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Introduction to the Muskat problem

Consider the general transport equation

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

Here ρ is an “active scalar” which is driven by the
incompressible velocity u:

∇ · u = 0.

This type of system comes up in many contexts in fluid
dynamics and beyond by taking a suitable choice of u.

Vortex Patch Problems
Surface Quasi-geostrophic equation (SQG):

u def
= R⊥ρ = (−R2ρ,R1ρ), R̂j = i

ξj

|ξ|

Muskat Problem (using Darcy’s law.)



Introduction to the Muskat problem

Consider the general transport equation

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

Here ρ is an “active scalar” which is driven by the
incompressible velocity u:

∇ · u = 0.

This type of system comes up in many contexts in fluid
dynamics and beyond by taking a suitable choice of u.

Vortex Patch Problems
Surface Quasi-geostrophic equation (SQG):

u def
= R⊥ρ = (−R2ρ,R1ρ), R̂j = i

ξj

|ξ|

Muskat Problem (using Darcy’s law.)



Introduction to the Muskat problem

Consider the general transport equation

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

Here ρ is an “active scalar” which is driven by the
incompressible velocity u:

∇ · u = 0.

This type of system comes up in many contexts in fluid
dynamics and beyond by taking a suitable choice of u.

Vortex Patch Problems

Surface Quasi-geostrophic equation (SQG):

u def
= R⊥ρ = (−R2ρ,R1ρ), R̂j = i

ξj

|ξ|

Muskat Problem (using Darcy’s law.)



Introduction to the Muskat problem

Consider the general transport equation

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

Here ρ is an “active scalar” which is driven by the
incompressible velocity u:

∇ · u = 0.

This type of system comes up in many contexts in fluid
dynamics and beyond by taking a suitable choice of u.

Vortex Patch Problems
Surface Quasi-geostrophic equation (SQG):

u def
= R⊥ρ = (−R2ρ,R1ρ), R̂j = i

ξj

|ξ|

Muskat Problem (using Darcy’s law.)



Introduction to the Muskat problem

Consider the general transport equation

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

Here ρ is an “active scalar” which is driven by the
incompressible velocity u:

∇ · u = 0.

This type of system comes up in many contexts in fluid
dynamics and beyond by taking a suitable choice of u.

Vortex Patch Problems
Surface Quasi-geostrophic equation (SQG):

u def
= R⊥ρ = (−R2ρ,R1ρ), R̂j = i

ξj

|ξ|

Muskat Problem (using Darcy’s law.)



The Muskat Problem

Consider two incompressible (∇ · u(x , t) = 0) immiscible fluids
in porous media under the assumption of no surface tension. In
3D, this scenario is modeled using the classical Darcy’s law

µ(x , t)u(x , t) = −∇p(x , t)− ρ(x , t)e3,

where the velocity of the fluid u is proportional to the spatial
gradient pressure ∇p and the gravity force.

The densities and viscosities of each fluid are given by

µ(x , t) =

{
µ1, x ∈ D1(t),
µ2, x ∈ D2(t),

ρ(x , t) =

{
ρ1, x ∈ D1(t),
ρ2, x ∈ D2(t).

For the transport equation, initial data of this form propagate
this structure forward in time, where Di(t) moving domains.
Widely noted similarity to Hele-Shaw ( Saffman & Taylor (1958) )
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The Muskat problem in 2D and 3D when Aµ = 0.

The Atwood number is given by

Aµ =
µ2 − µ1

µ2 + µ1 ∈ [0,1].

Many works assume Aµ = 0, in this case the Muskat problem
can takes the following form.

In 2D when Aµ = 0:

ft (α, t) =
ρ2−ρ1

2π
PV

∫
R

β(∂αf (α, t)− ∂αf (α− β, t))

β2 + (f (α, t)− f (α− β, t))2 dβ,

f (α,0) = f0(α), α ∈ R.

In 3D when Aµ = 0:

ft (x , t) =
ρ2−ρ1

2π
PV

∫
R2

(∇f (x , t)−∇f (x − y , t)) · y
[|y |2 + (f (x , t)− f (x − y , t))2]3/2 dy ,

f (x ,0) = f0(x), x ∈ R2.

Here f defines the interface, which is the free boundary ∂Di .
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The linearized equation when Aµ = 0 in R
This equation for f can be linearized around the flat solution:

f L
t (α, t) = −ρ

2 − ρ1

2
Λ(f L)(α, t), Λ = (−∆)1/2.

The linearized equation can be solved by Fourier transform:

f̂ L(ξ) = f̂0(ξ) exp
(
− ρ2 − ρ1

2
|ξ|t
)
.

ρ2 > ρ1 stable case, we have well-posedness.
ρ2 < ρ1 unstable case, we have ill-posedness.
See Ambrose (2004), Córdoba & Gancedo (2007), ...
Also we have the L2 evolution for the linear equation:

d
dt
‖f L‖2L2(t) = −ρ

2−ρ1

π

∫
R

∫
R

( f L(α, t)−f L(β, t)
α− β

)2
dαdβdt .

