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Introduction

Consider the following classical Dirichlet problem in a bounded C2-
domain D ⊂ Rd :

∆u + f = 0 in D and u|∂D = 0,

where f is a continuous function on D̄.

Suppose that u ∈ C2(D)∩C(D̄) solves the above Dirichlet problem.

Microscopic interpretation for u?
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Let W be a d-dimensional standard Brownian motion on some
complete filtered probability space (Ω,F , (Ft )t>0,P).

Let X x
t :=

√
2Wt + x and define the exiting time from domain D by

τ x
D := inf{t > 0 : X x

t /∈ D} = inf{t > 0 : X x
t ∈ ∂D}.

D

x∗
1

x

x
Xx

τx
D

t !→ X x
t (ω)

Figure 1 : Exiting time
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By Kakutani’s theorem (1944), we have

u(x) = E

(∫ τ x
D

0
f (X x

s )ds

)
.

Indeed, letting Dn ↑↑ D, by Itô’s formula, we have

u(X x
τ x

Dn
) = u(x) +

∫ τ x
Dn

0
∇u(X x

s )dWs +

∫ τ x
Dn

0
∆u(X x

s )ds.

Taking expectations and limits n→∞, we obtain

0 = Eu(X x
τ x

D
) = u(x)− E

(∫ τ x
D

0
f (X x

s )ds

)
.
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Consider the following SDE with jumps:

dX x
t = b(X x

t )dt + dL(α)
t , X x

0 = x , α ∈ (0,2),

where L(α)
t is a rotationally invariant and symmetric α-stable pro-

cess, and b : Rd → Rd is a Lipschitz vector field.

The generator of this SDE is given by

dEf (X x
t )/dt |t=0 = ∆

α
2 f (x) + b · ∇f (x) =: L

(α)
b f (x),

where ∆
α
2 := −(−∆)

α
2 is the usual fractional Laplacian operator.
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Notice that the set {t > 0 : X x
t 6= X x

t−} is a countable dense subset
of (0,∞).
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Let τ x
D := inf{t > 0 : X x

t /∈ D} = inf{t > 0 : X x
t ∈ Dc}.
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Figure 2 : Exiting time
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We are interesting in the following problem:

Let f ∈ C0
b(D̄). Is it possible to show that

u(x) := E

(∫ τ x
D

0
f (X x

s )ds

)

uniquely solves the following nonlocal elliptic Dirichlet problem?

∆
α
2 u + b · ∇u + f = 0 in D and u = 0 in Dc .
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By the scaling property of ∆
α
2 , it is easy to see that uR(x) :=

R−αu(Rx + x0)

∆
α
2 uR + Rα−1bR · ∇uR = −fR in BR(x0),

where BR(x0) := {x ∈ Rd : |x − x0| < R}.

For α ∈ (0,1), if R → 0, then the drift term will blow up, so roughly
speaking, the first order term plays a dominant role. In this sense
we call L(α)

b with α ∈ (0,1) the supercritical nonlocal operator.

For α = 1, since ∆
1
2 has the same order as b · ∇, we shall call L(1)

b
the critical operator.

For α ∈ (1,2), if R → 0, then the drift term will go to zero and ∆
α
2

plays a dominant role, it is naturally called subcritical operator.
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In the subcritical case, the above problem has been studied very
well by Arapostathis, Biswas and Caffarelli (2016, CPDE).

However, in the critical and supercritical case, it is still open.

Bogdan (1997): Boundary Harnack principle for ∆
α
2 |D.

Chen-Kim-Song (2010, 2012): Heat kernel estimates for ∆
α
2 |D.

Ros Oton-Serra (2014, 2016): Optimal boundary regularity for ∆
α
2 |D.

