Homogenization of stable-like operators

Jian Wang

Fujian Normal University

with Xin Chen, Zhen-Qing Chen and Takashi Kumagai

Non Standard Diffusions in Fluids, Kinetic Equations and Probability

Centre International de Rencontres Mathématiques

1 Aim

Symmetric setting: random medium

- Framework: Dirichlet form
- Main results

3 Non-symmetric case: periodic coefficient

- Framework: operator
- Main result

(1)

 $L = \sum_{1 \leq i, j \leq d} \frac{\partial}{\partial x_i} \left(\frac{a_{ij}(x)}{\partial x_j} \right).$

(2) Oscillating coefficients

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.$$

(3) Homogenization

$$L^{\varepsilon}
ightarrow ar{L}, \quad \varepsilon
ightarrow 0,$$

where \overline{L} is with constant coefficient.

(i) Periodic homogenization: $a_{ij}(x)$ is a periodic function.

(ii) Stochastic homogenization (in a stationary, ergodic random media):
 a_{ij}(x; ω) = a_{ij}(τ_xω), where {τ_x}_{x∈ℝ^d} is a measurable group of transformations defined on some probability space (Ω, F, ℙ), such that {τ_x}_{x∈ℝ^d} is stationary and ergodic.
 Jian Wang (FINU) Homogenization of stable-like operators December 12, 2018; CIRM 3/31

(1)

 $L = \sum_{1 \leq i, j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$

(2) Oscillating coefficients

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.$$

(3) Homogenization

$$L^{\varepsilon}
ightarrow ar{L}, \quad \varepsilon
ightarrow 0,$$

where \overline{L} is with constant coefficient.

(i) Periodic homogenization: $a_{ij}(x)$ is a periodic function.

(ii) Stochastic homogenization (in a stationary, ergodic random media):
 a_{ij}(x; ω) = a_{ij}(τ_xω), where {τ_x}_{x∈ℝ^d} is a measurable group of transformations defined on some probability space (Ω, F, ℙ), such that {τ_x}_{x∈ℝ^d} is stationary and ergodic.
 Jian Wang (FINU) Homogenization of stable-like operators December 12, 2018; CIRM 3/31

(1)

 $L = \sum_{1 \leq i, j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$

(2) Oscillating coefficients

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.$$

(3) Homogenization

$$L^{\varepsilon} \to \bar{L}, \quad \varepsilon \to 0,$$

where \bar{L} is with constant coefficient.

(i) Periodic homogenization: $a_{ij}(x)$ is a periodic function.

(ii) Stochastic homogenization (in a stationary, ergodic random media):
 a_{ij}(x; ω) = a_{ij}(τ_xω), where {τ_x}_{x∈ℝ^d} is a measurable group of transformations defined on some probability space (Ω, F, ℙ), such that {τ_x}_{x∈ℝ^d} is stationary and ergodic.

(1)

 $L = \sum_{1 \leq i, j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$

(2) Oscillating coefficients

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.$$

(3) Homogenization

$$L^{\varepsilon} \to \bar{L}, \quad \varepsilon \to 0,$$

where \bar{L} is with constant coefficient.

- (i) Periodic homogenization: $a_{ij}(x)$ is a periodic function.
- (ii) Stochastic homogenization (in a stationary, ergodic random media): $a_{ij}(x;\omega) = a_{ij}(\tau_x\omega)$, where $\{\tau_x\}_{x\in\mathbb{R}^d}$ is a measurable group of transformations defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, such that $\{\tau_x\}_{x\in\mathbb{R}^d}$ is stationary and ergodic. Jian Wang (FJNU) Homogenization of stable-like operators December 12, 2018; CIRM 3/31

(1)

(2)

 $L = \sum_{1 \leq i, j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(\frac{a_{ij}\left(\frac{x}{\varepsilon}\right)}{\partial x_j} \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.$$

(i) If (X_t)_{t≥0} ~ L, then (εX_ε-2_t)_{t≥0} ~ L^ε. (Diffusive scaling).
(ii)

$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.$$
$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx.$$

(iii) Non-divergence form; perturbation; · · ·

(1)

(2)

 $L = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(\frac{a_{ij}\left(\frac{x}{\varepsilon}\right)}{\partial x_j} \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.$$

(i) If $(X_t)_{t \ge 0} \sim L$, then $(\varepsilon X_{\varepsilon^{-2}t})_{t \ge 0} \sim L^{\varepsilon}$. (Diffusive scaling). (ii)

$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.$$
$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx.$$

(iii) Non-divergence form; perturbation; · · ·

Jian Wang (FJNU)

4 日 ト 4 冊 ト 4 戸 ト 4 戸 ト

(1)

(2)

 $L = \sum_{1 \leq i, j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(\frac{a_{ij}\left(\frac{x}{\varepsilon}\right)}{\partial x_j} \right), \quad \varepsilon > 0.$$

(i) If (X_t)_{t≥0} ~ L, then (εX_ε-2_t)_{t≥0} ~ L^ε. (Diffusive scaling).
 (ii)

$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.$$
$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx$$

(iii) Non-divergence form; perturbation; · · ·

Jian Wang (FJNU)

4 日 ト 4 冊 ト 4 戸 ト 4 戸 ト

(1)

(2)

 $L = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(\frac{a_{ij}\left(\frac{x}{\varepsilon}\right)}{\partial x_j} \right), \quad \varepsilon > 0.$$

(i) If (X_t)_{t≥0} ~ L, then (εX_ε-2_t)_{t≥0} ~ L^ε. (Diffusive scaling).
 (ii)

$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.$$
$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx.$$

(iii) Non-divergence form; perturbation; ···

(1)

(2)

 $L = \sum_{1 \leqslant i,j \leqslant d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$

$$L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(\frac{a_{ij}\left(\frac{x}{\varepsilon}\right)}{\partial x_j} \right), \quad \varepsilon > 0.$$

(i) If (X_t)_{t≥0} ~ L, then (εX_ε-2_t)_{t≥0} ~ L^ε. (Diffusive scaling).
 (ii)

$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.$$
$$\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx.$$

(iii) Non-divergence form; perturbation; · · ·

Question: Homogenization problem for stable-like operators

- (1) What kind of stable-like operator *L* we will consider?
- (2) How can we do the homogenization? What kind of scaling we will choose?
- (3) What expression of the limiting operator \overline{L} ?

What is the limiting operator \overline{L} ?

Limiting operator (the generator of symmetric α -stable Lévy process)

$$\begin{split} \bar{L}f(x) &= \int \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \mathbf{1}_{\{|z| \leq 1\}} \right) \frac{\bar{k}(z)}{|z|^{d+\alpha}} \, dz \\ &= p.v. \int \left(f(x+z) - f(x) \right) \frac{\bar{k}(z)}{|z|^{d+\alpha}} \, dz, \end{split}$$

where $\alpha \in (0, 2)$, $0 < k_1 \leq \bar{k}(z) \leq k_2 < \infty$, and $\bar{k}(z) = \bar{k}(-z)$ and $\bar{k}(z/\varepsilon) = \bar{k}(z)$ for all $z \in \mathbb{R}^d$ and $\varepsilon > 0$. With $\bar{k}(z) = c_{d,\alpha}$, $\bar{L} = -(-\Delta)^{\alpha/2}$ (rotationally invariant α -stable Lévy process).

- (1) Stationary increments: $\bar{X}_{r+t} \bar{X}_{r+s}$ has the same distribution as that of $\bar{X}_t \bar{X}_s$ for all r > 0 and 0 < s < t.
- (2) Scaling property: For any ε > 0, (εX̄_ε-α_t)_{t≥0} has the same distribution as that of (X̄_t)_{t≥0}.
- (3) Transition density function (fundamental solution):

What is the limiting operator \overline{L} ?

Limiting operator (the generator of symmetric α -stable Lévy process)

$$\overline{L}f(x) = \int \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \mathbf{1}_{\{|z| \leq 1\}} \right) \frac{\overline{k}(z)}{|z|^{d+\alpha}} dz$$
$$= p.v. \int \left(f(x+z) - f(x) \right) \frac{\overline{k}(z)}{|z|^{d+\alpha}} dz,$$

where $\alpha \in (0, 2)$, $0 < k_1 \leq \bar{k}(z) \leq k_2 < \infty$, and $\bar{k}(z) = \bar{k}(-z)$ and $\bar{k}(z/\varepsilon) = \bar{k}(z)$ for all $z \in \mathbb{R}^d$ and $\varepsilon > 0$. With $\bar{k}(z) = c_{d,\alpha}$, $\bar{L} = -(-\Delta)^{\alpha/2}$ (rotationally invariant α -stable Lévy process).