This is a smoothing estimate. Similar in 3D.
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Smoothing for the non-linear equation?

ft (α, t) =
ρ2 − ρ1

2π
PV

∫
R

dβ
(∂αf (α, t)− ∂αf (α− β, t))β

β2 + (f (α, t)− f (α− β, t))2 .

Satisfies L2 maximum principle:

d
dt
‖f‖2L2(t) = −ρ

2−ρ1

π

∫
R

∫
R

ln
(

1+
( f (α, t)−f (β, t)

α− β

)2)
dαdβ

For which it is possible to bound as follows:

∫
R

∫
R

ln
(

1+
( f (α, t)−f (β, t)

α− β

)2)
dαdβ ≤ 4π

√
2‖f‖L1(t).

Don’t see a non-linear smoothing effect at the level of f in L2.
See P. Constantin, D. Córdoba, F. Gancedo - S. (2013). Also a
similar “no-smoothing” statement in 3D. And Córdoba, J.
Gómez-Serrano and A. Zlatos (2017)
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Maximum Principle: Constantin, Córdoba-Gancedo, S
(2013) in 2D:

‖∇f0‖L∞(R) < 1 =⇒ ‖∇f‖L∞(R)(t) < 1.

Then Constantin, Córdoba, Gancedo, Rodriguez-Piazza, S
(2016) in 3D:

‖∇f0‖L∞(R2) < 1/3 =⇒ ‖∇f‖L∞(R2)(t) < 1/3.

These statements allow you to conclude the global
existence of weak solutions.

Theorem (Constantin-Córdoba-Gancedo- Piazza- S (2016))

In 2D (d = 1) we suppose for some 0 < δ < 1 that∫
|ξ|1 |̂f0(ξ)|dξ,≤ c0, 2

∑
n≥1

(2n + 1)1+δc2n
0 ≤ 1, c0 ≥

1
3

Then there is a unique Muskat solution with initial data f0 that
satisfies f ∈ C([0,T ]; H l(Rd )) for any T > 0.



A few recent papers

Constantin, Gancedo, Shvydkoy, Vicol (2017): Local well
posedness for initial data with finite slope. Further the
solution has a continuation criterion as long as
‖f ′0‖L∞ <∞. Also global well posedness for initial data with
very small slope:

f0 ∈ L2(R), f ′′0 ∈ Lp(R),1 < p ≤ ∞, ‖f ′0‖L∞ � 1

Matioc (2017): Well posedness 2D (d = 1) for initial data
f0 ∈ H l(R) for l ∈ (3/2,2). (with surface tension for
l ∈ (2,3).)
Deng, Lei, Lin (2017) In 2D, prove the existence of global
weak solutions for arbitrarily large monotonic initial data.
Cameron (2017), in 2D, introduces a modulus of continuity
and proves that weak solutions are in fact C0

t ,α ∩ C1,γ
loc,t ,α.

And they are unique if f0 ∈ C1,ε.
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Muskat problem with Viscosity Jump Aµ 6= 0

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

µ(x , t)u(x , t) = −∇p(x , t)− ρ(x , t)e3,

The densities and viscosities of each fluid are given by

µ(x , t) =

{
µ1, x ∈ D1(t),
µ2, x ∈ D2(t),

ρ(x , t) =

{
ρ1, x ∈ D1(t),
ρ2, x ∈ D2(t).

The open sets D1(t) and D2(t) are connected and move with
the velocity of the fluid

dx
dt

(t) = u(x(t), t), ∀ x(t) ∈ Dj(t), or x(t) ∈ ∂Dj(t).



Contour Equation with Viscosity Jump Aµ 6= 0

Then the evolution equation for the interface in the
Eulerian-Lagrangian view is

∂Dj(t) = {X (α, t) : α ∈ R2}

where

∂tX (α, t) = BR(X , ω)(α, t)+C1(α, t)∂α1X (α, t)+C2(α, t)∂α2X (α, t),

where BR is the well-known Birkhoff-Rott integral

BR(X , ω)(α, t) = − 1
4π

PV
∫
R2

X (α, t)− X (β, t)
|X (α, t)− X (β, t)|3

∧ ω(β, t)dβ.

The “constants” C1 and C2 can be chosen. And ω is the
amplitude of the vorticity.



Vorticity Equations

The vorticity ω is related to the potential jump Ω(α, t) by

ω(α, t) = ∂α2Ω(α, t)∂α1X (α, t)− ∂α1Ω(α, t)∂α2X (α, t).

The potential jump is given implicitly by

Ω(α, t) = AµD(Ω)(α, t)−2AρX3(α, t), Aµ =
µ2 − µ1

µ2 + µ1 , Aρ =
ρ2 − ρ1

ρ2 + ρ1 ,

where D is the double layer potential

D(Ω)(α, t) =
1

2π
PV

∫
R2

X (α, t)− X (β, t)
|X (α, t)− X (β, t)|3

· N(β, t)Ω(β, t)dβ.

Here N(α, t) = ∂α1X (α, t) ∧ ∂α2X (α, t).

Recall the Atwood Number is Aµ: And we observe that Aµ = 0
simplifies the situation dramatically, the equation is more local.