· · · · · ·
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Difficulty in the supercritical case

Proposition 1 (X x
t := x + L(α)

t + t)
Let D := (0,1) and α ∈ (0,2). It holds that for α ∈ [1,2),

(i) P(X x
τ x

D
= 0 or 1) = 0, (ii) Eτ x

D 6 cαdα/2
x , x ∈ D,

where dx := (x ∧ (1− x))+ is the distance of x to Dc ; and for α ∈ (0,1),

(iii) sup
x∈D

P(X x
τD

= 1) > 0, (iv) sup
x∈D

P(X x
τ x

D
= 0) = 0, (v) inf

x∈(0,1/4)
Eτ x

D > 0.
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Main results

Consider the following nonlocal parabolic Dirichlet problem:{
∂tu = L (α)

κ u + b · ∇u + f on R+ × D,
u = 0 on R+ × Dc , u(0, ·) = ϕ on D,

(2.1)

where L
(α)
κ is the nonlocal operator defined by

L (α)
κ u(x) :=

∫
Rd

(
u(x + z)− u(x)− z(α) · ∇u(x)

)κ(x , z)

|z|d+α
dz.

Here R+ := [0,∞), α ∈ (0,2) and

z(α) := 1α=1z1{|z|61} + 1α∈(1,2)z.
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We always assume κ(x , z) : Rd × Rd → R+ satisfies that for some
κ0 > 0 and β ∈ (0,1),κ

−1
0 6 κ(x , z) 6 κ0, |κ(x , z)− κ(x ′, z)| 6 κ0|x − x ′|β

1α=1

∫
r<|z|<R

z · κ(x , z)dz = 0, 0 < r < R <∞

 . (Hβ
κ)

Definition 2
We call a function u ∈ L∞loc(R+; L∞(Rd ))∩C(R+×D) a classical solution
of Dirichlet problem (2.1) if u|R+×Dc = 0 and it satisfies

u(t , x) = ϕ(x) +

∫ t

0

(
L

(α)
κ,b u + f

)
(s, x)ds in R+ × D

in the pointwise sense, where L
(α)
κ,b := L

(α)
κ + b · ∇.
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Let D be a bounded domain. For x , y ∈ D, define

dx := dist(x , ∂D), dx ,y := min{dx ,dy}.

For θ ∈ R, k ∈ {0} ∪ N and 0 < γ /∈ N, define

[u]
(θ)
k ;D := sup

x∈D
dk+θ

x |∇ku(x)|

and

[u]
(θ)
γ;D := sup

x ,y∈D

(
dγ+θ

x ,y
|∇[γ]u(x)−∇[γ]u(y)|

|x − y |γ−[γ]

)
.
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For general γ > 0 with γ + θ > 0, we introduce the Banach space:

C(θ)
γ (D) :=

{
u ∈ Cγ(D) ∩ L∞(Rd ) : ‖u‖(θ)

γ;D <∞, u|Dc = 0
}
,

where
‖u‖(θ)

γ;D := [u]
(θ)
0;D + [u]

(θ)
γ;D.

For T > 0,

B(θ)
γ;T (D) := L∞([0,T ]; C(θ)

γ (D)), B(θ)
γ (D) := ∩T>0B

(θ)
γ;T (D).
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Theorem 3 (Sub and critical cases)

Let D be a bounded C2-domain and α ∈ (0,2), β ∈ (0,1). Suppose
(Hβ

κ) and
b ∈ Cβ if α ∈ [1,2), and b = 0 if α ∈ (0,1).

