Processes with reinforcement and approximation of Quasi-Stationary Distributions

Michel Benaim
Neuchâtel University

Luminy, September 2018
Talk based on recent collaborations with

Bertrand Cloez
(Montpellier)

Fabien Panloup
(Anger)

Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications

Annals of Applied Probability, 2018

Michel Benaim
Neuchâtel University
Talk based on recent collaborations with

Bertrand Cloez (Montpellier)

and Fabien Panloup (Anger)
Talk based on recent collaborations with

Bertrand Cloez (Montpellier)

and Fabien Panloup (Anger)

Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications
Annals of Applied Probability, 2018
and on (more) recent works by
and on (more) recent works by

- A. Wang (Oxford), G. O Roberts (Warwick) and D. Steinsaltz (Oxford)
and on (more) recent works by

- A. Wang (Oxford), G. O Roberts (Warwick) and D. Steinsaltz (Oxford)

An approximation Scheme for Quasistationary Distributions of Killed Diffusions arXiv August 23, 2018
and on (more) recent works by

- A. Wang (Oxford), G. O Roberts (Warwick) and D. Steinsaltz (Oxford)

An approximation Scheme for Quasistationary Distributions of Killed Diffusions arXiv August 23, 2018

- C. Mailler (Bath) and D. Villemonais (Nancy)
and on (more) recent works by

- A. Wang (Oxford), G. O Roberts (Warwick) and D. Steinsaltz (Oxford)

An approximation Scheme for Quasistationary Distributions of Killed Diffusions arXiv August 23, 2018

- C. Mailler (Bath) and D. Villemonais (Nancy)

Stochastic Approximation on non-compact measure spaces and application to measure-valued Polya Processes arXiv September 6, 2018
A metric space, ∂ a cemetery point

$(X_t)_{t \in \mathbb{Z}^+}$ a Markov chain on $E \cup \partial$ eventually absorbed by ∂:

(i) $\tau_\partial = \inf \{ t \geq 0 : X_t = \partial \} < \infty$ a.s

(ii) $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A Quasi-Stationary Distribution for X is a probability μ on E such that

$P_\mu(X_t \in \cdot \mid t < \tau_\delta) = \mu(\cdot)$.

Under appropriate assumptions, such a QSD exists and

$\lim_{t \to \infty} P(X_t \in \cdot \mid t < \tau_\delta) = \mu(\cdot)$.
• \mathcal{E} a metric space, ∂ a cemetry point
• \mathcal{E} a metric space, ∂ a cemetery point

• $(X_t)_{t \in \mathbb{Z}^+}$ a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂:

\[\tau_{\partial} = \inf \{ t \geq 0 : X_t = \partial \} < \infty \text{ a.s.} \]

\[X_t = \partial \Rightarrow X_{t+s} = \partial. \]

Definition

A Quasi-Stationary Distribution for X is a probability μ on \mathcal{E} such that

\[P_{\mu}(X_t \in \cdot | t < \tau_{\delta}) = \mu(\cdot). \]

Under appropriate assumptions, such a QSD exists and

\[\lim_{t \to \infty} P(X_t \in \cdot | t < \tau_{\delta}) = \mu(\cdot). \]

Natural object in Population Dynamics because eventually everyone gets killed...
Context

- \mathcal{E} a metric space, ∂ a cemetery point
- $(X_t)_{t \in \mathbb{Z}^+}$ a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂:
 1. $\tau_\partial = \inf\{t \geq 0 : X_t = \partial\} < \infty$ a.s
 2. $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A Quasi-Stationary Distribution for X is a probability μ on \mathcal{E} such that $P_{\mu}(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot)$. Under appropriate assumptions, such a QSD exists and $\lim_{t \to \infty} P(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot)$.