Evolution Equation for the interface

When the evolving interface can be described as a graph

X (α, t) = (α1, α2, f (α, t)), α = (α1, α2) ∈ R2

then the equations can be reduced to one as follows

ft (α) =− 1
4π

∫
R2

(α1 − β1)ω2(β)− (α2 − β2)ω1(β)

|(α1, α2, f (α))− (β1, β2, f (β))|3
dβ

+ C1(α)∂α1 f (α) + C2(α)∂α2 f (α).

We further obtain the coefficients as

C1(α) =
1

4π
PV
∫
R2

(α2 − β2)ω3(β)− ω2(β)(f (α)− f (β))

|(α1, α2, f (α))− (β1, β2, f (β))|3
dβ,

C2(α) =
1

4π
PV
∫
R2

ω1(β)(f (α)− f (β))− (α1 − β1)ω3(β)

|(α1, α2, f (α))− (β1, β2, f (β))|3
dβ.
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(α1 − β1)ω2(β)− (α2 − β2)ω1(β)

|(α1, α2, f (α))− (β1, β2, f (β))|3
dβ

+ C1(α)∂α1 f (α) + C2(α)∂α2 f (α).

We further obtain the coefficients as

C1(α) =
1

4π
PV
∫
R2

(α2 − β2)ω3(β)− ω2(β)(f (α)− f (β))

|(α1, α2, f (α))− (β1, β2, f (β))|3
dβ,

C2(α) =
1

4π
PV
∫
R2

ω1(β)(f (α)− f (β))− (α1 − β1)ω3(β)

|(α1, α2, f (α))− (β1, β2, f (β))|3
dβ.



Revealing the Parabolic structure when Aµ 6= 0

After several further calculations we can find the equations

ft = −AρΛf + N(f ), where N(f ) = N1(f ) + N2(f ) + N3(f ),

Above we observe the smoothing operator Λf . Here
N(f ) = N(f ,Ω) and

N1 =
Aµ
2

ΛD(Ω)(α),

N2 =
1

4π
PV
∫ ( β

|β| + ∆βf (α)∇f (α)

(1 + (∆βf (α))2)3/2 −
β

|β|

)
· ∇Ω(α− β)

|β|2
dβ,

N3 =
Aµ
4π

PV
∫
R2

β · ∇⊥f (α)∇D(Ω)(α− β) · ∇⊥f (α− β)

(1 + (∆βf (α))2)
3
2

dβ
|β|3

.

Now we can see some smoothing in the equations at the level
of f plus complicated non-linear terms.



A few references when Aµ 6= 0

(Córdoba, Córdoba, Gancedo (2013)) For a general curve,
Local well-posedness in Sobolev spaces if the initial
interface satisfies the Rayleigh-Taylor condition:

(∇p2 −∇p1) · (ν2 − ν1) > 0

where ν j is inner unit normal to domain Dj .

Cheng, Granero-Belinchón and Shkoller (2016): global in
time classical solutions for small initial data in subcritical
initially small H2 norms in 2D. Aµ 6= 0.
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Gain of Regularity also when Aµ 6= 0

Define the analytic norms for ν > 0:

‖f‖Fs,p
ν

= ‖etν|ξ||ξ|s f̂ (ξ)‖Lp
ξ

where in the case p = 2, we call this space Hs
ν .

Theorem (Gancedo, García-Juárez, Patel, S (2017): GGPS)

We can prove global existence and uniqueness in F1,1 ∩ L2 with
medium size initial data in the stable case allowing µ1 6= µ2.
Moreover, the solution is instantly analytic; there exists a ν > 0
such that for s ≥ 0 there exist constants Cs, C̃s > 0 such that

d
dt
‖f‖Fs,1

ν
(t) ≤ −Cs‖f‖Fs+1,1

ν
(t) and ‖f‖Fs,1

ν
(t) ≤ C̃s

for t ≥ Ts. For 0 ≤ s ≤ 1, we can take Ts = 0.

We have a similar statement for ‖f‖H r
ν
(t).
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Size of k(|Aµ|) > 0

We assume initially that

‖f0‖F1,1
0

= ‖|ξ |̂f0(ξ)‖L1
ξ
< k(|Aµ|), ‖f0‖L2 <∞.

Below we give a numerical estimate of the size of the constant
k(|Aµ|) for 0 ≤ |Aµ| ≤ 1. We need k(|Aµ|) to be small enough to
make a high order rational polynomial be positive.

Figure: k(|Aµ|)



Instant Analyticity

By introducing the formulas for the vorticity ω into I1, I2 and I3,
we can express the interface equation as

ft (α) = Ĩ1 + Ĩ2 + Ĩ3
where

Ĩ1 = −Aρ
2π

Λf (α)− Aµ
4π

ΛD(Ω)(α),

in which

D(Ω)(α) =
1

2π

∫ β1
|β|∂α1 f (α− β) + β2

|β|∂α2 f (α− β)−∆βf (α)

(1 + (∆βf (α))2)3/2
Ω(α− β)

|β|2
,

Ĩ2 =
2∑

i=1

1
4π

∫ ( βi
|β| + ∆βf (α)∂αi f (α)

(1 + (∆βf (α))2)3/2 −
βi

|β|

)
∂αi Ω(α− β)

|β|2
dβ

and

Ĩ3 =
1

4π

∫ β2
|β|∂α1 f (α)− β1

|β|∂α2 f (α)

(1 + (∆βf (α))2)3/2
ω3(α− β)

|β|2
dβ.