- (1) Stationary increments: $\bar{X}_{r+t} \bar{X}_{r+s}$ has the same distribution as that of $\bar{X}_t \bar{X}_s$ for all r > 0 and 0 < s < t.
- (2) Scaling property: For any ε > 0, (εX̄_ε-α_t)_{t≥0} has the same distribution as that of (X̄_t)_{t≥0}.
- (3) Transition density function (fundamental solution):

What is the limiting operator \overline{L} ?

Limiting operator (the generator of symmetric α -stable Lévy process)

$$\begin{split} \bar{L}f(x) &= \int \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \mathbf{1}_{\{|z| \leq 1\}} \right) \frac{\bar{k}(z)}{|z|^{d+\alpha}} \, dz \\ &= p.v. \int \left(f(x+z) - f(x) \right) \frac{\bar{k}(z)}{|z|^{d+\alpha}} \, dz, \end{split}$$

where $\alpha \in (0, 2), 0 < k_1 \leq \bar{k}(z) \leq k_2 < \infty$, and $\bar{k}(z) = \bar{k}(-z)$ and $\bar{k}(z/\varepsilon) = \bar{k}(z)$ for all $z \in \mathbb{R}^d$ and $\varepsilon > 0$. With $\bar{k}(z) = c_{d,\alpha}, \bar{L} = -(-\Delta)^{\alpha/2}$ (rotationally invariant α -stable Lévy process).

- (1) Stationary increments: $\bar{X}_{r+t} \bar{X}_{r+s}$ has the same distribution as that of $\bar{X}_t \bar{X}_s$ for all r > 0 and 0 < s < t.
- Scaling property: For any ε > 0, (εX
 _ε-α_t)_{t≥0} has the same distribution as that of (X
 t){t≥0}.
- (3) Transition density function (fundamental solution):

$$\bar{p}(t,x,y) \asymp t^{-d/lpha} \wedge \frac{t}{|x-y|^{d+lpha}}, \quad t > 0, x, y \in \mathbb{R}^d.$$

Let $(X_t)_{t\geq 0}$ be a α -stable-like process (not only α -stable Lévy process and, in general, not having the scaling property) with generator as follow

• Symmetric setting:

$$Lf(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} \, dy$$

where c(x, y) = c(y, x) for all $x, y \in \mathbb{R}^d$.

• Non-symmetric setting:

$$Lf(x) = p.v. \int (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz,$$

where k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$.

What kind of homogenization: For any $\varepsilon > 0$ and t > 0, let $X_t^{(\varepsilon)} := \varepsilon X_{\varepsilon^{-\alpha_t}}$. Question: We will consider that, under some assumptions, $(X_t^{(\varepsilon)})_{t \ge 0}$ converges to $(\bar{X}_t)_{t \ge 0}$ as $\varepsilon \to 0$.

Let $(X_t)_{t\geq 0}$ be a α -stable-like process (not only α -stable Lévy process and, in general, not having the scaling property) with generator as follow

• Symmetric setting:

$$Lf(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} \, dy$$

where c(x, y) = c(y, x) for all $x, y \in \mathbb{R}^d$.

• Non-symmetric setting:

$$Lf(x) = p.v. \int (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz,$$

where k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$.

What kind of homogenization: For any $\varepsilon > 0$ and t > 0, let $X_t^{(\varepsilon)} := \varepsilon X_{\varepsilon^{-\alpha_t}}$. Question: We will consider that, under some assumptions, $(X_t^{(\varepsilon)})_{t \ge 0}$ converges to $(\bar{X}_t)_{t \ge 0}$ as $\varepsilon \to 0$.

Let $(X_t)_{t\geq 0}$ be a α -stable-like process (not only α -stable Lévy process and, in general, not having the scaling property) with generator as follow

• Symmetric setting:

$$Lf(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} \, dy$$

where c(x, y) = c(y, x) for all $x, y \in \mathbb{R}^d$.

• Non-symmetric setting:

$$Lf(x) = p.v. \int (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz,$$

where k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$.

What kind of homogenization: For any $\varepsilon > 0$ and t > 0, let $X_t^{(\varepsilon)} := \varepsilon X_{\varepsilon^{-\alpha_t}}$. Question: We will consider that, under some assumptions, $(X_t^{(\varepsilon)})_{t \ge 0}$ converges to $(\bar{X}_t)_{t \ge 0}$ as $\varepsilon \to 0$.

Let $(X_t)_{t\geq 0}$ be a α -stable-like process (not only α -stable Lévy process and, in general, not having the scaling property) with generator as follow

• Symmetric setting:

$$Lf(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} dy$$

where c(x, y) = c(y, x) for all $x, y \in \mathbb{R}^d$.

• Non-symmetric setting:

$$Lf(x) = p.v. \int (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz,$$

where k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$.

What kind of homogenization: For any $\varepsilon > 0$ and t > 0, let $X_t^{(\varepsilon)} := \varepsilon X_{\varepsilon^{-\alpha_t}}$. Question: We will consider that, under some assumptions, $(X_t^{(\varepsilon)})_{t \ge 0}$ converges to $(\bar{X}_t)_{t \ge 0}$ as $\varepsilon \to 0$.

- M. Kassmann, A. Piatnitski and E. Zhizhina: Homogenization of Lévy-type operators with oscillating coefficients, arXiv:1807.0437
- R.L. Schilling and T. Uemura: Homogenization of symmetric Lévy processes on \mathbb{R}^d , arXiv:1808.01667
- R.W. Schwab: Stochastic homogenization for some nonlinear integro-differential equations, *Comm. Partial Differential Equations*, 38 (2013), 171–198.
- R.W. Schwab: Periodic homogenization for nonlinear integro-differential equations, *SIAM J. Math. Anal.*, **42** (2010) 2652–2680.

- M. Kassmann, A. Piatnitski and E. Zhizhina: Homogenization of Lévy-type operators with oscillating coefficients, arXiv:1807.0437
- R.L. Schilling and T. Uemura: Homogenization of symmetric Lévy processes on ℝ^d, arXiv:1808.01667
- R.W. Schwab: Stochastic homogenization for some nonlinear integro-differential equations, *Comm. Partial Differential Equations*, 38 (2013), 171–198.
- R.W. Schwab: Periodic homogenization for nonlinear integro-differential equations, *SIAM J. Math. Anal.*, **42** (2010) 2652–2680.

1 Aim

Symmetric setting: random medium Framework: Dirichlet form

• Main results

3 Non-symmetric case: periodic coefficient

- Framework: operator
- Main result

Symmetric stable-like operator L in random medium

Let $(X_t^{\omega})_{t\geq 0}$ be a symmetric α -stable-like process with generator as follow

$$\boldsymbol{L}^{\omega}f(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y; \omega)}{|x - y|^{d + \alpha}} \, dy$$

where $c(x, y; \omega) = c(y, x; \omega)$ for all $x, y \in \mathbb{R}^d$.

• Non-local Dirichlet form:

$$\mathcal{E}^{\omega}(f,g) = -\int f(x)L^{\omega}g(x) dx$$

= $\frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} (f(x) - f(y))(g(x) - g(y)) \frac{c(x,y;\omega)}{|x - y|^{d + \alpha}} dx dy$

on $L^2(\mathbb{R}^d; dx)$.

۲

Symmetric stable-like operator L in random medium

Let $(X_t^{\omega})_{t\geq 0}$ be a symmetric α -stable-like process with generator as follow

$$\boldsymbol{L}^{\omega}f(\boldsymbol{x}) = p.\boldsymbol{v}.\int (f(\boldsymbol{y}) - f(\boldsymbol{x}))\frac{c(\boldsymbol{x},\boldsymbol{y};\omega)}{|\boldsymbol{x} - \boldsymbol{y}|^{d+\alpha}}\,d\boldsymbol{y}$$

where $c(x, y; \omega) = c(y, x; \omega)$ for all $x, y \in \mathbb{R}^d$.

• Non-local Dirichlet form:

$$\mathcal{E}^{\omega}(f,g) = -\int f(x)L^{\omega}g(x) dx$$

= $\frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} (f(x) - f(y))(g(x) - g(y)) \frac{c(x,y;\omega)}{|x - y|^{d + \alpha}} dx dy$

on $L^2(\mathbb{R}^d; dx)$.

