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Physical model

The Quasi-Geostrophic system of equations models the evolution of the
temperature in the atmosphere.

It can be rigorously derived from the Primitive Equations (Euler equation with
Coriolis force and Boussinesq approximation, see Bourgeois Beale (94) and
Desjardins Grenier 98)

At large scale, this Rossby effect is very important. Asymptotically, this leads to
the so-called geostrophic balance which enforces the wind velocity to be
orthogonal to the gradient of the pressure in the atmosphere (see Pedlosky).

This model is extensively used in computations of oceanic and atmospheric
circulation, for instance, to simulate global warming.
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The unknown and parameters

The dynamic is encoded in Ψ, the stream function for the geostrophic flow.

That is, the 3D velocity (w ,U) = (0, u, v) has its horizontal component verifying

(u, v) = (−∂x2 Ψ, ∂x1 Ψ), or in short : U = ∇⊥Ψ,

where we denote
∇Ψ = (0, ∂x1 Ψ, ∂x2 Ψ).

From the model, the buoyancy is given by

Θ = ∂zΨ.

We denote
∇λφ = (λ∂zφ, ∂x1φ, ∂x2φ), Lλφ = div (∇λφ).

where λ = −1/Θ0
z , is a given function, of z only, associated to the buoyancy of a

reference state.
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The equation

The function Ψ is solution to the following Initial Boundary value problem:

(∂t +∇⊥
Ψ · ∇)(LλΨ + β0x2) = 0, t > 0, z > 0, x ∈ R2,

(∂t +∇⊥
Ψ · ∇)γν(∇λΨ) = ν∆Ψ, t > 0, z = 0, x ∈ R2,

Ψ(0, z, x) = Ψ0(z, x). t = 0, z > 0, x ∈ R2.

The parameter β0 comes from the usual β-plane approximation. The term γν(∇λΨ)

stands for the Neumann condition at z = 0 associated to the operator LλΨ. If λ is
regular, this coincides with −λ(0)∂zΨ(0, ·). The ν term is due to the Ekman pumping.
ν = 0 corresponds to the inviscid case.

Both, the value of the elliptic operator LλΨ, and the Neumann condition γν(∇λΨ)

at the boundary z = 0, are advected by the stratified flow with velocity U = ∇⊥Ψ.
At each time, Ψ can be recovered, solving the boundary value elliptic equation.

Main difficulty: treatment of the boundary condition.
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The inviscid case

We assume that ν = 0, and that there exists Λ > 0 such that

1
Λ
≤ λ(z) ≤ Λ, for z ∈ R+.

Theorem (Puel-V.)

Consider an initial value Ψ0 such that

LλΨ0 and ∇λΨ0 are in L2(R+ × R2), γν(∇λΨ0) ∈ L2(R2).

Then, there exists Ψ weak solution to the Quasi-Geostrophic equation on
(0,∞)× R+ × R2, such that for every T > 0,
∇λΨ ∈ L∞(0,T ; L2(R+ × R2)) ∩ C0(0,T ; L2

loc(R+ × R2)).

Novack recently extended the theory to general Lp.
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Lateral boundary conditions

We consider a domain of the form R+ × Ω, where Ω ⊂ R2 is bounded. Think, for
instance about a rotating box filled with a fluid.

Theorem (Novack-V.)

The natural lateral boundary conditions on R+ × ∂Ω are

Ψ depends only on z on R+ × ∂Ω,

d
dt

∫
∂Ω

∂νΨ dx̂ = 0.

We can also construct global weak solutions of QG with the addition of these
boundary conditions.

This corresponds to a partial Dirichlet condition (up to the dependency on z), together
with a mean value of Neumann condition on ∂Ω.
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The case with Ekman pumping

We assume that λ(z) = 1, and ν > 0.

Theorem (Novack-V.)

Consider an initial value ∇Ψ0 ∈ L2(R3
+) ∩ Hp((0,∞)× R2) with p ≥ 3.

Then, there exists a unique global solution ∇Ψ to the Quasigeostrophic equation on
(0,∞)× R+ × R2, such that for every T > 0, ∇λΨ ∈ C0(0,T ; Hp(R+ × R2)).

Especially, if the initial is smooth (C∞), then the unique solution is also
smooth.

Alexis Vasseur Recent results for the 3D QG 8 / 20



Main difficulty

To simplify the exposition, let us consider the case with out forcing with β = 0, and
λ = 1.

(∂t +∇⊥Ψ · ∇)(∆Ψ) = 0, for z > 0,

(∂t +∇⊥Ψ · ∇)(∂zΨ) = 0, for z = 0,

Ψ(0, z, x) = Ψ0(z, x). t = 0.

A priori estimates: for any 1 ≤ p ≤ ∞:

‖∆Ψ(t)‖Lp(R+×R2) ≤ ‖∆Ψ(0)‖Lp(R+×R2),

‖∂zΨ(t , 0)‖Lp(R2) ≤ ‖∂zΨ(0, 0)‖Lp(×R2),

No compactness on the trace of ∂zΨ at z = 0 !

Alexis Vasseur Recent results for the 3D QG 9 / 20



A special case: the Surface Quasi Geostrophic
Equation

If ∆Ψ(0) = 0, then ∆Ψ(t) = 0 for all t ≥ 0.