Differentiating in time:

d
dt
‖f‖Fs,1

ν
(t) = ν

∫
|ξ|s+1etν|ξ| |̂f (ξ)|dξ+

∫
|ξ|setν|ξ|1

2

( f̂t f̂ + f̂ f̂t
|̂f (ξ)|

)
dξ

The linear term in the equation gives

−Aρ
2π

∫
|ξ|setν|ξ|1

2
|ξ |̂f f̂ + f̂ |ξ |̂f
|̂f (ξ)|

dξ = −Aρ
2π

∫
|ξ|s+1etν|ξ| |̂f (ξ)|dξ

= −Aρ
2π
‖f‖Fs+1,1

ν

then

d
dt
‖f‖Fs,1

ν
(t) ≤

(
ν − Aρ

2π

)
‖f‖Fs+1,1

ν
+ non-linear terms

It remains to bound the nonlinear terms of the evolution by the
negative linear growth:

(
ν − Aρ

2π

)
< 0.
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We consider the one of the terms in Ĩ2 as an example.

Using
Taylor expansion, since ‖∆βf‖L∞ ≤ ‖∇f‖L∞ ≤ ‖f‖F1,1 < 1:

I2,1 =

∫
∆βf (α)∂αi f (α)

(1 + (∆βf (α))2)3/2
∂αi Ω(α− β)

|β|2
dβ

=

∫ ∑
n≥0

an (∆βf (α))2n+1 ∂αi Ω(α− β)∂αi f (α)
dβ
|β|2

Taking the Fourier transform, we can show the estimate

|Î2,1| ≤
∑
n≥0

an|∂̂αi Ω(·)| ∗2n+2 (| · ||̂f |(·))

an are the coefficients from Taylor expansion of 1/(1 + x2)3/2

and ∗2n+2(g) represents 2n + 2 iterated convolutions of g.
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Plugging this into the evolution inequality for ‖f‖Fs,1
ν

:

∫
|ξ|setν|ξ|1

2

( f̂t f̂ + f̂ f̂t
|̂f (ξ)|

)
dξ ≤

∫
|ξ|setν|ξ|1

2

( Î2,1 f̂ + f̂ Î2,1
|̂f (ξ)|

)
dξ+· · ·

≤
∫
|ξ|setν|ξ||Î2,1(ξ)|dξ + · · ·

≤
∑
n≥0

an

∫
|ξ|s
(

etν|ξ||∂̂α1Ω(ξ)| ∗2n+2 (|ξ||̂f |(ξ))
)

+ · · ·

We can now apply the triangle inequality to distribute the
exponential and the multiplier |ξ|s to each term to obtain

≤
∑
n≥0

an

∫
(|ξ|setν|ξ||∂̂α1Ω(ξ)|) ∗2n+2 (|ξ|etν|ξ| |̂f |(ξ))

+(2n+2)(|etν|ξ|∂̂α1Ω(ξ)|)∗2n+1(|ξ|etν|ξ| |̂f |(ξ))∗(|ξ|s+1etν|ξ| |̂f |(ξ))dξ
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From here, we apply Young’s inequality to obtain that this term
is bounded by

≤
∑
n≥0

an‖∂α1Ω‖Fs,1
ν
‖f‖2n+2
F1,1
ν

+(2n+2)‖∂α1Ω‖F0,1
ν
‖f‖2n+1
F1,1
ν
‖f‖Fs+1,1

ν

Using the equations for the vorticity ∂α1Ω can be bounded

‖∂αi Ω‖F0,1
ν
≤ Bµ and ‖∂αi Ω‖Fs,1

ν
≤ B̃µ‖f‖Fs+1,1

ν

The constants Bµ, B̃µ → 0 as ‖f‖F1,1
ν
→ 0 and are uniform in ν.
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Hence, for ‖f‖F1,1
ν

(t) of medium size depending on

Aµ = (µ2 − µ1)/(µ2 + µ1)

and ν > 0 small enough, the nonlinear terms are sufficiently
small to conclude

d
dt
‖f‖Fs,1

ν
(t) ≤ −Cµ‖f‖Fs+1,1

ν
(t)

for a positive constant Cµ and 0 ≤ s ≤ 1.

R. Strain On the Muskat problem with viscosity jump



Gain of L2 Analyticity

It suffices to perform estimates on ‖f‖L2
ν

to instantly gain
regularity in Hs:

‖f‖Hs ≤ ‖(1 + |ξ|2)s/2e−tν|ξ|‖L∞‖f‖L2
ν

Theorem

Suppose f0 ∈ L2 ∩ F1,1 and ‖f0‖F1,1 satisfying the medium size
condition. Then, f (t) ∈ L2

ν instantly for all t > 0. Moreover, this
implies that f (t) ∈ Hs for any s > 0 instantly for all t > 0.