Natural object in Population Dynamics because eventually every one gets killed...
Context

- \mathcal{E} a metric space, ∂ a *cemetery* point
- $(X_t)_{t \in \mathbb{Z}^+}$ a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂:
 1. $\tau_{\partial} = \inf\{ t \geq 0 : X_t = \partial \} < \infty$ a.s
 2. $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A *Quasi-Stationary Distribution* for X is a probability μ on \mathcal{E} such that

\[
P_\mu(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot).
\]
• \mathcal{E} a metric space, ∂ a *cemetery* point

• $(X_t)_{t \in \mathbb{Z}^+}$ a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂:

 (i) $\tau_\partial = \inf\{t \geq 0 : X_t = \partial\} < \infty \ \text{a.s.}$

 (ii) $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A *Quasi-Stationary Distribution* for X is a probability μ on \mathcal{E} such that

$$\mathbb{P}_\mu(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot).$$

Under appropriate assumptions, such a QSD exists and

$$\lim_{t \to \infty} \mathbb{P}(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot)$$
A Quasi-Stationary Distribution for X is a probability μ on E such that
\[P_\mu(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot). \]

Under appropriate assumptions, such a QSD exists and
\[\lim_{t \to \infty} P(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot) \]

Natural object in Population Dynamics
Context

- \mathcal{E} a metric space, ∂ a cemetery point
- $\{X_t\}_{t \in \mathbb{Z}^+}$ a Markov chain on $\mathcal{E} \cup \partial$ eventually absorbed by ∂:
 (i) $\tau_{\partial} = \inf\{t \geq 0 : X_t = \partial\} < \infty$ a.s
 (ii) $X_t = \partial \Rightarrow X_{t+s} = \partial$.

Definition

A **Quasi-Stationary Distribution** for X is a probability μ on \mathcal{E} such that
\[
P_{\mu}(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot).
\]

Under appropriate assumptions, such a QSD exists and
\[
\lim_{t \to \infty} P(X_t \in \cdot | t < \tau_\delta) = \mu(\cdot)
\]

Natural object in Population Dynamics because eventually everyone gets killed...
How to compute/estimate such a QSD?

- A Classical approach is based on *Fleming Viot Algorithms*
How to compute/estimate such a QSD?

- A Classical approach is based on *Fleming Viot Algorithms*

 (i) Run N independent particles until one is killed,
• A Classical approach is based on *Fleming Viot Algorithms*

 (i) Run N independent particles until one is killed,

 (ii) replace the killed particle by an offspring whose location is randomly chosen according the spatial occupation measure of the other particles
How to compute/estimate such a QSD?

- A Classical approach is based on *Fleming Viot Algorithms*

 (i) Run N independent particles until one is killed,

 (ii) replace the killed particle by an offspring whose location is randomly chosen according the spatial occupation measure of the other particles

Then (under appropriate assumptions)

$$
\lim_{\substack{N \to \infty \ \ \ \ \ t \to \infty}} \frac{1}{N} \sum_{i=1}^{N} \delta_{X_t} = \mu.
$$
How to compute/estimate such a QSD?

- A Classical approach is based on *Fleming Viot Algorithms*

 (i) Run N independent particles until one is killed,

 (ii) replace the killed particle by an offspring whose location is randomly chosen according the spatial occupation measure of the other particles

Then (under appropriate assumptions)

$$
\lim_{N \to \infty} \lim_{t \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i,t}} = \mu.
$$

⇝ Idea explored by Burdzy, Holyst & March (2000); Del Moral & Miclo (2000); Villemonais (2014); Cloez & Thai (2016)
• Alternative approach: Use a single particle and replace the spatial occupation measure by the temporal occupation measure

\[\mu_t = \frac{1}{t} \sum_{s < t} \delta X_s \]
• Alternative approach: Use a single particle and replace the spatial occupation measure by the temporal occupation measure

\[
\mu_t = \frac{1}{t} \sum_{s < t} \delta_{X_s}
\]

(i) Run \((X_t)\) until it gets killed,
- Alternative approach: Use a single particle and replace the spatial occupation measure by the temporal occupation measure

\[\mu_t = \frac{1}{t} \sum_{s<t} \delta_{X_s} \]