۲

Non-local symmetric Dirichlet form: starting point

• A little more general, allowing the degenerate reference measure:

$$\mathcal{E}^{\omega}(f,g) := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} (f(x) - f(y))(g(x) - g(y)) \frac{c(x,y;\omega)}{|x - y|^{d + \alpha}} \, dx \, dy$$

on $L^2(\mathbb{R}^d; \mu(x; \omega) dx)$.

• The corresponding operator on $L^2(\mathbb{R}^d; \mu(x; \omega) dx)$:

$$L^{\omega}f(x) = \frac{1}{\mu(x;\omega)} \int_{\mathbb{R}^d} \left(f(y) - f(x) \right) \frac{c(x,y;\omega)}{|x-y|^{d+\alpha}} \, dy.$$

Motivation of assumptions: scaling processes

For any
$$\varepsilon > 0$$
, set $X^{\varepsilon,\omega} = (X_t^{\varepsilon,\omega})_{t \ge 0} := (\varepsilon X_{\varepsilon^{-\alpha}t}^{\omega})_{t \ge 0}$.

Lemma

The process $X^{\varepsilon,\omega}$ enjoys a symmetric measure $\mu^{\varepsilon,\omega}(dx) = \mu(\frac{x}{\varepsilon};\omega) dx$, and the associated regular Dirichlet form $(\mathcal{E}^{\varepsilon,\omega}, \mathcal{F}^{\varepsilon,\omega})$ on $L^2(\mathbb{R}^d; \mu^{\varepsilon,\omega}(dx))$ is given by

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

Limiting Dirichlet form:

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy,$$

where $\bar{k}(z) = \bar{k}(-z)$ for all $z \in \mathbb{R}^d$.

Motivation of assumptions: scaling processes

For any
$$\varepsilon > 0$$
, set $X^{\varepsilon,\omega} = (X_t^{\varepsilon,\omega})_{t \ge 0} := (\varepsilon X_{\varepsilon^{-\alpha}t}^{\omega})_{t \ge 0}$.

Lemma

The process $X^{\varepsilon,\omega}$ enjoys a symmetric measure $\mu^{\varepsilon,\omega}(dx) = \mu(\frac{x}{\varepsilon};\omega) dx$, and the associated regular Dirichlet form $(\mathcal{E}^{\varepsilon,\omega}, \mathcal{F}^{\varepsilon,\omega})$ on $L^2(\mathbb{R}^d; \mu^{\varepsilon,\omega}(dx))$ is given by

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

Limiting Dirichlet form:

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy,$$

where $\bar{k}(z) = \bar{k}(-z)$ for all $z \in \mathbb{R}^d$.

۲

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

- Random medium: A probability space (Ω, F, P) on which a measurable group of transformations {τ_x}_{x∈R^d} is defined. We assume that under (Ω, F, P), {τ_x}_{x∈R^d} is stationary and ergodic.
- Assumption $(A-\mu)$ Let $\mu : \mathbb{R}^d \times \Omega \to [0,\infty)$ satisfy that $\mu(x+y;\omega) = \mu(x;\tau_y\omega)$ for any $x, y \in \mathbb{R}^d$ and $\omega \in \Omega$, and $\mathbb{E} \mu(0;\omega) = 1$. (*Note that, by the ergodic theorem, as* $\varepsilon \to 0$,

$$\int f(x)\mu(x/\varepsilon;\omega)\,dx = \int f(x)\mu(0;\tau_{x/\varepsilon}\omega)\,dx$$

 $\rightarrow \int f(x) \mathbb{E}\mu(0;\omega) dx = \int f(x) dx dx$

۲

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

- Random medium: A probability space (Ω, F, P) on which a measurable group of transformations {τ_x}_{x∈R^d} is defined. We assume that under (Ω, F, P), {τ_x}_{x∈R^d} is stationary and ergodic.
- Assumption $(A-\mu)$ Let $\mu : \mathbb{R}^d \times \Omega \to [0,\infty)$ satisfy that $\mu(x+y;\omega) = \mu(x;\tau_y\omega)$ for any $x, y \in \mathbb{R}^d$ and $\omega \in \Omega$, and $\mathbb{E} \mu(0;\omega) = 1$. (*Note that, by the ergodic theorem, as* $\varepsilon \to 0$,

$$\int f(x)\mu(x/\varepsilon;\omega)\,dx = \int f(x)\mu(0;\tau_{x/\varepsilon}\omega)\,dx$$

 $\rightarrow \int f(x) \mathbb{E}\mu(0;\omega) \, dx = \int f(x) \, dx_{\rm s},$

۲

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

- Random medium: A probability space (Ω, F, P) on which a measurable group of transformations {τ_x}_{x∈R^d} is defined. We assume that under (Ω, F, P), {τ_x}_{x∈R^d} is stationary and ergodic.
- Assumption $(A-\mu)$ Let $\mu : \mathbb{R}^d \times \Omega \to [0,\infty)$ satisfy that $\mu(x+y;\omega) = \mu(x;\tau_y\omega)$ for any $x, y \in \mathbb{R}^d$ and $\omega \in \Omega$, and $\mathbb{E} \mu(0;\omega) = 1$. (*Note that, by the ergodic theorem, as* $\varepsilon \to 0$,

$$\int f(x)\mu(x/\varepsilon;\omega)\,dx = \int f(x)\mu(0;\tau_{x/\varepsilon}\omega)\,dx$$

 $\rightarrow \int f(x) \mathbb{E}\mu(0;\omega) dx = \int f(x) dx dx$

٥

۰

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

- Random medium: A probability space (Ω, F, P) on which a measurable group of transformations {τ_x}_{x∈R^d} is defined. We assume that under (Ω, F, P), {τ_x}_{x∈R^d} is stationary and ergodic.
- Assumption $(A-\mu)$ Let $\mu : \mathbb{R}^d \times \Omega \to [0, \infty)$ satisfy that $\mu(x + y; \omega) = \mu(x; \tau_y \omega)$ for any $x, y \in \mathbb{R}^d$ and $\omega \in \Omega$, and $\mathbb{E} \mu(0; \omega) = 1$. (Note that, by the ergodic theorem, as $\varepsilon \to 0$, $\int f(x)\mu(x/\varepsilon; \omega) dx = \int f(x)\mu(0; \tau_{x/\varepsilon}\omega) dx$ $\to \int f(x)\mathbb{E}\mu(0; \omega) dx = \int f(x) dx$.)

۲

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

What we need is

$$c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right) \dashrightarrow \bar{k}(x-y), \quad \varepsilon \to 0.$$

• Assumption: Let $c : \mathbb{R}^d \times \mathbb{R}^d \times \Omega \to [0, \infty)$ satisfy that $c(x, y; \omega) = c(y, x; \omega)$ and $c(x + z, y + z; \omega) = c(x, y; \tau_z \omega)$.

• Difficulty

$$c\left(rac{x}{arepsilon},rac{y}{arepsilon};\omega
ight)=c\left(0,rac{y-x}{arepsilon}; au^{rac{x}{arepsilon}}\omega
ight)\dashrightarrowar{k}(x-y)???,\quadarepsilon
ightarrow 0.$$

 $\mathbb{E}c(0, z/\varepsilon; \omega)$? or $c(0, z/\varepsilon; \omega)$?

۲

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

• What we need is

$$c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)\dashrightarrow \bar{k}(x-y), \quad \varepsilon \to 0.$$

- Assumption: Let $c : \mathbb{R}^d \times \mathbb{R}^d \times \Omega \to [0, \infty)$ satisfy that $c(x, y; \omega) = c(y, x; \omega)$ and $c(x + z, y + z; \omega) = c(x, y; \tau_z \omega)$.
- Difficulty

$$c\left(rac{x}{arepsilon},rac{y}{arepsilon};\omega
ight)=c\left(0,rac{y-x}{arepsilon}; au^{rac{x}{arepsilon}}\omega
ight)\dashrightarrowar{k}(x-y)???,\quadarepsilon
ightarrow 0.$$

 $\mathbb{E}c(0, z/\varepsilon; \omega)$? or $c(0, z/\varepsilon; \omega)$?

٥

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

• What we need is

$$c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right) \dashrightarrow \bar{k}(x-y), \quad \varepsilon \to 0.$$

• Assumption: Let $c : \mathbb{R}^d \times \mathbb{R}^d \times \Omega \to [0, \infty)$ satisfy that $c(x, y; \omega) = c(y, x; \omega)$ and $c(x + z, y + z; \omega) = c(x, y; \tau_z \omega)$.