1
2

d
dt
‖f‖2L2

ν
(t) = (ν−Aρ

4π
)‖f‖2

Ḣ1/2
ν

+

∫
Aµ
4π
|ξ|e2νt |ξ||D̂(Ω)(ξ)||̂f (ξ)|dξ

+

∫
e2νt |ξ|| ̂̃I2(ξ)||̂f (ξ)|dξ +

∫
e2νt |ξ|| ̂̃I3(ξ)||̂f (ξ)|dξ
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We now bound the nonlinear terms. For example,∫
|ξ|e2νt |ξ||D̂(Ω)(ξ)||̂f (ξ)|dξ ≤ ‖f‖

Ḣ1/2
ν
‖D(Ω)‖

Ḣ1/2
ν

and using iterated Young’s inequality we have∫
e2νt |ξ|| ̂̃I1,1

2 (ξ)||̂f (ξ)|dξ

≤ 1
2

∑
n≥0

an+1

∫
e2νt |ξ| |̂f (ξ)||∂̂α1Ω(·)| ∗ (∗2n+2| · ||f̂ (·)|)dξ

≤ 1
2

∑
n≥0

an+1

∫
eνt |ξ||ξ||Ω̂(ξ)|·(eνt |·| |̂f (·)|)∗(∗2n+2|·|eνt |·| |̂f (·)|)dξ

≤
∑
n≥0

(n+1)an+1
ε

2
‖Ω‖2

Ḣ1/2
ν

+(n+1)an+1
1
2ε
‖f‖2L2

ν
‖f‖2
F3/2,1
ν
‖f‖4n+2
F1,1
ν

+
1
2

an+1‖Ω‖Ḣ1/2
ν
‖f‖

Ḣ1/2
ν
‖f‖2n+2
F1,1
ν
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It remains to bound ‖D(Ω)‖
Ḣ1/2
ν

and ‖Ω‖
Ḣ1/2
ν

appropriately:

‖D(Ω)‖
Ḣ1/2
ν
≤
∑
n≥0

an‖|ξ|
1
2 eνt |ξ|(∗2n+1| · ||f̂ (·)|) ∗ |Ω̂(·)|‖L2

ν

≤
∑
n≥0

an‖f‖2n+1
F1,1
ν
‖Ω‖

Ḣ1/2
ν

+ (2n + 1)an‖f‖F3/2,1
ν
‖f‖2n
F1,1
ν
‖Ω‖L2

ν
,

which implies

‖Ω‖
Ḣ1/2
ν
≤ (1− Aµ

∑
n≥0

an‖f‖2n+1
F1,1
ν

)−1

·
(

Aµ
∑
n≥0

(2n + 1)an‖f‖F3/2,1
ν
‖f‖2n
F1,1
ν
‖Ω‖L2

ν
+ 2Aρ‖f‖Ḣ1/2

ν

)
Hence

‖D(Ω)‖
Ḣ1/2
ν
≤ C(‖f‖F1,1)

(
‖f‖F3/2,1

ν
‖Ω‖L2

ν
+ ‖f‖

Ḣ1/2
ν

)
where the constant C(‖f‖F1,1)→ 0 as ‖f‖F1,1

ν
→ 0.
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ν
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1
2 eνt |ξ|(∗2n+1| · ||f̂ (·)|) ∗ |Ω̂(·)|‖L2

ν
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∑
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an‖f‖2n+1
F1,1
ν
‖Ω‖

Ḣ1/2
ν

+ (2n + 1)an‖f‖F3/2,1
ν
‖f‖2n
F1,1
ν
‖Ω‖L2

ν
,

which implies

‖Ω‖
Ḣ1/2
ν
≤ (1− Aµ

∑
n≥0

an‖f‖2n+1
F1,1
ν

)−1

·
(

Aµ
∑
n≥0

(2n + 1)an‖f‖F3/2,1
ν
‖f‖2n
F1,1
ν
‖Ω‖L2

ν
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ν
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Ḣ1/2
ν

+ (2n + 1)an‖f‖F3/2,1
ν
‖f‖2n
F1,1
ν
‖Ω‖L2

ν
,

which implies

‖Ω‖
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Summarizing,

1
2

d
dt
‖f‖2L2

ν
(t) ≤

(
ν − Aρ

4π
+ c(ε, ‖f‖F1,1

ν
)
)
‖f‖2

Ḣ1/2
ν

+
1
2ε

c̃(‖f‖F1,1
ν

)‖f‖2
F3/2,1
ν
‖f‖2L2

ν

where the constants go to 0 as ‖f‖F1,1
ν
→ 0 or as ε→ 0.