(i) Run \((X_t)\) until it gets killed,

(ii) Resuscitate it at a location randomly chosen according to \(\mu_t\)
• Alternative approach: Use a single particle and replace the spatial occupation measure by the temporal occupation measure

\[\mu_t = \frac{1}{t} \sum_{s<t} \delta_{X_s} \]

(i) Run \((X_t)\) until it gets killed,

(ii) Resuscitate it at a location randomly chosen according to \(\mu_t\)

\(\rightsquigarrow\) This original idea goes back to Aldous, Flannery & Palacios (1988) and their approach relies on branching processes.
• Alternative approach : Use a single particle and replace the spatial occupation measure by the temporal occupation measure

\[\mu_t = \frac{1}{t} \sum_{s<t} \delta_{X_s} \]

(i) Run \((X_t)\) until it gets killed,
(ii) Resuscitate it at a location randomly chosen according to \(\mu_t\)

\(\Rightarrow\) This original idea goes back to Aldous, Flannery & Palacios (1988) and their approach relies on branching processes.

\(\Rightarrow\) Here we will revisit it using tools from stochastic approximation, self-reinforced processes combined with recent ideas & results due to Champagnat and Villemonais (2015)
• \(K \) the Sub-Markov Kernel of \(X \) on \(\mathcal{E} \):

\[
K(x, \cdot) = \mathbb{P}_x(X_1 \in \cdot)
\]
Notation & Hypotheses

- K the Sub-Markov Kernel of X on \mathcal{E}:
 \[K(x, \cdot) = \mathbb{P}_x(X_1 \in \cdot) \]

- **H1** \mathcal{E} is compact and K Feller;

Remark: $H_1 \land H_2 \Rightarrow$ Existence of (at least) one QSD
Notation & Hypotheses

- \(K \) the Sub-Markov Kernel of \(X \) on \(\mathcal{E} \):
 \[
 K(x, \cdot) = \mathbb{P}_x(X_1 \in \cdot)
 \]

- \(H1 \) \(\mathcal{E} \) is compact and \(K \) Feller;

- \(H2 \) \(\partial \) is accessible:
 \[
 \forall x \exists n \geq 0 : K^n(x, \partial) < 1;
 \]
Notation & Hypotheses

- K the sub-Markov kernel of X on \mathcal{E}:
 \[K(x, \cdot) = \mathbb{P}_x(X_1 \in \cdot) \]

- $H1$ \mathcal{E} is compact and K Feller;
- $H2$ ∂ is accessible:
 \[\forall x \exists n \geq 0 : K^n(x, \partial) < 1; \]

Remark

$H1 \& H2 \implies$ Existence of (at least) one QSD
• H3 There exists an open set $U \subset \partial$ which is accessible:
• **H3** There exists an open set $U \subset \partial$ which is *accessible*:

$$\forall x \sum_{n} K^n(x, U) > 0.$$
- **H3** There exists an open set $U \subset \partial$ which is accessible:

$$\forall x \sum_n K^n(x, U) > 0.$$

and petite :

rem A

If K were Markov (i.e. $K(x, E) = 1$), H_1, H_2, H_3 would ensure the uniqueness of an invariant measure μ. But, this is not sufficient to ensure uniqueness of a QSD!
• **H3** There exists an open set $U \subset \partial$ which is accessible:

$$\forall x \sum_n K^n(x, U) > 0.$$

and petite:

$$\forall x \in U \sum_n K^n(x, \cdot) \geq \epsilon \Psi(\cdot)$$

where Ψ is a probability on \mathcal{E}
• **H3** There exists an open set $U \subset \partial$ which is *accessible*:

$$\forall x \sum_{n} K^n(x, U) > 0.$$

and *petite*:

$$\forall x \in U \sum_{n} K^n(x, \cdot) \geq \epsilon \Psi(\cdot)$$

where Ψ is a probability on \mathcal{E}

Remark

If K were Markov (i.e. $K(x, \mathcal{E}) = 1$), $H1, H2, H3$ would ensure the uniqueness of an invariant measure μ. But, this is not sufficient to ensure uniqueness of a QSD!
• **H4** There exists a non increasing convex function \(C : \mathbb{R}^+ \mapsto \mathbb{R}^+ \) satisfying

\[
\int_0^\infty C(s)ds = \infty
\]

such that

\[
\frac{\Psi(K^n1)}{\sup_{x \in \mathcal{E}} K^n1(x)} \geq C(n)
\]
The Champagnat-Villemonais condition

• **H4** There exists a non increasing convex function $C : \mathbb{R}^+ \mapsto \mathbb{R}^+$ satisfying

$$\int_0^\infty C(s)ds = \infty$$

such that

$$\frac{\psi(K^n1)}{\sup_{x \in E} K^n1(x)} \geq C(n)$$

Remark

• **When** $C(n) = C$, **this condition is due to Champagnat and Villemonais (2015)**
The Champagnat-Villemonais condition

- **H4** There exists a non increasing convex function $C : \mathbb{R}^+ \mapsto \mathbb{R}^+$ satisfying

 \[\int_0^\infty C(s)ds = \infty \]

 such that

 \[\frac{\Psi(K^n1)}{\sup_{x \in \mathcal{E}} K^n1(x)} \geq C(n) \]

Remark

- *When $C(n) = C$, this condition is due to Champagnat and Villemonais (2015)*
- *It ensures the uniqueness of the QSD.*
Example

\[a, b \in (0, 1) \]
Example

\[a, b \in (0, 1) \]

- If \(a < b \), \(C(t) = C \) and there is a unique QSD \(\mu = \delta_2 \)

[Diagram of two states with transitions labeled by a, b, and 1-a]
Example

$a, b \in (0, 1)$

- If $a < b$, $C(t) = C$ and there is a unique QSD $\mu = \delta_2$
- If $a = b$, $C(t) = \frac{C}{1 + t}$ and there is a unique QSD $\mu = \delta_2$
Example

\(a, b \in (0, 1)\)

- If \(a < b\), \(C(t) = C\) and there is a unique QSD \(\mu = \delta_2\).
- If \(a = b\), \(C(t) = \frac{C}{1+t}\) and there is a unique QSD \(\mu = \delta_2\).
- If \(a > b\) there is another QSD \(\mu^* = \frac{a-b}{1-b} \delta_1 + \frac{1-a}{1-b} \delta_2\).
Example

\[a, b \in (0, 1) \]

- If \(a < b \), \(C(t) = C \) and there is a unique QSD \(\mu = \delta_2 \)
- If \(a = b \), \(C(t) = \frac{C}{1+t} \) and there is a unique QSD \(\mu = \delta_2 \)
- If \(a > b \) there is another QSD \(\mu^* = \frac{a-b}{1-b} \delta_1 + \frac{1-a}{1-b} \delta_2 \).
Figure: $b = 1/3; a \mapsto \mu(1), \mu^*(1)$
• For each \(\mu \) probability on \(\mathcal{E} \)

\[
K_\mu(x, dy) = K(x, dy) + (1 - K(x, \mathcal{E})) \mu(dy)
\]
Results

• For each μ probability on \mathcal{E}

$$K_\mu(x, dy) = K(x, dy) + (1 - K(x, \mathcal{E}))\mu(dy)$$

= kernel of a chain which behaves like (X_t) until it dies and, then is redistributed according to μ.

$\Pi(\mu)$ the invariant probability measure of K_μ.

$\Pi(\mu) = \mu G\mu = \sum_{n \geq 0} K^n$.