Difficulty

$$c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right) = c\left(0, \frac{y-x}{\varepsilon}; \tau_{\frac{x}{\varepsilon}}\omega\right) \dashrightarrow \bar{k}(x-y)???, \quad \varepsilon \to 0.$$

 $\mathbb{E}c(0, z/\varepsilon; \omega)$? or $c(0, z/\varepsilon; \omega)$?

۲

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

• What we need is

$$c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right) \dashrightarrow \bar{k}(x-y), \quad \varepsilon \to 0.$$

- Assumption: Let $c : \mathbb{R}^d \times \mathbb{R}^d \times \Omega \to [0, \infty)$ satisfy that $c(x, y; \omega) = c(y, x; \omega)$ and $c(x + z, y + z; \omega) = c(x, y; \tau_z \omega)$.
- Difficulty

$$c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right) = c\left(0, \frac{y-x}{\varepsilon}; \tau_{\frac{x}{\varepsilon}}\omega\right) \dashrightarrow \bar{k}(x-y)???, \quad \varepsilon \to 0.$$

 $\mathbb{E}c(0, z/\varepsilon; \omega)$? or $c(0, z/\varepsilon; \omega)$?

۲

$$\mathcal{E}^{\varepsilon,\omega}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{c\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}; \omega\right)}{|x - y|^{d + \alpha}} \, dx \, dy.$$

$$\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x-y)}{|x-y|^{d+\alpha}} \, dx \, dy.$$

• What we need is

$$c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right) \dashrightarrow \bar{k}(x-y), \quad \varepsilon \to 0.$$

• Assumption: Let $c : \mathbb{R}^d \times \mathbb{R}^d \times \Omega \to [0, \infty)$ satisfy that $c(x, y; \omega) = c(y, x; \omega)$ and $c(x + z, y + z; \omega) = c(x, y; \tau_z \omega)$.

• Difficulty

$$c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right) = c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right) \dashrightarrow \bar{k}(x-y)???, \quad \varepsilon \to 0.$$

 $\mathbb{E}c(0, z/\varepsilon; \omega)$? or $c(0, z/\varepsilon; \omega)$?
1 Aim

Symmetric setting: random medium

- Framework: Dirichlet form
- Main results

3 Non-symmetric case: periodic coefficient

- Framework: operator
- Main result

Assumptions on the coefficient $c(x, y; \omega)$

Assumption (*A*-*c*):

(i) Suppose that $d \ge 2$ and $c(x + z, y + z; \omega) = c(x, y; \tau_z \omega)$ for all $x, y, z \in \mathbb{R}^d$ and $\omega \in \Omega$, such that for all $z \in \mathbb{R}^d$ and a.s. $\omega \in \Omega$,

 $\underline{\Lambda}_1(\omega)\underline{\Lambda}_2(\tau_z\omega)\leqslant c(0,z;\omega)\leqslant\overline{\Lambda}_1(\omega)\overline{\Lambda}_2(\tau_z\omega),$

and

$$\lim_{\varepsilon \to 0} \sup_{|z| \leqslant r} \left| \mathbb{E} c\left(0, \frac{z}{\varepsilon}; \omega\right) - \bar{c}(z) \right| = 0, \quad r > 0$$

for nonnegative locally bounded function $\bar{c}(z)$.

(ii) The random media $(\Omega; \mathbb{P})$ satisfies a space-mixing condition in the sense that there exist l > d and $C_0 > 0$ such that for any $\psi_1, \psi_2 \in L^2(\Omega; \mathbb{P})$

 $\mathbb{E}(\psi_1(\omega)\psi_2(\tau_x\omega)) - \mathbb{E}\psi_1(\omega) \cdot \mathbb{E}\psi_2(\tau_x\omega) \Big|$

 $\leqslant C_0 \|\psi_1\|_{L^2(\Omega;\mathbb{P})} \|\psi_2\|_{L^2(\Omega;\mathbb{P})} (1 \wedge |x|^{-l});$

see Andres (14), · · · (RCM with dynamic bounded conductances)

Assumptions on the coefficient $c(x, y; \omega)$

Assumption (*A*-*c*):

(i) Suppose that $d \ge 2$ and $c(x + z, y + z; \omega) = c(x, y; \tau_z \omega)$ for all $x, y, z \in \mathbb{R}^d$ and $\omega \in \Omega$, such that for all $z \in \mathbb{R}^d$ and a.s. $\omega \in \Omega$,

 $\underline{\Lambda}_1(\omega)\underline{\Lambda}_2(\tau_z\omega)\leqslant c(0,z;\omega)\leqslant\overline{\Lambda}_1(\omega)\overline{\Lambda}_2(\tau_z\omega),$

and

$$\lim_{\varepsilon \to 0} \sup_{|z| \leqslant r} \left| \mathbb{E} c\left(0, \frac{z}{\varepsilon}; \omega\right) - \bar{c}(z) \right| = 0, \quad r > 0$$

for nonnegative locally bounded function $\bar{c}(z)$.

(ii) The random media $(\Omega; \mathbb{P})$ satisfies a space-mixing condition in the sense that there exist l > d and $C_0 > 0$ such that for any $\psi_1, \psi_2 \in L^2(\Omega; \mathbb{P})$

 $\left|\mathbb{E}(\psi_1(\omega)\psi_2(\tau_x\omega)) - \mathbb{E}\psi_1(\omega) \cdot \mathbb{E}\psi_2(\tau_x\omega)\right|$

 $\leqslant C_0 \|\psi_1\|_{L^2(\Omega;\mathbb{P})} \|\psi_2\|_{L^2(\Omega;\mathbb{P})} (1 \wedge |x|^{-l});$

see Andres (14), · · · (RCM with dynamic bounded conductances).

16/31

Assumptions on the coefficient $c(x, y; \omega)$

Assumption (*A*-*c*):

(i) Suppose that $d \ge 2$ and $c(x + z, y + z; \omega) = c(x, y; \tau_z \omega)$ for all $x, y, z \in \mathbb{R}^d$ and $\omega \in \Omega$, such that for all $z \in \mathbb{R}^d$ and a.s. $\omega \in \Omega$,

$$\underline{\Lambda}_1(\omega)\underline{\Lambda}_2(\tau_z\omega)\leqslant c(0,z;\omega)\leqslant \overline{\Lambda}_1(\omega)\overline{\Lambda}_2(\tau_z\omega),$$

and

$$\lim_{\varepsilon \to 0} \sup_{|z| \leqslant r} \left| \mathbb{E} c\left(0, \frac{z}{\varepsilon}; \omega\right) - \bar{c}(z) \right| = 0, \quad r > 0$$

for nonnegative locally bounded function $\bar{c}(z)$.

(ii) The random media $(\Omega; \mathbb{P})$ satisfies a space-mixing condition in the sense that there exist l > d and $C_0 > 0$ such that for any $\psi_1, \psi_2 \in L^2(\Omega; \mathbb{P})$

 $\left|\mathbb{E}(\psi_1(\omega)\psi_2(\tau_x\omega)) - \mathbb{E}\psi_1(\omega) \cdot \mathbb{E}\psi_2(\tau_x\omega)\right|$

 $\leqslant C_0 \|\psi_1\|_{L^2(\Omega;\mathbb{P})} \|\psi_2\|_{L^2(\Omega;\mathbb{P})} (1 \wedge |x|^{-l});$

see Andres (14), \cdots (RCM with dynamic bounded conductances).

Result 1 Theorem

Under assumptions $(A-\mu)$ and (A-c), Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}_1^p + \overline{\Lambda}_2^p + \mu(0)^p + \underline{\Lambda}_1^{-q} + \underline{\Lambda}_2^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where $p \ge 4$ and $q > 2d/\alpha$ with $\frac{1}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{2d}$. $\bar{k}(z) = \frac{1}{2}(\bar{c}(z) + \bar{c}(-z))$.

Mosco convergence with changing measures (Kuwae-Shioya (03')):

(1) for every sequence $\{f_n\}_{n \ge 1}$ on $L^2(\mathbb{R}^d; \mu_n(dx))$ converging weakly to $f \in L^2(\mathbb{R}^d; dx)$,

 $\liminf_{n\to\infty} \mathcal{E}^{(n,\omega)}(f_n,f_n) \geqslant \bar{\mathcal{E}}(f,f).$

(2) for any f ∈ L²(ℝ^d; dx), there is {f_n}≥1 ⊂ L²(ℝ^d; μ_n(dx)) converging strongly to f such that

$$\limsup_{n\to\infty} \mathcal{E}^{(n,\omega)}(f_n,f_n) \leqslant \bar{\mathcal{E}}(f,f).$$

Result 1 Theorem

Under assumptions $(A-\mu)$ and (A-c), Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}_1^p + \overline{\Lambda}_2^p + \mu(0)^p + \underline{\Lambda}_1^{-q} + \underline{\Lambda}_2^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where $p \ge 4$ and $q > 2d/\alpha$ with $\frac{1}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{2d}$. $\bar{k}(z) = \frac{1}{2}(\bar{c}(z) + \bar{c}(-z))$.