For ε
sufficiently small, by Gronwall’s inequality,

‖f‖L2
ν
(t) ≤ C‖f0‖L2 exp

(
C
∫ t

0
‖f‖2
F3/2,1
ν

dt
)

Finally, the exponential term on the right hand side is uniformly
bounded using interpolation∫ t

0
‖f‖2
F3/2,1
ν

dt ≤
∫ t

0
‖f‖F1,1

ν
‖f‖F2,1

ν
dt

≤ ‖f‖L∞t F1,1
ν

∫ t

0
‖f‖F2,1

ν
dt ≤ ‖f0‖2F1,1 .
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Ill-posedness

The gain of Sobolev regularity motivates the ill-posedness of
the unstable case ρ1 > ρ2.

There exists initial data satisfying

‖f0‖L2 <∞, ‖f0‖F1,1 < kµ and ‖f0‖Hs =∞

for constant kµ and s > 0, for example:
Let for n ≥ N for some N > 0 integer

ξ f̂0(ξ) =

{
nσ if ξ ∈ [nδ,nδ + 1/nγ ]

0 otherwise

such that γ > σ+ 1, 2δ+ γ > 2σ+ 1 but 2δ(1− s) + γ = 2σ+ 1.

Remark

This example can be adapted to show that even if f ∈ F1,1
ν ∩ L2,

it need not be in Hs.
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Ill-posedness

Theorem (Ill-posedness)

For every s > 0 and ε > 0, there exist a solution f̃ to the
unstable regime and 0 < δ < ε such that ‖f̃‖Hs (0) < ε but
‖f̃‖H r (δ) =∞ for any r > 0.

This is significant because we show instantaneous blow-up of
solutions in very low regularity spaces. In particular, one could
start in Hs with high s and it still blows up in H r for any small r .



Ill-posedness proof

Take f0 ∈ L2 ∩ F1,1 for the Muskat problem in the stable regime
such that ‖f0‖H r =∞.

By the gain of regularity

‖f‖Hs (δ) ≤ ‖e−νδ|ξ||ξ|s‖L∞‖f‖L2
ν
(δ) ≤ c(δ)‖f0‖L2 exp

(
‖f0‖2F1,1

)
< ε

by picking initial data with ‖f0‖L2 � 1.If f (x , t) is a solution to
the stable case problem, then f̃ (x , t) = f (x ,−t + δ) is a solution
to the unstable case ρ1 > ρ2. We conclude

‖f̃‖Hs (0) = ‖f‖Hs (δ) < ε and ‖f̃‖H r (δ) = ‖f0‖H r =∞.
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Rayleigh-Taylor unstable Muskat bubbles

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

We recall the classical Darcy’s law (κ is the permeability)

1
κ
µ(x , t)u(x , t) = −∇p(x , t)− ρ(x , t)e3,

The densities and viscosities of each fluid are given by

µ(x , t) =

{
µ1, x ∈ D1(t),
µ2, x ∈ D2(t),

ρ(x , t) =

{
ρ1, x ∈ D1(t),
ρ2, x ∈ D2(t).

Surface tension at the interface is taken into consideration
through the Laplace-Young’s formula

p1(x)− p2(x) = σk(x), x ∈ ∂D(t), (1)

where k(x) denotes the curvature of the curve ∂D(t), σ > 0 the
surface tension coefficient and p1(x), p2(x) the limit of pressure
at x from inside and outside, respectively.



Equations

Then the boundary is parametrized as

∂Dj(t) = {z(α, t) : α ∈ [−π, π]}

We will study again the dynamics of the free boundary ∂D(t).

Since the fluids are assumed immiscible, the interface is just
advected by the normal velocity field

zt (α, t) · (∂αz(α, t))⊥ = BR(z(α, t)) · (∂αz(α, t))⊥

Here BR is the Birkhoff-Rott integral

BR(z, ω)(α, t) =
1

2π
PV
∫ π

−π

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
ω(β, t)dβ.



Equations continued...

The vorticity in this formulation is

ω(α, t) = 2AµD(z, ω)(α, t) + 2Aσ∂αk(z(α, t))− 2Aρ∂αz2(α, t).

where
D(z, ω)(α, t) = −BR(z, ω)(α, t) · ∂αz(α, t)

=
1

2π
PV
∫ π

−π

(z(α, t)−z(β, t)) · ∂αz(α, t)⊥

|z(α, t)− z(β, t)|2
ω(β, t)dβ.

and

Aµ =
µ2 − µ1

µ2 + µ1
, Aσ =

κσ

µ2 + µ2
, Aρ =

gκ(ρ2 − ρ1)

µ2 + µ1
,

also the curvature is given by

k(α, t) =
∂αz(α, t)⊥ · ∂2

αz(α, t)
|∂αz(α, t)|3

.

From these equations we have a closed system of equations for
the contour evolution system.



Equilibria that are star-shaped bubbles

We will consider gravity driven star-shaped bubbles. That is,
the boundary of the domain D(t) can be parametrized by

z(α, t) = R(1 + f (α, t))(cosα, sinα) + (0, c(t)),

where R is determined as the radius of a circle with the same
volume, V (t), as D(t).

Since this volume is constant in time V (t) = V0, due to

incompressibility, then R =
√

V0
π . Thus, f (α, t) > −1 can be

thought of as a radial perturbation. To simplify notation we shall
write f (α, t) = f (α) when there is no danger of confusion.