$\{\Phi_t\}_{t \in \mathbb{R}^+}$ the deterministic semiflow induced by the ODE $\dot{\mu} = -\mu + \Pi(\mu)$ (in a weak sense).
• For each μ probability on \mathcal{E}

$$K_\mu(x, dy) = K(x, dy) + (1 - K(x, \mathcal{E}))\mu(dy)$$

= kernel of a chain which behaves like (X_t) until it dies and, then is redistributed according to μ.

• $\Pi(\mu)$ the invariant probability measure of K_μ.

Results

• For each μ probability on \mathcal{E}

$$K_\mu(x, dy) = K(x, dy) + (1 - K(x, \mathcal{E}))\mu(dy)$$

= kernel of a chain which behaves like (X_t) until it dies and, then is redistributed according to μ.

• $\Pi(\mu)$ the invariant probability measure of K_μ.

$$\Pi(\mu) = \frac{\mu G}{\mu G 1}, \quad G = \sum_{n \geq 0} K^n.$$
Results

- For each μ probability on \mathcal{E}

$$K_\mu(x, dy) = K(x, dy) + (1 - K(x, \mathcal{E}))\mu(dy)$$

= kernel of a chain which behaves like (X_t) until it dies and, then is redistributed according to μ.

- $\Pi(\mu)$ the invariant probability measure of K_μ.

$$\Pi(\mu) = \frac{\mu G}{\mu G 1}, G = \sum_{n \geq 0} K^n.$$

- $\{\Phi_t\}_{t \in \mathbb{R}^+}$ the deterministic semiflow induced by the ODE

$$\dot{\mu} = -\mu + \Pi(\mu)$$

(in a weak sense)
Theorem

Under hypotheses H1 (Feller) and H2 (\(\partial\) accessible), the limit set of \((\mu_n)\) is almost surely a Attractor Free set of \(\Phi\)
Theorem

Under hypotheses $H1$ (Feller) and $H2$ (∂ accessible), the limit set of (μ_n) is almost surely a \textit{Attractor Free} set of Φ

Set L is \textit{Attractor free} means:

(i) L is compact,
(ii) connected,
(iii) invariant: $\Phi_t(L) = L$ and
(iv) $\Phi|_L$ has no proper attractor
Theorem

Under hypotheses H_1 (Feller) and H_2 (∂ accessible), the limit set of (μ_n) is almost surely a \textit{Attractor Free} set of Φ.

Set L is \textit{Attractor free} means:

(i) L is compact,
Theorem

Under hypotheses H_1 (Feller) and H_2 (∂ accessible), the limit set of (μ_n) is almost surely a **Attractor Free** set of Φ

Set L is **Attractor free** means:

(i) L is compact,

(ii) connected,
Under hypotheses $H1$ (Feller) and $H2$ (∂ accessible), the limit set of (μ_n) is almost surely a **Attractor Free** set of Φ.

Set L is **Attractor free** means:

(i) L is compact,

(ii) connected,

(iii) invariant: $\Phi_t(L) = L$ and
Theorem

Under hypotheses H_1 (Feller) and H_2 (∂ accessible), the limit set of (μ_n) is almost surely a **Attractor Free** set of Φ

Set L is **Attractor free** means:

(i) L is compact,

(ii) connected,

(iii) invariant: $\Phi_t(L) = L$ and

(iv) $\Phi|_L$ has no proper attractor
Example

Set $\mu = x \delta_1 + (1-x) \delta_2$.

The ODE writes $\dot{x} = -x + (1-b)x(1-a) + (1-b)x$.
Set $\mu = x\delta_1 + (1 - x)\delta_2$. The ODE writes

$$\dot{x} = -x + \frac{(1 - b)x}{(1 - a) + (1 - b)x}.$$
Set $\mu = x\delta_1 + (1 - x)\delta_2$. The ODE writes

$$\dot{x} = -x + \frac{(1 - b)x}{(1 - a) + (1 - b)x}.$$
Under the additional assumptions H_3 and H_4 (The Champagnat Villemonais condition); Φ has a global attractor given as the unique QSD $\{\mu\}$. Hence, there is only one attractor free set $\{\mu\}$ and

$$\mu_n \to \mu.$$
Strategy of proof

(i) Show that \(t \mapsto \hat{\mu}_t := \mu e^t \) is an Asymptotic Trajectory of \(\Phi \).