Mosco convergence with changing measures (Kuwae-Shioya (03')):

(1) for every sequence $\{f_n\}_{n \ge 1}$ on $L^2(\mathbb{R}^d; \mu_n(dx))$ converging weakly to $f \in L^2(\mathbb{R}^d; dx)$,

 $\liminf_{n\to\infty} \mathcal{E}^{(n,\omega)}(f_n,f_n) \geqslant \bar{\mathcal{E}}(f,f).$

(2) for any $f \in L^2(\mathbb{R}^d; dx)$, there is $\{f_n\}_{\geq 1} \subset L^2(\mathbb{R}^d; \mu_n(dx))$ converging strongly to f such that

$$\limsup_{n\to\infty} \mathcal{E}^{(n,\omega)}(f_n,f_n) \leqslant \bar{\mathcal{E}}(f,f).$$

Result 1 Theorem

Under assumptions $(A-\mu)$ and (A-c), Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}_1^p + \overline{\Lambda}_2^p + \mu(0)^p + \underline{\Lambda}_1^{-q} + \underline{\Lambda}_2^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where $p \ge 4$ and $q > 2d/\alpha$ with $\frac{1}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{2d}$. $\bar{k}(z) = \frac{1}{2}(\bar{c}(z) + \bar{c}(-z))$.

Mosco convergence with changing measures (Kuwae-Shioya (03')):

(1) for every sequence $\{f_n\}_{n \ge 1}$ on $L^2(\mathbb{R}^d; \mu_n(dx))$ converging weakly to $f \in L^2(\mathbb{R}^d; dx)$,

$$\liminf_{n\to\infty} \mathcal{E}^{(n,\omega)}(f_n,f_n) \ge \bar{\mathcal{E}}(f,f).$$

(2) for any $f \in L^2(\mathbb{R}^d; dx)$, there is $\{f_n\}_{\geq 1} \subset L^2(\mathbb{R}^d; \mu_n(dx))$ converging strongly to f such that

$$\limsup_{n\to\infty} \mathcal{E}^{(n,\omega)}(f_n,f_n) \leqslant \bar{\mathcal{E}}(f,f).$$

Result 1: approach

Theorem

Under assumptions $(A-\mu)$ and (A-c), Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}_1^p + \overline{\Lambda}_2^p + \mu(0)^p + \underline{\Lambda}_1^{-q} + \underline{\Lambda}_2^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where $p \ge 4$ and $q > 2d/\alpha$ with $\frac{1}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{2d}$. $\bar{k}(z) = \frac{1}{2}(\bar{c}(z) + \bar{c}(-z))$.

Idea of the proof:

- (1) The embedding theorem for fractional Laplacian on \mathbb{R}^d , combined with the Hölder inequality.
- (2) The ergodic theorem (maximal ergodic theorem), the Borel-Cantelli lemma.

Remark 1: space-mixing condition Theorem

Under assumptions $(A-\mu)$ and (A-c), Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}_1^p + \overline{\Lambda}_2^p + \mu(0)^p + \underline{\Lambda}_1^{-q} + \underline{\Lambda}_2^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where $p \ge 4$ and $q > 2d/\alpha$ such that $\frac{1}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{2d}$.

Assumption (*A*-*c*)(ii): space-mixing condition $\begin{aligned} & \left| \mathbb{E} \big(\psi_1(\omega) \psi_2(\tau_x \omega) \big) - \mathbb{E} \psi_1(\omega) \cdot \mathbb{E} \psi_2(\tau_x \omega) \right| \\ & \leq C_0 \|\psi_1\|_{L^2(\Omega;\mathbb{P})} \|\psi_2\|_{L^2(\Omega;\mathbb{P})} \big(1 \wedge |x|^{-l} \big). \end{aligned}$

Note: assumption on $\mathbb{E}c(0, z/\varepsilon; \omega)$:

$$c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{(A-c)(ii):\ \text{mixing}} \mathbb{E}c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{(A-c)(i)+\text{ergodic}}\bar{k}(x-y).$$

Remark 1: space-mixing condition Theorem

Under assumptions $(A-\mu)$ and (A-c), Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}_1^p + \overline{\Lambda}_2^p + \mu(0)^p + \underline{\Lambda}_1^{-q} + \underline{\Lambda}_2^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where $p \ge 4$ and $q > 2d/\alpha$ such that $\frac{1}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{2d}$.

Assumption (*A*-*c*)(ii): space-mixing condition $\begin{aligned} & \left| \mathbb{E} \big(\psi_1(\omega) \psi_2(\tau_x \omega) \big) - \mathbb{E} \psi_1(\omega) \cdot \mathbb{E} \psi_2(\tau_x \omega) \right| \\ & \leq C_0 \|\psi_1\|_{L^2(\Omega;\mathbb{P})} \|\psi_2\|_{L^2(\Omega;\mathbb{P})} \big(1 \wedge |x|^{-l} \big). \end{aligned}$

Note: assumption on $\mathbb{E}c(0, z/\varepsilon; \omega)$:

$$c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{(A-c)(ii): \text{ mixing}} \mathbb{E}c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{(A-c)(i)+ergodic} \bar{k}(x-y).$$

Remarks 2 / 3: product form / another convergence Theorem

Consider the case that $c(x, y; \omega) = a_0(x; \omega)a_0(y; \omega)$ with $a_0(x + y; \omega) = a_0(x; \tau_y \omega)$ for all $x, y \in \mathbb{R}^d$ and $\omega \in \Omega$. Under assumption (A- μ), Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(a_0(0)^p + \mu(0)^p + a_0(0)^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where p > 1 and $q > 2d/\alpha$ such that $\frac{1}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{2d}$. $\bar{k}(z) = (\mathbb{E}a_0(0))^2$.

(1) Product form: Kassmann-Piatnitski-Zhizhina (18')

(2) Convergence in the sense that for a.s. $\omega \in \Omega$ and $f, g \in C_c^{\infty}(\mathbb{R}^d)$,

 $\lim_{\varepsilon \to 0} \mathcal{E}^{\varepsilon,\omega}(U_{\lambda}^{\varepsilon,\omega}f,g) = \bar{\mathcal{E}}(\bar{U}_{\lambda}f,g)$

and

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} |U_{\lambda}^{\varepsilon,\omega} f(x) - \bar{U}_{\lambda} f(x)|^2 \mu\left(\frac{x}{\varepsilon};\omega\right) \, dx = 0.$$

Jian Wang (FJNU)

Remarks 2 / 3: product form / another convergence Theorem

Consider the case that $c(x, y; \omega) = a_0(x; \omega)a_0(y; \omega)$ with $a_0(x + y; \omega) = a_0(x; \tau_y \omega)$ for all $x, y \in \mathbb{R}^d$ and $\omega \in \Omega$. Under assumption (A- μ), Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(a_0(0)^p + \mu(0)^p + a_0(0)^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where p > 1 and $q > 2d/\alpha$ such that $\frac{1}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{2d}$. $\bar{k}(z) = (\mathbb{E}a_0(0))^2$.

(1) Product form: Kassmann-Piatnitski-Zhizhina (18') (2) Convergence in the sense that for a.s. $\omega \in \Omega$ and $f, g \in C_c^{\infty}(\mathbb{R}^d)$,

$$\lim_{\varepsilon \to 0} \mathcal{E}^{\varepsilon,\omega}(U_{\lambda}^{\varepsilon,\omega}f,g) = \bar{\mathcal{E}}(\bar{U}_{\lambda}f,g)$$

and

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} |U_{\lambda}^{\varepsilon,\omega} f(x) - \bar{U}_{\lambda} f(x)|^2 \mu\left(\frac{x}{\varepsilon};\omega\right) \, dx = 0.$$

(1) Result 1: Assumption (A-c)(i):

$$\lim_{\varepsilon \to 0} \sup_{|z| \leqslant r} \left| \mathbb{E} c\left(0, \frac{z}{\varepsilon}; \omega\right) - \bar{c}(z) \right| = 0, \quad r > 0.$$

(2) Result 2: Assumption $(A-c^*)$: for almost all $\omega \in \Omega$,

$$\lim_{\varepsilon \to 0} \sup_{|x|, |z| \leqslant r} \left| c\left(x, \frac{z}{\varepsilon}; \omega \right) - \bar{c}(x, z; \omega) \right| = 0, \quad r > 0,$$

- Roughly speaking, Assumption $(A-c^*)$ is stronger than Assumption (A-c)(i). Example: scaling property $c(x, \frac{z}{\varepsilon}; \omega) = c(x, z; \omega)$, see Schwab (10',13').
- Under Assumption (*A*-*c*^{*}), we do not need (*A*-*c*)(ii): space-mixing condition.