...After a good amount of computation the equation requires
that

c′(t) =
Aρ
2π

PV
∫ π

−π

cos (β/2) cos (α− β)

sin (β/2) sinα
dβ = Aρ.

So that when f = 0, the gravity driven circle is a steady state.
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Without Surface Tension, the interface problem is Rayleigh-
Taylor stable if it satisfies the Rayleigh-Taylor condition:

σ(α, t) = −(∇p2(z(α, t), t)−∇p1(z(α, t), t)) · ∂⊥α z(α, t) > 0

From Darcy’s law this can be written as

σ(α, t) =
µ1 − µ2

κ
BR(z, ω)(α, t) ·∂⊥α z(α, t) +g(ρ2−ρ1)∂αz1(α, t)

Here we can see the importance of the relative position
between the denser and lighter fluid.

For a closed curve, sigma cannot be everywhere positive as the
integral of sigma on a closed curve is zero, so it has to be
negative on part of the curve.

Intuitively, if the liquid of the bubble is lighter than the
surrounding fluid (bubble going up), in the upper half of the
bubble the lighter fluid is below the denser one.

What we show is that when surface tension is added, the
regularizing effects allows for global existence in this situation
when you are close enough to a circle.
Yes, you are right!! Also, the part of r-t with jump of viscosities
has mean zero, so the whole r-t has mean zero and it never can
have a positive sign. All the best. Paco
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Theorem (Existence and Uniqueness in 2D(GGPS))

Let f0 ∈ Ḟ1,1 ∩ L2 satisfy the bound

‖f0‖Ḟ1,1 < c

for a constant c = c(|Aµ|,Aσ,Aρ).
Then there exists a global in time unique solution to with
f ∈ L∞(0,T ; Ḟ1,1 ∩ L2)∩ L1(0,T ; Ḟ4,1) such that f (α,0) = f0(α),

‖f‖L2(t) ≤ ‖f0‖L2 ,

and

‖f‖Ḟ1,1(t) + σ

∫ t

0
‖f‖Ḟ4,1(τ)dτ ≤ ‖f0‖Ḟ1,1 ,

We also have the exponential decay on [−π, π] and we can
show the gain of Analytic regularity.



The Equation for the interface
Eventually we obtain the equation for the interface....

∂t f (α) = −
2Aσ
R3

1

2π
PV
∫
∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ
R3

1

2π
PV
∫ f (α)− f (α− β)

1 + f (α)

∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ
R3

1

2π
PV
∫ 1 + f (α− β)

1 + f (α)
k2(α− β)

∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ

R3(1 + f (α))

1

2π
PV
∫ k3(α− β)

2 sin (β/2)
dβ

+ 2Aµ
1/2π

1 + f (α)
PV
∫ D(f , ω̃)(α− β)

2 sin (β/2)
dβ

−
2Aρ

R

1/2π

1 + f (α)
PV
∫
∂α f (α− β) sin (α− β) + (1 + f (α− β) cos (α− β))

2 sin (β/2)
dβ

1/2π

1 + f (α)
PV
∫

(N(α, β)− 1)
ω̃(α− β)

2 sin (β/2)
dβ

+
1/4π

1 + f (α)
PV
∫ π
−π

∂α f (α)(1+f (α−β))

(∆β f (α))2 + (1 + f (α))(1 + f (α− β))
ω̃(α− β)dβ

+
Aρ

R(1 + f (α))

(
∂αf (α) cosα− (1 + f (α)) sinα

)
.

where

ω̃(α) = 2AµD(f , ω̃)(α) +
2Aσ
R3

∂αk(f (α))−
2Aρ

R

(
∂α f (α) sinα + (1 + f (α)) cosα

)
.



We just used the following notation

N(α, β) =
∂αf (α)∆βf (α)+(1+f (α))(1+f (α−β)) cos (β/2)

(∆βf (α))2 + (1 + f (α))(1 + f (α− β))
,

ω̃(α) = 2AµD(f , ω̃)(α) +
2Aσ
R3

∂αk(f (α))−
2Aρ

R

(
∂α f (α) sinα + (1 + f (α)) cosα

)
.

and we split ∂αk(f (α)) in three terms,

∂αk(f (α)) = −∂3
αf (α)(1 + f (α)) + k2(α)(1 + f (α))∂3

αf (α) + k3(α),

where

k2(α) =

(
1−

1

((∂α f (α))2 + (1 + f (α))2)3/2

)
,

k3(α) =
1

((∂αf (α))2 + (1 + f (α))2)5/2

(
− 3∂2

α f (α)(∂α f (α))3 + 3(∂2
α f (α))2

∂α f (α)(1 + f (α))

+ 3∂2
α f (α)∂αf (α)(1 + f (α))2 − 4(∂α f (α))3(1 + f (α))− (1 + f (α))3

∂αf (α)
)



We use a "Pseudo Hilbert" transform

S(g)(α) =
1

2π
PV
∫ π

−π

g(α− β)

2 sin (β/2)
dβ,

then

Ŝ(g)(α)(k) = ĝ(k)
1

2π
PV
∫ π

−π

e−ikβ

2 sin (β/2)
dβ

= ĝ(k)
−i
2π

PV
∫ π

−π

sin (kβ)