Then there exists θ0 ∈ (0, α2 ) such that for any θ ∈ (0, θ0] and γ ∈ (0, β]
with α + γ /∈ N, if one of the following two conditions holds:

(i) θ > γ; (ii) θ < γ and |κ(x , z)− κ(x , z ′)| 6 κ1|z − z ′|γ ,

then for all f ∈ B(α−θ)
γ (D) and ϕ ∈ C(−θ)

α+γ (D), there is a unique classical

solution u ∈ B(−θ)
α+γ (D) to equation (2.1), and there is a constant c =

c(κ0, κ1, γ, θ, α, β, d , ‖b‖Cβ ) > 0 such that for all T > 0,

‖u‖B(−θ)
α+γ;T (D)

+ ‖∂tu‖B(α−θ)
γ;T (D)

6 c‖ϕ‖(−θ)
α+γ + c(1 + T )‖f‖B(α−θ)

γ;T (D)
.
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(Sub and critical cases, Ctd.)
Moreover, the unique solution u has the following probabilistic repre-
sentation:

u(t , x) = Ex

(
ϕ(Xt )1{τD>t}

)
+ Ex

(∫ t∧τD

0
f (t − s,Xs)ds

)
, (2.2)

where (X ,Px ; x ∈ Rd ) is the Markov process associated with L
(α)
κ,b and

τD := inf{t > 0 : Xt /∈ D} is the first exit time of X from D. We also have
the following estimate:

Ex

(∫ t∧τD

0
|f (t − s,Xs)|ds

)
6 cdθx ‖f‖L∞t (C(α−θ)

0 (D))
. (2.3)

Remark: Notice that in the estimate (2.3), f is allowed to be explosive
near the boundary.
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Theorem 4 (Supercritical Case)

Let α, β ∈ (0,1) with α + β > 1 and γ ∈ (1 − α, β]. Suppose (Hβ
κ),

b ∈ Cβ and
|κ(x , z)− κ(x , z ′)| 6 κ1|z − z ′|γ .

Let ϕ ∈ C(0)
α+γ(D) and f ∈ B(0)

γ (D). We have the following conclusions:
(A) Suppose that b(z0) · ~n(z0) < 0 for each z0 ∈ ∂D. Equation (2.1)

admits a unique solution

u ∈ L∞loc(R+; Cα+γ
loc (D) ∩ L∞(Rd )) ∩ C(R+; C0(D)).

The unique solution u still has the probabilistic representation (2.2).
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(Supercritical case, Ctd.)
(B) Suppose that b(z0) · ~n(z0) = 0 for each z0 ∈ ∂D. Equation (2.1)

admits a unique solution

u ∈ L∞loc(R+; Cα+γ
loc (D) ∩ L∞(Rd )) ∩ C((0,∞)× D̄).

Moreover, we also have the following boundary decay estimate: for
some θ ∈ (0,1),

|u(t , x)| 6 c
(
‖f‖∞ + ‖ϕ‖∞/t

)
dθx , t > 0, x ∈ D.

The unique solution u still has the probabilistic representation (2.2).
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(Supercritical case, Ctd.)
(C) Suppose that b(z0) · ~n(z0) > 0 for each z0 ∈ ∂D. Equation (2.1)

admits a unique solution

u ∈ L∞loc(R+; Cα+γ
loc (D) ∩ L∞(Rd )) ∩ C((0,∞)× D̄).

Moreover, we also have the following boundary decay estimate:

|u(t , x)| 6 c
(
‖f‖∞ + ‖ϕ‖∞/t

)
dx , t > 0, x ∈ D.

The unique solution u still has the probabilistic representation (2.2).
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Theorem 5 (Mixed Case: α ∈ [1
2 ,1))

Let β ∈ [2(1− α),1] and γ ∈ (1− α, β]. Suppose (Hβ
κ), b ∈ Cβ and

|κ(x , z)− κ(x , z ′)| 6 κ1|z − z ′|γ .

Let D be a bounded C2-domain and define

Γ> := {z ∈ ∂D : b(z) · ~n(z) > 0},
Γ= := {z ∈ ∂D : b(z) · ~n(z) = 0},
Γ< := {z ∈ ∂D : b(z) · ~n(z) < 0}.

