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Goal: variance reduction in steady-state computations

Motivation: computing MFPT by Hill relation

Mean first passage time to F =
1

steady-state flux into F

More generally: Estimate
∫
f dµ where µ = stationary

distribution of a (usually nonreversible) Markov kernel K
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A weighted ensemble

{parent particles, weights}
selection−−−−→ {children particles, new weights}

mutation−−−−→ {new parent particles, weights}

In a selection step,
the parent particles are resampled to get children

In a mutation step,
all the children evolve one step via Markov kernel K
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Stratification: space divided into bins r ∈ R

Allocation strategy: choose # of children in each bin

Nt(r) := #children in bin r at time/generation t

Think of bins as rectangles/Voronoi cells in low-D
space of reaction coordinates (as in WE, EM, NEUS, ...)

How to choose Nt? And bins? Resampling times? etc...

D. Aristoff (Colorado State University) September 2018 4 / 30



Optimal allocation:

Nt(r) ≈ Nωt(r)vt(r)∑
r ωt(r)vt(r)

where

N = fixed total # of particles

ωt(r) = weight in bin r at time t

vt = selection value function

Can derive this formula, and vt, from first principles
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In practice: Use bin-to-bin transitions to learn vt

Qt(r , s) ≈ Pr(a child goes to bin s|its parent is from bin r)

Qt updated adaptively in steady-state simulations
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Optimal strategy:

πt = stationary vector of Qt : πTt Qt = πTt ,
∑
r∈R

πt(r) = 1

u = bin approximation to f : u(r) ≈ f (ξ), if bin(ξ) = r

φt solves Poisson eqn

(
I − Qt +

πtπ
T
t

‖πt‖22

)
φt = u − πTt u1

vt(r) = r th entry of
√

Qt(φ2t )− (Qtφt)2 ≡
√

VarQt(r ,·)(φt)
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Talk organization:

1. Precise algorithm

2. Derivation of vt & parameter choice

3. Numerical example

4. Future work
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Recall ωt(r) := total weight in bin r at time t
Nt(r) := # of children in bin r at time t

Algorithm sketch

Choose initial population, then iterate for t ≥ 0:

Selection. In each bin r , resample from parents w.p.p.t.
their weights to get Nt(r) children, each w/ weight ωt(r)

Nt(r)

Mutation. Evolve children via K to get next generation,
update observable, set t ← t + 1, and return to Selection
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Remarks:
Total weight = 1, total # of particles = N

If initial particles are sampled from ρ0, at time t the
population law is an unbiased estimate of ρ0K

t

Details of selection very important for long time sampling

D. Aristoff (Colorado State University) September 2018 10 / 30



Systematic resampling: For qi ≥ 0,

{ni : i ∈ I} = resample ({qi : i ∈ I}, n)

means we draw U ∼ Unif(0, 1), set

Uj = U +
j − 1

n
mod 1,

and then, if say I = {1, . . . ,m},

ni = #

{
j ∈ {1, . . . , n} : Uj ∈

[∑i−1
k=1 qi∑m
k=1 qi

,

∑i
k=1 qi∑m
k=1 qi

)}
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Selection step:

Let {Ñt(r) : r ∈ R} :=

resample

(
{ωt(r)vt(r) : r ∈ R}, N −

∑
r∈R

1ωt(r)>0

)

Define Nt(r) = 1ωt(r)>0 + Ñt(r)

Idea: put 1 child in each occupied bin, then allocate
the remainder using vt. Thus no bin “dies”
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Selection step:

Write {ξjt , ω
j
t}j=1,...,N for the {particles, weights} at time t

Let {#children of ξjt : bin(ξjt) = r} :=

resample
(
{ωj

t : bin(ξjt) = r}, Nt(r)
)

Idea: Select children in each bin with probability
proportional to their parents’ weights
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Mutation step:

Children evolve independently according to K

Qt+1 obtained from stochastic approximation scheme

Observable updated

θt+1 =

(
1− 1

t + 1

)
θt +

1

t + 1

N∑
j=1

ωj
tf (ξjt)

Note: This corresponds to simple time average

D. Aristoff (Colorado State University) September 2018 14 / 30



Analysis:

Write {ξjt , ω
j
t}j=1,...,N for the {particles, weights} at time t

Ft := σ(random objects up to t-th selection step)
F̂t := σ(Ft , random objects from t-th selection step)

Consider time average of observable

θ =
1

T

T∑
t=1

N∑
j=1

ωj
tf (ξjt)

and Doob martingale

D0, D̂0,D1, D̂1,D2, D̂2, . . . ,

Dt := E [θ| Ft] , D̂t := E
[
θ| F̂t

]
.
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Doob decomposition:

(θ − E[θ])2 = BT + (D0 − E[θ])2

+
T−1∑
t=0

E
[

(Dt+1 − D̂t)
2|F̂t

]
︸ ︷︷ ︸

variance from t-th mutation step

+
T−1∑
t=0

E
[

(D̂t − Dt)
2|Ft

]
︸ ︷︷ ︸

variance from t-th selection step

where E[BT ] = 0.
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Some calculations show: if we replace K with Qt ,

lim
T→∞

E
[

(Dt+1 − D̂t)
2
∣∣∣ F̃t

]
︸ ︷︷ ︸

variance from t-th mutation step

≈
∑
r∈R

ωt(r)2

Nt(r)
vt(r)2

where vt = selection value function and

F̃t = σ(Ft , {Nt(r) : r ∈ R}).