(1) Result 1: Assumption (A-c)(i):

$$\lim_{\varepsilon \to 0} \sup_{|z| \leq r} \left| \mathbb{E} c\left(0, \frac{z}{\varepsilon}; \omega\right) - \bar{c}(z) \right| = 0, \quad r > 0.$$

(2) Result 2: Assumption (A- c^*): for almost all $\omega \in \Omega$,

$$\lim_{\varepsilon \to 0} \sup_{|x|, |z| \leq r} \left| c\left(x, \frac{z}{\varepsilon}; \omega \right) - \bar{c}(x, z; \omega) \right| = 0, \quad r > 0,$$

- Roughly speaking, Assumption $(A-c^*)$ is stronger than Assumption (A-c)(i). Example: scaling property $c(x, \frac{z}{\varepsilon}; \omega) = c(x, z; \omega)$, see Schwab (10',13').
- Under Assumption (*A*-*c*^{*}), we do not need (*A*-*c*)(ii): space-mixing condition.

(1) Result 1: Assumption (A-c)(i):

$$\lim_{\varepsilon \to 0} \sup_{|z| \leq r} \left| \mathbb{E} c\left(0, \frac{z}{\varepsilon}; \omega\right) - \bar{c}(z) \right| = 0, \quad r > 0.$$

(2) Result 2: Assumption $(A-c^*)$: for almost all $\omega \in \Omega$,

$$\lim_{\varepsilon\to 0}\sup_{|x|,|z|\leqslant r}\left|c\left(x,\frac{z}{\varepsilon};\omega\right)-\bar{c}(x,z;\omega)\right|=0,\quad r>0,$$

- Roughly speaking, Assumption $(A-c^*)$ is stronger than Assumption (A-c)(i). Example: scaling property $c(x, \frac{z}{\varepsilon}; \omega) = c(x, z; \omega)$, see Schwab (10',13').
- Under Assumption (*A*-*c*^{*}), we do not need (*A*-*c*)(ii): space-mixing condition.

(1) Result 1: Assumption (A-c)(i):

$$\lim_{\varepsilon \to 0} \sup_{|z| \leq r} \left| \mathbb{E} c\left(0, \frac{z}{\varepsilon}; \omega\right) - \bar{c}(z) \right| = 0, \quad r > 0.$$

(2) Result 2: Assumption $(A-c^*)$: for almost all $\omega \in \Omega$,

$$\lim_{\varepsilon \to 0} \sup_{|x|, |z| \leqslant r} \left| c\left(x, \frac{z}{\varepsilon}; \omega \right) - \bar{c}(x, z; \omega) \right| = 0, \quad r > 0,$$

- Roughly speaking, Assumption $(A-c^*)$ is stronger than Assumption (A-c)(i). Example: scaling property $c(x, \frac{z}{\varepsilon}; \omega) = c(x, z; \omega)$, see Schwab (10',13').
- Under Assumption (*A*-*c*^{*}), we do not need (*A*-*c*)(ii): space-mixing condition.

(1) Result 1: Assumption (A-c)(i):

$$\lim_{\varepsilon \to 0} \sup_{|z| \leq r} \left| \mathbb{E} c\left(0, \frac{z}{\varepsilon}; \omega\right) - \bar{c}(z) \right| = 0, \quad r > 0.$$

(2) Result 2: Assumption $(A-c^*)$: for almost all $\omega \in \Omega$,

$$\lim_{\varepsilon\to 0}\sup_{|x|,|z|\leqslant r}\left|c\left(x,\frac{z}{\varepsilon};\omega\right)-\bar{c}(x,z;\omega)\right|=0,\quad r>0,$$

- Roughly speaking, Assumption $(A-c^*)$ is stronger than Assumption (A-c)(i). Example: scaling property $c(x, \frac{z}{\varepsilon}; \omega) = c(x, z; \omega)$, see Schwab (10',13').
- Under Assumption (*A*-*c*^{*}), we do not need (*A*-*c*)(ii): space-mixing condition.

$$c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{(A-c^*)} \bar{c}\left(0,y-x;\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{ergodic} \bar{k}(x-y).$$

Assume that, there are $\underline{\Lambda}(\omega)$ and $\overline{\Lambda}(\omega)$ such that

 $\underline{\Lambda}(\omega) \leqslant c(0, z; \omega) \leqslant \overline{\Lambda}(\omega), \quad z \in \mathbb{R}^d.$

Theorem

Under assumptions $(A-\mu)$ and $(A-c^*)$, Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\overline{\mathcal{E}}, \overline{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}^p+\mu(0)^p+\underline{\Lambda}^{-q}+\mu(0)^{-q}\Big)<\infty,$$

where p > 1 and $q > d/\alpha$ such that $\frac{2}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{d}$. $\bar{k}(z) = \frac{1}{2} (\mathbb{E}\bar{c}(0, z; \omega) + \mathbb{E}\bar{c}(0, -z \omega)).$

Another model: $c(0, z; \omega)$ is periodic with respect to z_1 , z_2 .

$$c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{(A-c^*)} \bar{c}\left(0,y-x;\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{ergodic} \bar{k}(x-y).$$

Assume that, there are $\underline{\Lambda}(\omega)$ and $\overline{\Lambda}(\omega)$ such that

 $\underline{\Lambda}(\omega) \leqslant c(0, z; \omega) \leqslant \overline{\Lambda}(\omega), \quad z \in \mathbb{R}^d.$

Theorem

Under assumptions $(A-\mu)$ and $(A-c^*)$, Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}^p + \mu(0)^p + \underline{\Lambda}^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where p > 1 and $q > d/\alpha$ such that $\frac{2}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{d}$. $\bar{k}(z) = \frac{1}{2} (\mathbb{E}\bar{c}(0, z; \omega) + \mathbb{E}\bar{c}(0, -z \omega)).$

Another model: $c(0, z; \omega)$ is periodic with respect to z

Jian Wang (FJNU)

$$c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{(A-c^*)} \bar{c}\left(0,y-x;\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{ergodic} \bar{k}(x-y).$$

Assume that, there are $\underline{\Lambda}(\omega)$ and $\overline{\Lambda}(\omega)$ such that

 $\underline{\Lambda}(\omega) \leqslant c(0, z; \omega) \leqslant \overline{\Lambda}(\omega), \quad z \in \mathbb{R}^d.$

Theorem

Under assumptions $(A-\mu)$ and $(A-c^*)$, Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}^p + \mu(0)^p + \underline{\Lambda}^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where p > 1 and $q > d/\alpha$ such that $\frac{2}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{d}$. $\bar{k}(z) = \frac{1}{2} (\mathbb{E}\bar{c}(0, z; \omega) + \mathbb{E}\bar{c}(0, -z \omega)).$

Another model: $c(0, z; \omega)$ is periodic with respect to z.

$$c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{(A-c^*)} \bar{c}\left(0,y-x;\tau_{\frac{x}{\varepsilon}}\omega\right)\xrightarrow{ergodic} \bar{k}(x-y).$$

Assume that, there are $\underline{\Lambda}(\omega)$ and $\overline{\Lambda}(\omega)$ such that

 $\underline{\Lambda}(\omega) \leqslant c(0, z; \omega) \leqslant \overline{\Lambda}(\omega), \quad z \in \mathbb{R}^d.$

Theorem

Under assumptions $(A-\mu)$ and $(A-c^*)$, Dirichlet forms $(\mathcal{E}^{n,\omega}, \mathcal{F}^{n,\omega})$ (with $\varepsilon = 1/n$) converges to $(\bar{\mathcal{E}}, \bar{\mathcal{F}})$ in the sense of Mosco, if

$$\mathbb{E}\Big(\overline{\Lambda}^p + \mu(0)^p + \underline{\Lambda}^{-q} + \mu(0)^{-q}\Big) < \infty,$$

where p > 1 and $q > d/\alpha$ such that $\frac{2}{p} + \frac{1}{q} < \frac{1}{2} + \frac{\alpha}{d}$. $\bar{k}(z) = \frac{1}{2} (\mathbb{E}\bar{c}(0, z; \omega) + \mathbb{E}\bar{c}(0, -z \omega)).$

Another model: $c(0, z; \omega)$ is periodic with respect to z.