For any ϕ ∈ C(0)
α+γ(D) and f ∈ B(0)

γ (D), there is a unique solution u to
(2.1) in the class that

u ∈ L∞loc(R+; Cα+γ
loc (D)∩L∞(Rd ))∩C([0,∞)×D)∩C((0,∞)× (D∪Γ>)),

where Γ> := Γ= ∪ Γ>.
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Ctd.
Moreover, the probabilistic representation (2.2) holds and

(i) For each z ∈ Γ>, there are δ, c > 0 such that

sup
x∈D∩Bδ(z)

(d−1
x |u(t , x)|) 6 c

(
‖f‖∞ + ‖ϕ‖∞/t

)
, t > 0.

(ii) For each z ∈ Γo
= (the interior of Γ=), there are θ, δ, c > 0 such that

sup
x∈D∩Bδ(z)

(d−θx |u(t , x)|) 6 c
(
‖f‖∞ + ‖ϕ‖∞/t

)
, t > 0.

(iii) For each x ∈ D, it holds that

Px (XτD ∈ Γ<) = 0,

where (X ,Px ; x ∈ Rd ) is the Markov process associated with L
(α)
κ,b

and τD := inf{t > 0 : Xt /∈ D}.
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Example
Let d = 1 and D = (0,1). Let Zt be an one-dimensional symmetric
α-stable process with α ∈ (0,1). For each t > 0 and x ∈ D, define

X x
t := xet + Zt + et−1

2 +

∫ t

0
Zset−sds.

Notice that Xt = X x
t solves the following SDE:

dXt = (Xt − 1
2)dt + dZt , X0 = x .
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Example
Define

u(t , x) := E
(

sin
(
X x

t
)
1{τ x

D>t}

)
,

where τ x
D := inf{t > 0 : X x

t /∈ D}. By Theorem 4, for some η > 1 and
any 0 < a < b < 1, we have

u ∈ L∞loc(R+; Cη((a,b))) ∩ C((0,∞)× [0,1]),

and for any t > 0 and x ∈ D, it holds that

u(t , x) = sin(x) +

∫ t

0

(
∆

α
2 u(s, x) + (x − 1

2)∂xu(s, x)
)

ds,

and
|u(t , x)| 6 c(x ∧ (1− x))+/t , x ∈ D, t > 0.
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Numerical Experimental Results: D = (0,1), α = 0.5.

t
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x
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1.0
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−0.5

0.0

0.5

Figure 3 : Case A: b(x) = 1
2 − x , ϕ(x) = sin(3πx)
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Numerical Experimental Results: D = (0,1), α = 0.5.
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Figure 4 : Case A: b(x) = 1
2 − x , ϕ(x) = sin(3πx)
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Numerical Experimental Results: D = (0,1), α = 0.5.
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Figure 5 : Case B: b(x) = 0, ϕ(x) = sin(5πx/2)
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Numerical Experimental Results: D = (0,1), α = 0.5.
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Figure 6 : Case B: b(x) = 0, ϕ(x) = sin(5πx/2)
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Numerical Experimental Results: D = (0,1), α = 0.5.
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Figure 7 : Case C: b(x) = x − 1
2 , ϕ(x) = sin(3πx + π/2)
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Numerical Experimental Results: D = (0,1), α = 0.5.
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Figure 8 : Case C: b(x) = x − 1
2 , ϕ(x) = sin(3πx + π/2)
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Schauder’s estimates

Theorem 6 (Global Schauder’s estimates)

Let β ∈ (0,1) with α + β > 1 and γ ∈ (0, β] with α + γ /∈ N. Under
(Hβ

κ) and b ∈ Cβ, there are constants c = c(κ0, α, β, γ,d) > 0 and
m = m(α, β, γ) > 0 such that for all T > 0 and u ∈ Aα,γ

T ,

‖u‖Bα+γ
T

6 c
(
‖u(0)‖Cα+γ + (1 + ‖b‖mCβ )‖u‖B0

T
+ ‖f‖Bγ

T

)
, (3.1)

where f := ∂tu −L
(α)
κ u − b · ∇u and

Bγ
T := L∞T (Cγ), Aα,γ

T :=
{

u ∈ Bα+γ
T , ∂tu ∈ Bγ

T

}
.