Note: The approximation K ≈ Qt is uncontrolled!
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Our strategy minimizes

∑
r∈R

ωt(r)2

Nt(r)
vt(r)2︸ ︷︷ ︸

mutation variance approximation

, subject to
∑
r∈R

Nt(r) = N .

The result is

Nt(r) =
Nωt(r)vt(r)∑
r∈R ωt(r)vt(r)

.
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Special case:
If each bin contains exactly one point of space, then:

-mutation variance is minimized (w/o approximation)
-the variance from selection is exactly zero

Here, algorithm may be “globally” optimal as N ,T →∞
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Synthetic variance: estimate value of variance as

σ2syn =
∑
r∈R

ω0(r)2

N0(r)
v0(r)2

where ω0 := stationary vector of Q0.

This assumes initial conditions approximate steady state
(but analogous formulas exist for other initial conditions)

Idea: Use synthetic variance to choose parameters
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Numerical example: Mean first passage time
Let (Yt)t≥0 be a time discrete Markov process and

τloc = ∆t ∧min{t > 0 : bin(Yt) 6= bin(Y0)}

a resampling time. Given “source” ρ and “sink” R , set

K (ξ, dξ′) =

{
P[Yτloc ∈ dξ′|Y0 = ξ], ξ /∈ R

P[Yτloc ∈ dξ′|Y0 ∼ ρ], ξ ∈ R
.

K is the Markov kernel that defines particle evolution.
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If τR = inf{t ≥ 0 : Yt ∈ R}, then under mild assumptions

E[τR |Y0 ∼ ρ] =
E[τloc |Y0 ∼ µ]

µ(R)
.

where µ = stationary distribution of K .

Idea: Use algorithm to estimate the RHS, with
allocation set to minimize variance of denominator
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Example:

(Yt)t≥0 = Euler-Maruyama discretization of Brownian dynamics

time step = 0.0001

potential energy V (ξ) =

{
1 + 25(ξ − 1/2)2, ξ < 1/2

V (ξ) = cos(12πξ), else
.

R consists of 100 equally spaced bins in [0, 1]

R = [91/100, 92/100) is one of the bins, ρ = δ1/2

N = 500 particles and ∆t = 0.0002

Initial population obtained by runs 5% as long as main simulation
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Figure: Left: bin weights ωT (r), selection value function vT (r), and rescaled potential V .
Right: bin weights vs. optimized and uniform allocation. Here ρ = source, R = sink.
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Figure: Left: convergence of observable average to MFPT. Center: scaled variances for
optimized allocation, uniform allocation, and naive sampling. Right: empirical variance
ratios compared to their synthetic approximations obtained before beginning simulations.
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Example:

(Yt)t≥0 = (qt , pt)t≥0 = BBK discretization of Langevin dynamics

Time step is δt = 0.001

Muller-Brown potential energy V : R2 → R

Position space divided into 252 = 625 equally sized rectangular bins;
momenta unbinned

R = F × R2, ρ(dq, dp) = δq0 × η, η = Boltzmann distribution on
momenta

N = 3125 particles and ∆t = 1

Initial population obtained by runs 5% as long as main simulation
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Figure: Top left: Muller-Brown potential. Top right: selection value function vT (r).
Bottom: optimized and uniform allocation.
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Figure: Left: convergence of observable average to MFPT. Center: scaled variances for
optimized allocation, uniform allocation, and naive sampling. Right: empirical variance
ratios compared to their synthetic approximations obtained after simulations. Here the
synthetic variance was computed using the final population.
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Gain over uniform allocation?

Consider S = set of bins r where

ωt(r)vt(r)/
∑
r∈R

ωt(r)vt(r)� 0

Let Nunif = avg # of particles in S with uniform allocation

Then the variance can be reduced by a factor of ≈ N/Nunif
by using optimized instead of uniform allocation.

Note: Better estimate via synthetic variance
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Future work:

Replace bin weights ωt with stationary vector of Qt?

Understand better local vs. global variance minimization?

Implementation on realistic systems/parameter choice?

Thanks to the organizers for the invitation!
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