1 Aim

Symmetric setting: random medium

- Framework: Dirichlet form
- Main results

Non-symmetric case: periodic coefficient Framework: operator Main result

Non-symmetric setting from Kassmann et al. (18')

• Let $\alpha \in (0, 1)$. Consider the following operator acting on $C_b^2(\mathbb{R}^d)$:

$$Lf(x) = \int_{\mathbb{R}^d} \left(f(y) - f(x) \right) \frac{c(x,y)}{|x-y|^{d+\alpha}} \, dz.$$

(Note that, c(x, y) is not symmetric with respect to (x, y).)

Coefficients: Let c(x, y) : ℝ^d × ℝ^d → (0, ∞) be periodic with respect to both variables such that

(i)
$$0 < C_1 \leq c(x, y) \leq C_2 < \infty$$
 for all $x, y \in \mathbb{R}^d$.
(ii) $(x, y) \mapsto c(x, y)$ is Lipschitz.

Settings: periodic homogenization

• Let $\alpha \in (1, 2)$. Consider the following operator acting on $C_b^2(\mathbb{R}^d)$:

$$Lf(x) = p.v. \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz$$
$$= \int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle,$$

where

$$b_0(x) := rac{1}{2} \int z \, rac{(k(x,z) - k(x,-z))}{|z|^{d+lpha}} \, dz, \quad x \in \mathbb{R}^d.$$

(Note that, here we do not require that k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$.)

Coefficients: Let k(x, z) : ℝ^d × ℝ^d → (0, ∞) be periodic with respect to both variables such that

(i) $0 < K_1 \leq k(x, z) \leq K_2 < \infty$ for all $x, z \in \mathbb{R}^d$. (ii) $k \in C_b^{\beta, \theta}(\mathbb{R}^d \times \mathbb{R}^d)$ with $\beta \in (0, 1]$ and $\theta \in (\alpha - 1, 1]$.

Settings: periodic homogenization

• Let $\alpha \in (1, 2)$. Consider the following operator acting on $C_b^2(\mathbb{R}^d)$:

$$Lf(x) = p.v. \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz$$
$$= \int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle,$$

where

$$b_0(x) := \frac{1}{2} \int z \, \frac{(k(x,z) - k(x,-z))}{|z|^{d+\alpha}} \, dz, \quad x \in \mathbb{R}^d.$$

(Note that, here we do not require that k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$.)

Coefficients: Let k(x, z) : ℝ^d × ℝ^d → (0, ∞) be periodic with respect to both variables such that

(i) $0 < K_1 \leq k(x, z) \leq K_2 < \infty$ for all $x, z \in \mathbb{R}^d$. (ii) $k \in C_b^{\beta, \theta}(\mathbb{R}^d \times \mathbb{R}^d)$ with $\beta \in (0, 1]$ and $\theta \in (\alpha - 1, 1]$.

Settings: periodic homogenization

• Let $\alpha \in (1, 2)$. Consider the following operator acting on $C_b^2(\mathbb{R}^d)$:

$$Lf(x) = p.v. \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz$$
$$= \int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle,$$

where

$$b_0(x) := \frac{1}{2} \int z \, \frac{(k(x,z) - k(x,-z))}{|z|^{d+\alpha}} \, dz, \quad x \in \mathbb{R}^d.$$

(Note that, here we do not require that k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$.)

Coefficients: Let k(x, z) : ℝ^d × ℝ^d → (0, ∞) be periodic with respect to both variables such that

(i)
$$0 < K_1 \leq k(x, z) \leq K_2 < \infty$$
 for all $x, z \in \mathbb{R}^d$.
(ii) $k \in C_b^{\beta, \theta}(\mathbb{R}^d \times \mathbb{R}^d)$ with $\beta \in (0, 1]$ and $\theta \in (\alpha - 1, 1]$.

Non-symmetric α -stable-like processes

• Let $\alpha \in (1, 2)$.

$$\begin{split} Lf(x) &= p.\nu. \int_{\mathbb{R}^d} \left(f(x+z) - f(x) \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz \\ &= \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz + \langle \nabla f(x), b_0(x) \rangle. \end{split}$$

$$Lf(x) = \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz + \langle \nabla f(x), b(x) \rangle.$$

(Note that, for this the continuity of k(x, z) with respect to z is not required. We only need to assume that b is bounded.)

- There exists a non-symmetric α -stable-like process $X := (X_t)_{t \ge 0}$, see Chen-Zhang (18').
- Question: to establish the limit of the scaling process $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$.

Non-symmetric α -stable-like processes

• Let $\alpha \in (1, 2)$.

$$\begin{split} Lf(x) &= p.\nu. \int_{\mathbb{R}^d} \left(f(x+z) - f(x) \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz \\ &= \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz + \langle \nabla f(x), b_0(x) \rangle. \end{split}$$

$$Lf(x) = \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz + \langle \nabla f(x), b(x) \rangle.$$

(Note that, for this the continuity of k(x, z) with respect to z is not required. We only need to assume that b is bounded.)

- There exists a non-symmetric α -stable-like process $X := (X_t)_{t \ge 0}$, see Chen-Zhang (18').
- Question: to establish the limit of the scaling process $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$.

Non-symmetric α -stable-like processes

• Let $\alpha \in (1, 2)$.

$$\begin{split} Lf(x) &= p.\nu. \int_{\mathbb{R}^d} \left(f(x+z) - f(x) \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz \\ &= \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz + \langle \nabla f(x), b_0(x) \rangle. \end{split}$$

$$Lf(x) = \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} \, dz + \langle \nabla f(x), b(x) \rangle.$$

(Note that, for this the continuity of k(x, z) with respect to z is not required. We only need to assume that b is bounded.)

• There exists a non-symmetric α -stable-like process $X := (X_t)_{t \ge 0}$, see Chen-Zhang (18').

• Question: to establish the limit of the scaling process $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t \ge 0}$.

Jian Wang (FJNU)

26/31

1 Aim

Symmetric setting: random medium

- Framework: Dirichlet form
- Main results

3 Non-symmetric case: periodic coefficient

- Framework: operator
- Main result

Theorem

There exist a vector $\overline{b}_0 \in \mathbb{R}^d$ and a constant $\overline{k}_0 > 0$ such that the process $\{\varepsilon(X_{\varepsilon^{-\alpha}t} - \varepsilon^{-\alpha}\overline{b}_0t)\}_{t\geq 0}$ converges, as $\varepsilon \to 0$, in the Skorokhod topology to a rotationally invariant α -stable Lévy process \overline{X} with the generator

$$\bar{L}f(x) = \int \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle\right) \frac{\bar{k}_0}{|z|^{d+\alpha}} \, dz.$$

Additionally, when $b_0(x) \equiv 0$ for all $x \in \mathbb{R}^d$ (in particular, in balanced case: k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$), then $\bar{b}_0 = 0$.

$$Lf(x) = \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle.$$
$$b_0(x) := \frac{1}{2} \int z \frac{(k(x,z) - k(x,-z))}{|z|^{d+\alpha}} dz, \quad x \in \mathbb{R}^d.$$

Theorem

There exist a vector $\bar{b}_0 \in \mathbb{R}^d$ and a constant $\bar{k}_0 > 0$ such that the process $\{\varepsilon(X_{\varepsilon^{-\alpha}t} - \varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}$ converges, as $\varepsilon \to 0$, in the Skorokhod topology to a rotationally invariant α -stable Lévy process \bar{X} with the generator

$$\bar{L}f(x) = \int \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle\right) \frac{\bar{k}_0}{|z|^{d+\alpha}} \, dz.$$

Additionally, when $b_0(x) \equiv 0$ for all $x \in \mathbb{R}^d$ (in particular, in balanced case: k(x, z) = k(x, -z) for all $x, z \in \mathbb{R}^d$), then $\bar{b}_0 = 0$.

$$Lf(x) = \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle.$$
$$b_0(x) := \frac{1}{2} \int z \frac{(k(x,z) - k(x,-z))}{|z|^{d+\alpha}} dz, \quad x \in \mathbb{R}^d.$$

Theorem

There exist a vector $\bar{b}_0 \in \mathbb{R}^d$ *and a constant* $\bar{k}_0 > 0$ *such that the process*

 $\{\varepsilon(X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}$

converges, as $\varepsilon \to 0$, in the Skorokhod topology to a rotationally invariant α -stable Lévy process \bar{X} with Lévy measure $\frac{k_0}{|z|^{d+\alpha}} dz$.