\[\lim_{t \to \infty} \sup_{0 \leq s \leq T} \text{dist}(\hat{\mu}_t + s, \Phi_s(\hat{\mu}_t)) = 0. \]

(ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch):

- The limit set of an APT is attractor free
 \[\Rightarrow \text{If } L \text{ is attractor free and meets the basin of attraction of attractor } A; \text{ Then } L \subset A. \]

- If \(\Phi \) has a global attractor \(A \);
 \[\text{Then } L \subset A. \]

(iii) Show that under \(H_4 \), \(\Phi \) has the unique QSD of \(K \) as global attractor.
Strategy of proof

(i) Show that $t \mapsto \hat{\mu}_t := \mu_{et}$ is a Asymptotic Pseudo Trajectory of Φ

(ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch):

- The limit set of an APT is attractor free \Rightarrow If L is attractor free and meets the basin of attraction of attractor A; Then $L \subset A$.

- If Φ has a global attractor A; Then $L \subset A$.

(iii) Show that under H_4, Φ has the unique QSD of K as global attractor
Strategy of proof

(i) Show that \(t \mapsto \hat{\mu}_t := \mu e^t \) is an Asymptotic Pseudo Trajectory of \(\Phi \) i.e.

\[
\lim_{t \to \infty} \sup_{0 \leq s \leq T} \text{dist}(\hat{\mu}_{t+s}, \Phi_s(\hat{\mu}_t)) = 0.
\]
Strategy of proof

(i) Show that $t \mapsto \hat{\mu}_t := \mu e^t$ is a Asymptotic Pseudo Trajectory of Φ i.e

$$\lim_{t \to \infty} \sup_{0 \leq s \leq T} \text{dist}(\hat{\mu}_{t+s}, \Phi_s(\hat{\mu}_t)) = 0.$$

(ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch):

- The limit set of an APT is attractor free \Rightarrow If L is attractor free and meets the basin of attraction of attractor A; Then $L \subset A$.
- If Φ has a global attractor A; Then $L \subset A$.

(iii) Show that under H_4, Φ has the unique QSD of K as global attractor.
Strategy of proof

(i) Show that \(t \mapsto \hat{\mu}_t := \mu_{et} \) is a Asymptotic Pseudo Trajectory of \(\Phi \) i.e.

\[
\lim_{t \to \infty} \sup_{0 \leq s \leq T} \text{dist}(\hat{\mu}_{t+s}, \Phi_s(\hat{\mu}_t)) = 0.
\]

(ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch):

- The limit set of an APT is attractor free
Strategy of proof

(i) Show that \(t \mapsto \hat{\mu}_t := \mu_{et} \) is an Asymptotic Pseudo Trajectory of \(\Phi \) i.e.

\[
\lim_{t \to \infty} \sup_{0 \leq s \leq T} \text{dist}(\hat{\mu}_{t+s}, \Phi_s(\hat{\mu}_t)) = 0.
\]

(ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch):

- The limit set of an APT is attractor free

\(\Rightarrow \) If \(L \) is attractor free and meets the basin of attraction of attractor \(A \); Then \(L \subset A. \)
Strategy of proof

(i) Show that \(t \mapsto \hat{\mu}_t := \mu_{et} \) is an Asymptotic Pseudo Trajectory of \(\Phi \) i.e.

\[
\lim_{t \to \infty} \sup_{0 \leq s \leq T} \text{dist}(\hat{\mu}_{t+s}, \Phi_s(\hat{\mu}_t)) = 0.
\]

(ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch):

- The limit set of an APT is attractor free

\(\Rightarrow \) If \(L \) is attractor free and meets the basin of attraction of attractor \(A \); Then \(L \subset A \).