Remark: When L
(α)
κ = ∆α/2, the above Schauder estimate was estab-

lished by Priola (2009) for α ∈ [1,2) and Silvestre (2012) for α ∈ (0,1).
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Lemma 7 (Key tool for proving Schauder’s estimate.)

Under (Hβ
κ) with κ(x , z) = κ(z), there is a constant c0 = c0(κ0, α, d) > 0

such that for all p ∈ [2,∞) and f ∈ Cc(Rd ),∫
Rd
|∆j f |p−2∆j f ·L (α)

κ ∆j f dx 6 −c02αj‖∆j f‖pp, j = 0,1,2, · · · , (3.2)

where ∆j is the block operator in Littlewood-Paley decomposition.

Remark: Estimate (3.2) with constant c0 depending on p was proved in
[1] by using Bernstein’s inequality established in [2].

[1] Chen, Z.Q., Zhang, X. and Zhao, G.: Well-posedness of supercritical SDE driven by Lévy processes with irregular drifts.
arXiv:1709.04632, (2017).

[2] Chen, Q., Miao, C. and Zhang, Z.: A New Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation.
Commun. Math. Phys., 271, pp821-838, (2007).
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Theorem 8 (Schauder’s interior estimates)

Let D be a bounded domain and α ∈ (0,2), β ∈ (0,1). Suppose (Hβ
κ)

and b ∈ Cβ. For given γ ∈ (0, β] with α + γ /∈ N and θ ∈ [0, α ∧ 1), let
u ∈ B(−θ)

α+γ (D) satisfy

∂tu = L (α)
κ u + 1α∈[1,2)b · ∇u + f in R+ × D. (3.3)

If one of the following two conditions holds:

(i) θ > γ; (ii) θ < γ and |κ(x , z)− κ(x , z ′)| 6 κ1|z − z ′|γ ,

then there is a constant c = c(d , κ0, κ1, α, β, γ, θ, λD) > 0 such that

‖u‖B(−θ)
α+γ;T (D)

6 c
(
‖u(0)‖C(−θ)

α+γ (D)
+ ‖f‖B(α−θ)

γ;T (D)
+ ‖u‖B(−θ)

0;T (D)

)
, (3.4)

provided that the right hand side is finite.
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Theorem 9 (Viscosity approximation)

Let D be a bounded domain and α, β ∈ (0,1) with α + β > 1. Suppose
(Hβ

κ) and b ∈ Cβ. For γ ∈ (1 − α, β], θ ∈ [0,1) and ν > 0, let u ∈
B(−θ)

1+γ (D) satisfy

∂tu = ν∆1/2u + L (α)
κ u + b · ∇u + f in R+ × D.

If in addition for some κ1 > 0, |κ(x , z) − κ(x , z ′)| 6 κ1|z − z ′|γ , then
there are θ0 = θ0(α, β, γ) > 0 and c = c(d , κ0, κ1, α, β, γ, θ0, λD) > 0
such that for all T > 0 and ν > 0,

‖u‖
B(θ0)

α+γ;T (D)
6 c

(
‖u(0)‖

C(θ0)
α+γ(D)

+ ‖f‖
B(α+θ0)

γ;T (D)
+ ‖u‖B(0)

0;T (D)

)
.
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Probabilistic representation

To present the probabilistic representation for nonlocal Dirichlet prob-
lem, we introduce the following class of functions pair: for γ > 0,

Hγ(D) :=

{
(u, f )

∣∣∣∣∣ u ∈ L∞loc(R+; Cγ
loc(D) ∩ L∞(Rd )) ∩ C(R+ × (∂D)c)

∂tu ∈ L∞loc(R+; Cloc(D)), f ∈ L∞loc(R+ × D)