Let X^{T^d} be the projection of the process X from ℝ^d to T^d := (ℝ/ℤ)^d.
Then, X^{T^d} has a unique invariable probability measure µ̄(dx). Moreover,

$$\bar{b}_0 = \int_{\mathbb{T}^d} b_0(x) \,\bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \,\bar{\mu}(dy).$$

Central limit theorem for stable laws. Non-central limit theorem when α ∈ (1,2). α ∈ (0,1) (in this case, indeed central limit theorem, and no continuity of z is required). α = 1 (at least in balanced case). z → α

Jian Wang (FJNU)

29/31

Theorem

There exist a vector $\bar{b}_0 \in \mathbb{R}^d$ *and a constant* $\bar{k}_0 > 0$ *such that the process*

 $\{\varepsilon(X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}$

converges, as $\varepsilon \to 0$, in the Skorokhod topology to a rotationally invariant α -stable Lévy process \overline{X} with Lévy measure $\frac{k_0}{|z|^{d+\alpha}} dz$.

Let X^{T^d} be the projection of the process X from ℝ^d to T^d := (ℝ/ℤ)^d.
Then, X^{T^d} has a unique invariable probability measure µ̄(dx). Moreover,

$$\bar{b}_0 = \int_{\mathbb{T}^d} b_0(x) \,\bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \,\bar{\mu}(dy).$$

Central limit theorem for stable laws. Non-central limit theorem when α ∈ (1, 2). α ∈ (0, 1) (in this case, indeed central limit theorem, and no continuity of z is required). α = 1 (at least in balanced case), z → 2

Jian Wang (FJNU)

Homogenization of stable-like operators

29/31

Theorem

There exist a vector $\bar{b}_0 \in \mathbb{R}^d$ *and a constant* $\bar{k}_0 > 0$ *such that the process*

 $\{\varepsilon(X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}$

converges, as $\varepsilon \to 0$, in the Skorokhod topology to a rotationally invariant α -stable Lévy process \overline{X} with Lévy measure $\frac{k_0}{|z|^{d+\alpha}} dz$.

Let X^{T^d} be the projection of the process X from ℝ^d to T^d := (ℝ/ℤ)^d.
Then, X^{T^d} has a unique invariable probability measure µ̄(dx). Moreover,

$$\bar{b}_0 = \int_{\mathbb{T}^d} b_0(x) \,\bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \,\bar{\mu}(dy).$$

Central limit theorem for stable laws. Non-central limit theorem when α ∈ (1,2). α ∈ (0,1) (in this case, indeed central limit theorem, and no continuity of z is required). α = 1 (at least in balanced case). z → α

Jian Wang (FJNU)

Theorem

There exist a vector $\bar{b}_0 \in \mathbb{R}^d$ *and a constant* $\bar{k}_0 > 0$ *such that the process*

 $\{\varepsilon(X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}$

converges, as $\varepsilon \to 0$, in the Skorokhod topology to a rotationally invariant α -stable Lévy process \overline{X} with Lévy measure $\frac{k_0}{|z|^{d+\alpha}} dz$.

Let X^{T^d} be the projection of the process X from ℝ^d to T^d := (ℝ/ℤ)^d.
Then, X^{T^d} has a unique invariable probability measure µ̄(dx). Moreover,

$$\bar{b}_0 = \int_{\mathbb{T}^d} b_0(x) \,\bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \,\bar{\mu}(dy).$$

Central limit theorem for stable laws. Non-central limit theorem when α ∈ (1,2). α ∈ (0,1) (in this case, indeed central limit theorem, and no continuity of z is required). α = 1 (at least in balanced case), z → α

Jian Wang (FJNU)
Main result

Theorem

There exist a vector $\bar{b}_0 \in \mathbb{R}^d$ *and a constant* $\bar{k}_0 > 0$ *such that the process*

 $\{\varepsilon(X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}$

converges, as $\varepsilon \to 0$, in the Skorokhod topology to a rotationally invariant α -stable Lévy process \overline{X} with Lévy measure $\frac{k_0}{|z|^{d+\alpha}} dz$.

Let X^{T^d} be the projection of the process X from ℝ^d to T^d := (ℝ/ℤ)^d.
 Then, X^{T^d} has a unique invariable probability measure µ̄(dx). Moreover,

$$\bar{b}_0 = \int_{\mathbb{T}^d} b_0(x) \,\bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \,\bar{\mu}(dy).$$

Central limit theorem for stable laws. Non-central limit theorem when α ∈ (1,2). α ∈ (0,1) (in this case, indeed central limit theorem, and no continuity of z is required). α = 1 (at least in balanced case). Example on

Jian Wang (FJNU)

29/31

Approach

 In general case: Limit theory for semimartingale (Jacod-Shiryaev, 03'), Feller processes (Schilling, 98'). See Tomisaki (92'); Fujiwara-Tomisaki (94').

• In balanced case, i.e. k(x, z) = k(x, -z): By the corrector method, we can prove that for every $u \in C_c^{\infty}(\mathbb{R}^d)$, there exists a class of functions $\{v^{\varepsilon}\}_{\varepsilon>0}$ such that

$$\lim_{\varepsilon \to 0} \left[\|u - v^{\varepsilon}\|_{\infty} + \|\bar{L}u - L^{\varepsilon}v^{\varepsilon}\|_{\infty} \right] = 0,$$

where

$$v^{\varepsilon}(x) = u(x) + \varepsilon^{\alpha} \overline{L}_0 u(x) \psi_1\left(\frac{x}{\varepsilon}\right), \quad x \in \mathbb{R}^d.$$

Approach

• In general case: Limit theory for semimartingale (Jacod-Shiryaev, 03'), Feller processes (Schilling, 98'). See Tomisaki (92'); Fujiwara-Tomisaki (94').

• In balanced case, i.e. k(x, z) = k(x, -z): By the corrector method, we can prove that for every $u \in C_c^{\infty}(\mathbb{R}^d)$, there exists a class of functions $\{v^{\varepsilon}\}_{\varepsilon>0}$ such that

$$\lim_{\varepsilon \to 0} \left[\|u - v^{\varepsilon}\|_{\infty} + \|\bar{L}u - L^{\varepsilon}v^{\varepsilon}\|_{\infty} \right] = 0,$$

where

$$v^{\varepsilon}(x) = u(x) + \varepsilon^{\alpha} \overline{L}_0 u(x) \psi_1\left(\frac{x}{\varepsilon}\right), \quad x \in \mathbb{R}^d.$$

• In general case: Limit theory for semimartingale (Jacod-Shiryaev, 03'), Feller processes (Schilling, 98'). See Tomisaki (92'); Fujiwara-Tomisaki (94').

In balanced case, i.e. k(x, z) = k(x, -z): By the corrector method, we can prove that for every u ∈ C_c[∞](ℝ^d), there exists a class of functions {v^ε}_{ε>0} such that

$$\lim_{\varepsilon \to 0} \left[\|u - v^{\varepsilon}\|_{\infty} + \|\bar{L}u - L^{\varepsilon}v^{\varepsilon}\|_{\infty} \right] = 0,$$

where

$$v^{\varepsilon}(x) = u(x) + \varepsilon^{\alpha} \overline{L}_0 u(x) \psi_1\left(\frac{x}{\varepsilon}\right), \quad x \in \mathbb{R}^d.$$

• In general case: Limit theory for semimartingale (Jacod-Shiryaev, 03'), Feller processes (Schilling, 98'). See Tomisaki (92'); Fujiwara-Tomisaki (94').

In balanced case, i.e. k(x, z) = k(x, -z): By the corrector method, we can prove that for every u ∈ C_c[∞](ℝ^d), there exists a class of functions {v^ε}_{ε>0} such that

$$\lim_{\varepsilon \to 0} \left[\|u - v^{\varepsilon}\|_{\infty} + \|\bar{L}u - L^{\varepsilon}v^{\varepsilon}\|_{\infty} \right] = 0,$$

where

$$v^{\varepsilon}(x) = u(x) + \varepsilon^{lpha} \overline{L}_0 u(x) \psi_1\left(rac{x}{arepsilon}
ight), \quad x \in \mathbb{R}^d.$$

Thank you for your attention!