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Goal: variance reduction in steady-state computations

Motivation: computing MFPT by Hill relation

1
steady-state flux into F

Mean first passage time to F =

More generally: Estimate [ f dy where ;1 = stationary
distribution of a (usually nonreversible) Markov kernel K
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A weighted ensemble

{parent particles, weights}

lecti : i '
LN, {children particles, new weights}

MUtEtOn, {new parent particles, weights}

In a selection step,
the parent particles are resampled to get children

In a mutation step,
all the children evolve one step via Markov kernel K
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Stratification: space divided into bins r € R

Allocation strategy: choose # of children in each bin
N¢(r) := #children in bin r at time/generation t

Think of bins as rectangles/Voronoi cells in low-D
space of reaction coordinates (as in WE, EM, NEUS, ...)

How to choose N;? And bins? Resampling times? etc...
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Optimal allocation:

Newe(r)ve(r)

V)~ S ()

where

N = fixed total # of particles
wi(r) = weight in bin r at time t

v; = selection value function

Can derive this formula, and v;, from first principles
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In practice: Use bin-to-bin transitions to learn v;

Q:(r,s) =~ Pr(a child goes to bin s|its parent is from bin r)

Q: updated adaptively in steady-state simulations
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|
Optimal strategy:

T, = stationary vector of Q; : w] Q; =7/, Zﬂt(r) =1
reR

u = bin approximation to f : u(r) & f(&), if bin(§) = r

. 7Tt7TtT T
¢; solves Poisson eqn ( Q: + ) Or=u—m, ul

el

ve(r) = rth entry of \/Qt(d)g) — (Qir)? = \/Vaer(,’.)(gbt)
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Talk organization:

1. Precise algorithm

2. Derivation of v; & parameter choice
3. Numerical example
4.

Future work
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Recall w¢(r) := total weight in bin r at time ¢
N;(r) := # of children in bin r at time t

Algorithm sketch
Choose initial population, then iterate for t > 0:

Selection. In each bin r, resample from parents w.p.p.t.
we(r)

their weights to get N,(r) children, each w/ weight G

~—|

Mutation. Evolve children via K to get next generation,
update observable, set t <+ t + 1, and return to Selection

4
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Remarks:
Total weight = 1, total # of particles = N

If initial particles are sampled from pg, at time t the
population law is an unbiased estimate of pgK*

Details of selection very important for long time sampling

D. Aristoff (Colorado State University) September 2018 10 / 30



Systematic resampling: For g; > 0,
{ni:i€l}=resample({qi:i € l},n)

means we draw U ~ Unif(0,1), set

U=U+1=

n
and then, if say / = {1,..., m},

o ; nl - U Zk 1ql Z;;:lqi
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Selection step:

Let {N.(r):re R} :=

resample ({wt(r)vt(r) reR}, N— Z lwt(r)>0>

reR

Define Ni(r) = Ly,(r)>0 + N,(r)

Idea: put 1 child in each occupied bin, then allocate
the remainder using v;. Thus no bin “dies”
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Selection step:

Write {&], w/}=1-N for the {particles, weights} at time t

Let {#children of & : bin(&]) = r} :=
resample ({w’t bin(&]) = r}, Nt(r))

Idea: Select children in each bin with probability
proportional to their parents’ weights
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Mutation step:
Children evolve independently according to K

;.1 obtained from stochastic approximation scheme

Observable updated
1 1 M
f— 1 [ - f J
Or i1 ( t+1>0t+t+1§ wif (&)

Note: This corresponds to simple time average
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|
Analysis:

Write {&], w}=1--N for the {particles, weights} at time t

Fi = o(random objects up to t-th selection step)
Fi := o(F, random objects from t-th selection step)

Consider time average of observable

T N
1 S
_ j
== > E wif (&)
t=1 j=1
and Doob martingale

Dy, Do, D1, D1, D5, D, . . .,
Dt :]E[(9|.7:t], ét ::E |:0‘ﬁ{| .
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Doob decomposition:

(0 — E[0])* = Bt + (Do — E[0])?