}
.
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Theorem 10 (Probabilistic representation)

Let D be a bounded domain and (u, f ) ∈ H(α+ε)∨1(D) satisfy

∂tu = L (α)
κ u + b · ∇u + f on R+ × D,

where κ satisfies (Hβ
κ) and b ∈ Cβ′ with α + β′ > 1. Suppose that

∂D = Γ0 ∪ Γ1, where Γ0 and Γ1 are two disjoint measurable sets, and

Px (XτD ∈ Γ0) = 0, x ∈ D,

and
u ∈ C((0,∞)× (D ∪ Γ1)) with u|(0,∞)×Γ1

= 0.
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(Probabilistic representation, Ctd.)

Then for all x ∈ Rd and t > 0, it holds that

u(t , x) = Ex

(
u(0,Xt ); t < τD

)
︸ ︷︷ ︸

Initial value

+Ex

(∫ t∧τD

0
f (t − s,Xs)ds

)
︸ ︷︷ ︸

Non−homeogenous term

+ Ex

(
u(t − τD,XτD ); t > τD

)
︸ ︷︷ ︸

Exterior boundary term

.

In particular, we have the following maximal principle:

‖u‖L∞T (C0(D)) 6 ‖u(0)‖C0(D) + T‖f‖L∞T (C0(D)) + ‖u‖L∞T (C0(D̄c)).
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Lemma 11 (α ∈ (0,1): b towards the inside along the boundary)

Let z0 ∈ ∂D. If b(z0) · ~n(z0) < 0, then there is a neighborhood Γ ⊂ ∂D
of z0 such that for each x ∈ D,

Px (XτD ∈ Γ) = 0.

D
x

Xx
τx

Dt !→
X x

t (ω)

n⃗(z0)

z0b(z0)

Γ

Figure 9 : Exiting time
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Lemma 12 (b towards the outside along the boundary)

Let z0 ∈ ∂D. If b(z0) ·~n(z0) > 0, then there are δ,C > 0 such that for all
x ∈ D ∩ Bδ(z0),

ExτD 6 Cd−1
Dc (x).
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Lemma 13 (α ∈ (0,1): b tangent to the boundary)

Let z0 ∈ ∂D and δ0 > 0. Suppose that

b(z) · ~n(z) = 0 for each z ∈ ∂D ∩ Bδ0(z0)

Then there are δ, θ,C > 0 such that for all x ∈ D ∩ Bδ(z0),

ExτD 6 Cd−θDc (x).

Remark: Let Γ := {z ∈ ∂D : b(z) · ~n(z) = 0}. For any interior point z0
of closed set Γ, we have

lim
D3x→z0

ExτD = 0.

For general z0 ∈ ∂Γ, it is not known whether we have the above limit.
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Lemma 14 (α ∈ (0,1): Continuous up to the boundary)

Let 1
2 6 α < 1 and z0 ∈ ∂D. Assume b(z0) · ~n(z0) = 0 and b ∈ Cβ with

β ∈ [2(1− α),1]. Then limD3x→z0 ExτD = 0.

D

x
z0

b

b

B′

B
dB(x)

x

x1

x∗
1

0
b

y

y′

r

2r
b

Uδ

b

B

B′

Figure 10 : Distance function to exterior tangent ball

|x − z0|2 6 (9r)dB(x), x ∈ Uδ.
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Concluding remark

Establish Schauder’s estimates for supercritical nonlocal equations.

Existence-uniqueness of classical solutions for nonlocal parabolic
Dirichlet problem.

Probabilistic representation for nonlocal Dirichlet problem.

Question: Is it possible to drop α > 1
2 in the mixed case by showing

Px (XτD ∈ ∂Γ) = 0, x ∈ D ???

Here Γ := {z ∈ ∂D : b(z) · ~n(z) = 0} is a closed set.
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Thank you very much for your attention!
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