Denote θ = ∂zΨ defined at z = 0. Then θ is solution to

∂tθ + U.∇θ = 0, t > 0, (x , y) ∈ R2, (1)

θ = θ0, t = 0, (x , y) ∈ R2, (2)

and the velocity U can be expressed in R2, via a nonlocal operator, as

U = ∇⊥∆−1/2θ.

This model has been popularized as a toy problem for 3D fluid mechanics (see
Constantin, Majda, Held, Pierrehumbert, Garner, Swanson ...).

Our theorem extends to QG the result of Resnick for SQG, using different
techniques.
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A new formulation (1)

The proof does NOT use (and does not show) compactness on the trace of ∂zΨ
at z = 0.

It is based on a reformulation of the problem into a system of equations (without
equation on the trace).

The stability (and compactness) for this problem is pretty simple.

We then have to show the equivalence between the two formulations.
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A new formulation (2)

Consider the Hodge decomposition in L2(R+ × R2):

u = ∇λφ+ curlv = Pλu + Pcurlu,

with curlv · ν = 0 at z = 0.

The QG problem can be reformulated as

∂t∇λΨ + Pλ(∇̄Ψ⊥ · ∇̄∇λΨ) = 0, on R+ × R2 × R+.

Taking the div of the equation gives the first QG equation, thanks to

div (Pλ·) = div (·), ∂i (∇̄Ψ)⊥ · ∇̄∂i Ψ = 0.

Taking the trace of the system a z = 0 gives (formally) the trace condition of QG,
since formally, at z = 0

Pλ(f ) · ν = f · ν.
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Similarity with the Euler equation

There is a strong similarity with the 2D Euler equation in the half plane.

QG equation:

∂t∇λΨ + Pλ(∇̄Ψ⊥ · ∇̄∇λΨ) = 0, on R+ × R2 × R+.

Note that we have Pcurl(∇λΨ) = 0.

Euler Equation:

∂tcurlv + Pcurl[curlv · ∇curlv ] = 0, (t , x , z) ∈ R+ × R2 × R+.

with Pλ(curlv) = 0 (that is curlv · ν = 0 at z = 0).

The first equation of QG is equivalent to the vorticity equation of Euler:

QG:
∂tdiv∇λΨ + ∇̄Ψ⊥ · ∇̄(div∇λΨ) = 0

Euler:
∂tcurlcurlv + curlv · ∇(curlcurlv) = 0.
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Proof of the Theorem

Compactness holds for the reformulated problem.

Note that Pλ commutes with ∇̄, and is continuous in Lp.

The two formulation of QG are equivalent.
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A special case: the Surface Quasi Geostrophic
Equation

If ∆Ψ(0) = 0, then ∆Ψ(t) = 0 for all t ≥ 0.

Denote θ = ∂zΨ defined at z = 0. Then θ is solution to

∂tθ + U.∇θ = ν∆Ψ, t > 0, (x , y) ∈ R2, (3)

θ = θ0, t = 0, (x , y) ∈ R2, (4)

and the velocity U and the Ekman pumping term ν∆Ψ can be expressed in R2,
via a nonlocal operator, as

U = ∇⊥∆−1/2θ, ν∆Ψ = ν∆1/2θ.

The propagation of regularity for this equation has first been proved by Kiselev,
Nazarov and Volberg. The global regularity of solutions with initial values in L2

has been proved first by Caffarelli V. Several other proofs has been proposed by
Kiselev and Volberg, and Constantin and Vicol.
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The 3D case

In the 3D case, the equation in z > 0 is hyperbolic. We can have only
propagation of regularity.

We need the propagation of almost Lipschitz norm (possible log Lipschitz).

The regularization effects on the boundary are only Cα.
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Sketch of the proof (1)

We decompose the solution Ψ = Ψ1 + Ψ2 into two components as follows:{
∆Ψ1 = 0
∂νΨ1 = ∂νΨ

{
∆Ψ2 = ∆Ψ
∂νΨ2 = 0.

The bulk of the proof is centered around verifying a version of the
Beale-Kato-Majda criterion.

The equation on the boundary of θ = ∂νΨ1 is of the form

∂tθ + u · ∇θ + (−∆)
1
2 θ = f ,

with f = ∆Ψ2.

The natural a priori bound for f is in B0
∞,∞.

Using De Giorgi techniques, we get θ bounded in Cα.
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Sketch of the proof (2)

Bootstrapping an increase of regularity on the Cα on the drift-diffusion equation
on the boundary gives that ∂νΨ ∈ L∞(0,T ; B1

∞,∞) on the boundary.

Using that the flow is stratified, this gives the "almost Lipschitz" bound needed
on the velocity in z > 0 generated by the boundary.
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Remark on the lateral boundary conditions

In the case of the inviscid SQG, defined on a Bounded domain Ω ⊂ R2, we need
to define the velocity U.

Constantin and Ignatova (17) (see also Constantin and Nguyen) proposed to
define it through the Operator ∆̄

−1/2
D with Dirichlet boundary condition 0 on ∂Ω:

U = ∇̄⊥∆̄
−1/2
D θ.

This corresponds to a Dirichlet condition Ψ = 0 on R+ × ∂Ω for the 3D QG.

This is not the boundary condition derived from the primitive equation.

The corresponding boundary condition for SQG can be retrieved using the
Extension Operator of Caffarelli-Silvestre.
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Thank you

Thank You !!
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