}.$$

▲御▶ ▲目

≺ ≣⇒

æ

Under the additional assumptions H3 and H4 (The Champagnat Villemonais condition); Φ has a global attractor given as the unique QSD { μ }. Hence, there is only one attractor free set { μ } and

 $\mu_n \rightarrow \mu$.

Michel Benaim Neuchâtel University

æ

→ ★ 문 ►

∂ ► < ∃

(i) Show that $t \mapsto \hat{\mu}_t := \mu_{e^t}$ is a Asymptotic Pseudo Trajectory of Φ

御 とうほとう きょう

2

(i) Show that $t \mapsto \hat{\mu}_t := \mu_{e^t}$ is a Asymptotic Pseudo Trajectory of Φ i.e

 $\lim_{t\to\infty}\sup_{0\leq s\leq T} dist(\hat{\mu}_{t+s},\Phi_s(\hat{\mu}_t))=0.$

御下 不足下 不足下

2

(i) Show that $t \mapsto \hat{\mu}_t := \mu_{e^t}$ is a Asymptotic Pseudo Trajectory of Φ i.e

$$\lim_{t\to\infty}\sup_{0\leq s\leq T} dist(\hat{\mu}_{t+s},\Phi_s(\hat{\mu}_t))=0.$$

(ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch) :

$$\lim_{t\to\infty}\sup_{0\leq s\leq T} dist(\hat{\mu}_{t+s},\Phi_s(\hat{\mu}_t))=0.$$

- (ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch) :
 - The limit set of an APT is attractor free

$$\lim_{t\to\infty}\sup_{0\leq s\leq T} dist(\hat{\mu}_{t+s},\Phi_s(\hat{\mu}_t))=0.$$

- (ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch) :
 - The limit set of an APT is attractor free \Rightarrow If *L* is attractor free and meets the basin of attraction of attractor *A*; Then $L \subset A$.

$$\lim_{t\to\infty}\sup_{0\leq s\leq T} dist(\hat{\mu}_{t+s},\Phi_s(\hat{\mu}_t))=0.$$

- (ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch) :
 - The limit set of an APT is attractor free \Rightarrow If *L* is attractor free and meets the basin of attraction of attractor *A*; Then $L \subset A$. \Rightarrow If Φ has a global attractor *A*; Then $L \subset A$.

$$\lim_{t\to\infty}\sup_{0\leq s\leq T} dist(\hat{\mu}_{t+s},\Phi_s(\hat{\mu}_t))=0.$$

- (ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch) :
 - The limit set of an APT is attractor free \Rightarrow If *L* is attractor free and meets the basin of attraction of attractor *A*; Then $L \subset A$. \Rightarrow If Φ has a global attractor *A*; Then $L \subset A$.
- (iii) Show that under H4, Φ has the unique QSD of K as global attractor

э

• Wang, Roberts and Steinsaltz (arXiv August 23, 2018) to diffusions on a compact manifold with soft killing:

• Wang, Roberts and Steinsaltz (arXiv August 23, 2018) to diffusions on a compact manifold with soft killing:

$$dX_t = \nabla V(X_t)dt + dW_t$$

$$\tau_{\partial} = \inf\{t \ge 0 : \int_0^t \kappa(X_s) ds > \xi\}$$

where ξ is an independent random variable with exponential distribution; $\kappa>0$ and smooth

• Wang, Roberts and Steinsaltz (arXiv August 23, 2018) to diffusions on a compact manifold with soft killing:

$$dX_t = \nabla V(X_t)dt + dW_t$$

$$\tau_{\partial} = \inf\{t \ge 0 : \int_0^t \kappa(X_s) ds > \xi\}$$

where ξ is an independent random variable with exponential distribution; $\kappa>0$ and smooth

• Mailler and Villemonais (arXiv September 6, 2018) to very general measure valued Polya processes;

 \hookrightarrow allows to treat the non compact situation under a Lyapunov condition

• Wang, Roberts and Steinsaltz (arXiv August 23, 2018) to diffusions on a compact manifold with soft killing:

$$dX_t = \nabla V(X_t)dt + dW_t$$

$$\tau_{\partial} = \inf\{t \ge 0 : \int_0^t \kappa(X_s) ds > \xi\}$$

where ξ is an independent random variable with exponential distribution; $\kappa>0$ and smooth

• Mailler and Villemonais (arXiv September 6, 2018) to very general measure valued Polya processes;

 \hookrightarrow allows to treat the non compact situation under a Lyapunov condition