T-1
N\ 2 N
+Y° E[(Des - BYIF]
t:0 \ . ~ 7
variance from t-th mutation step

+Z [ — D,)? m]

~
variance from t-th selection step

where E[Br] = 0.
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Some calculations show: if we replace K with @,

im E[(Dw — Dt)ﬂﬁt} ~ ZMWW

T—o0 N - ! R Nt(r)

variance from t-th mutation step

where v; = selection value function and

Fr = o(Fe, {Ne(r) : r € R}).

Note: The approximation K =~ Q; is uncontrolled!
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Our strategy minimizes

Z fo(rr)) Vt(l’)2 ,  subject to Z Ne(r) = N.

rerR

mutation variance approximation

The result is

Nw:(r)vi(r)
> rerwe(r)ve(r)

N(r) =

D. Aristoff (Colorado State University) September 2018 18 / 30



Special case:
If each bin contains exactly one point of space, then:

-mutation variance is minimized (w/o approximation)
-the variance from selection is exactly zero

Here, algorithm may be “globally” optimal as N, T — oo
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Synthetic variance: estimate value of variance as

Os2yn = 27:2 %Vo(r)2

where wy := stationary vector of Q.

This assumes initial conditions approximate steady state
(but analogous formulas exist for other initial conditions)

Idea: Use synthetic variance to choose parameters
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Numerical example: Mean first passage time
Let (Y;)r>0 be a time discrete Markov process and

Tioe = At Amin{t > 0 : bin(Y};) # bin(Yp)}
a resampling time. Given “source” p and “sink” R, set

P[Yr, € d'|Yo=¢], ¢ R

P[Y,. €d¢|Yo~p], E€ER

loc

K(¢ d¢') —{

K is the Markov kernel that defines particle evolution.
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If 7R = inf{t > 0:Y; € R}, then under mild assumptions
E[7ioc| Yo ~ 1
p(R)

where 1 = stationary distribution of K.

E[7r|Yo ~ p] =

Idea: Use algorithm to estimate the RHS, with
allocation set to minimize variance of denominator
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Example:

(Y:)t>0 = Euler-Maruyama discretization of Brownian dynamics

time step = 0.0001

1+25(—1/2)2, €<1/2

potential energy V(&) = {\/(g) = cos(127€), else

R consists of 100 equally spaced bins in [0, 1]
R =[91/100,92/100) is one of the bins, p = 01>
N = 500 particles and At = 0.0002

Initial population obtained by runs 5% as long as main simulation
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Figure: Left: bin weights wr(r), selection value function vr(r), and rescaled potential V.
Right: bin weights vs. optimized and uniform allocation. Here p = source, R = sink.
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Figure: Left: convergence of observable average to MFPT. Center: scaled variances for
optimized allocation, uniform allocation, and naive sampling. Right: empirical variance
ratios compared to their synthetic approximations obtained before beginning simulations.
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N —
Example:

(Y)e>0 = (qr, pr)r>0 = BBK discretization of Langevin dynamics
Time step is 6t = 0.001
Muller-Brown potential energy V : R — R

Position space divided into 252 = 625 equally sized rectangular bins;
momenta unbinned

R = F x R?, p(dq, dp) = 0,4, X 1, n = Boltzmann distribution on
momenta

N = 3125 particles and At =1

Initial population obtained by runs 5% as long as main simulation
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Figure: Top left: Muller-Brown potential. Top right: selection value function vr(r).
Bottom: optimized and uniform allocation.
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Figure: Left: convergence of observable average to MFPT. Center: scaled variances for
optimized allocation, uniform allocation, and naive sampling. Right: empirical variance
ratios compared to their synthetic approximations obtained after simulations. Here the
synthetic variance was computed using the final population.
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Gain over uniform allocation?

Consider S = set of bins r where

we(r)ve(r)/ Zwt(r)vt(r) >0

reR

Let N,,ir = avg # of particles in S with uniform allocation

Then the variance can be reduced by a factor of = N /N,
by using optimized instead of uniform allocation.

Note: Better estimate via synthetic variance
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Future work:
Replace bin weights w; with stationary vector of Q;?
Understand better local vs. global variance minimization?

Implementation on realistic systems/parameter choice?

Thanks to the organizers for the invitation!
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