\(\Rightarrow \) If \(\Phi \) has a global attractor \(A \); Then \(L \subset A \).
Strategy of proof

(i) Show that \(t \mapsto \hat{\mu}_t := \mu_{et} \) is a Asymptotic Pseudo Trajectory of \(\Phi \) i.e.

\[
\lim_{t \to \infty} \sup_{0 \leq s \leq T} \text{dist}(\hat{\mu}_{t+s}, \Phi_s(\hat{\mu}_t)) = 0.
\]

(ii) Use old results from the late 90s on the dynamics of APT (B, B & Hirsch):

- The limit set of an APT is attractor free
 \(\Rightarrow \) If \(L \) is attractor free and meets the basin of attraction of attractor \(A \); Then \(L \subset A \).
 \(\Rightarrow \) If \(\Phi \) has a global attractor \(A \); Then \(L \subset A \).

(iii) Show that under \(H4 \), \(\Phi \) has the unique QSD of \(K \) as global attractor
Recent results

Strategy recently applied by

\[\frac{dX}{dt} = \nabla V(X(t)) dt + dW_t \]

where

\[\tau = \inf \left\{ t \geq 0 : \int_0^t \kappa(X_s) ds > \xi \right\} \]

\[\xi \text{ is an independent random variable with exponential distribution;} \]

\[\kappa > 0 \] and smooth

Mailler and Villemonais (arXiv September 6, 2018) to very general measure valued polynomial processes; allows to treat the non compact situation under a Lyapunov condition.
Recent results

Strategy recently applied by
• Wang, Roberts and Steinsaltz (arXiv August 23, 2018) to diffusions on a compact manifold with soft killing:

\[\frac{dX}{dt} = \nabla V(X_t) dt + dW_t \]

\[\tau = \inf \{ t \geq 0 : \int_0^t \kappa(X_s) ds > \xi \} \]

where \(\xi \) is an independent random variable with exponential distribution; \(\kappa > 0 \) and smooth

• Mailler and Villemonais (arXiv September 6, 2018) to very general measure-valued processes; allows to treat the non compact situation under a Lyapunov condition.
Recent results

Strategy recently applied by

- **Wang, Roberts and Steinsaltz (arXiv August 23, 2018)** to diffusions on a compact manifold with soft killing:

\[
dX_t = \nabla V(X_t) dt + dW_t
\]

\[
\tau_\partial = \inf \{ t \geq 0 : \int_0^t \kappa(X_s) ds > \xi \}
\]

where \(\xi \) is an independent random variable with exponential distribution; \(\kappa > 0 \) and smooth.
Recent results

Strategy recently applied by
• Wang, Roberts and Steinsaltz \((\text{arXiv August 23, 2018})\) to diffusions on a compact manifold with soft killing:

\[
dX_t = \nabla V(X_t) dt + dW_t
\]

\[
\tau_\partial = \inf\{t \geq 0 : \int_0^t \kappa(X_s) ds > \xi\}
\]

where \(\xi\) is an independent random variable with exponential distribution; \(\kappa > 0\) and smooth

• Mailler and Villemonais \((\text{arXiv September 6, 2018})\) to very general measure valued Polya processes;
\(\leftrightarrow\) allows to treat the non compact situation under a Lyapunov condition
Recent results

Strategy recently applied by
- **Wang, Roberts and Steinsaltz** *(arXiv August 23, 2018)* to
 diffusions on a compact manifold with soft killing:

\[
dX_t = \nabla V(X_t)dt + dW_t
\]

\[
\tau_\partial = \inf\{t \geq 0 : \int_0^t \kappa(X_s)ds > \xi\}
\]

where \(\xi\) is an independent random variable with exponential distribution; \(\kappa > 0\) and smooth

- **Mailler and Villemonais** *(arXiv September 6, 2018)* to very
general measure valued Polya processes;
\(\leftrightarrow\) allows to treat the non compact situation under a Lyapunov condition