2 sin (β/2)
dβ

= −i sign(k)m(k)f̂ ,

where

m(k) =
1

2π

∫ π

−π

sin (|k |β)

2 sin (β/2)
dβ =

1
2π

|k |∑
j=1

(−1)j+1 8
2j − 1

.
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We also use a "pseudo derivative"

∆βf (α) =
f (α)− f (α− β)

2 sin (β/2)
,

∆̂βf (α) =
1− e−ikβ

2 sin (β/2)
f̂ (β) = m̃(k , β)f̂ (k),

m̃(k , β) =
1− e−ikβ/2e−ikβ/2

2 sin (β/2)

=
eikβ/2 − e−ikβ/2

2 sin (β/2)
e−ikβ/2

= ik
sin (kβ/2)

k sin (β/2)
e−ikβ/2,
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2 sin (β/2)
,

∆̂βf (α) =
1− e−ikβ

2 sin (β/2)
f̂ (β) = m̃(k , β)f̂ (k),

m̃(k , β) =
1− e−ikβ/2e−ikβ/2

2 sin (β/2)

=
eikβ/2 − e−ikβ/2

2 sin (β/2)
e−ikβ/2

= ik
sin (kβ/2)

k sin (β/2)
e−ikβ/2,



The Equation for the interface

∂t f (α) = −
2Aσ
R3

1

2π
PV
∫
∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ
R3

1

2π
PV
∫ f (α)− f (α− β)

1 + f (α)

∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ
R3

1

2π
PV
∫ 1 + f (α− β)

1 + f (α)
k2(α− β)

∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ

R3(1 + f (α))

1

2π
PV
∫ k3(α− β)

2 sin (β/2)
dβ

+ 2Aµ
1/2π

1 + f (α)
PV
∫ D(f , ω̃)(α− β)

2 sin (β/2)
dβ

−
2Aρ

R

1/2π

1 + f (α)
PV
∫
∂α f (α− β) sin (α− β) + (1 + f (α− β) cos (α− β))

2 sin (β/2)
dβ

1/2π

1 + f (α)
PV
∫

(N(α, β)− 1)
ω̃(α− β)

2 sin (β/2)
dβ

+
1/4π

1 + f (α)
PV
∫ π
−π

∂α f (α)(1+f (α−β))

(∆β f (α))2 + (1 + f (α))(1 + f (α− β))
ω̃(α− β)dβ

+
Aρ

R(1 + f (α))

(
∂αf (α) cosα− (1 + f (α)) sinα

)
.



Poincaré Inequality for volume preserving Bubbles

The volume preservation means that

V0 = πR2 = V (t) =
1
2

∫ π

−π
R2(1 + f (α, t))2dα

This implies ∫ π

−π
f (α, t)dα = −1

2

∫ π

−π
(f (α, t))2dα.

Since f (x , t) changes sign then there exists c(t) such that

f (x , t) =

∫ x

c(t)
f ′(α, t)dα,

From here we can prove that for solutions we have

‖f‖F0,1 ≤ C‖f‖F1,1



A look at one term

∂t f (α) = −
2Aσ
R3

1

2π
PV
∫
∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ
R3

1

2π
PV
∫ f (α)− f (α− β)

1 + f (α)

∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ
R3

1

2π
PV
∫ 1 + f (α− β)

1 + f (α)
k2(α− β)

∂3
α f (α− β)

2 sin (β/2)
dβ

+
2Aσ

R3(1 + f (α))

1

2π
PV
∫ k3(α− β)

2 sin (β/2)
dβ

+ 2Aµ
1/2π

1 + f (α)
PV
∫ D(f , ω̃)(α− β)

2 sin (β/2)
dβ

−
2Aρ

R

1/2π

1 + f (α)
PV
∫
∂α f (α− β) sin (α− β) + (1 + f (α− β) cos (α− β))

2 sin (β/2)
dβ

1/2π

1 + f (α)
PV
∫

(N(α, β)− 1)
ω̃(α− β)

2 sin (β/2)
dβ

+
1/4π

1 + f (α)
PV
∫ π
−π

∂α f (α)(1+f (α−β))

(∆β f (α))2 + (1 + f (α))(1 + f (α− β))
ω̃(α− β)dβ

+
Aρ

R(1 + f (α))

(
∂αf (α) cosα− (1 + f (α)) sinα

)
.



D̂2(k) =
1

2π

∑
n,m,l≥0

(−1)n+m+l bm,nbl,n+1 ∗
mf̂ (k) ∗

∑
k1

. . .
∑

k2n+l+1

 2n∏
j=0

i(kj−kj+1)f̂ (kj−kj+1)

2n+l∏
j=2n+1

f̂ (kj − kj+1)ω̂(k2n+l+1)I(k, k1, . . . , k2n+l+1)

 ,

I(k, k1, . . . , k2n+l+1) = PV
∫ π
−π

dβ

2 sin (β/2)

2n∏
j=0

sin ((kj − kk+1)β/2)

(kj − kj+1) sin (β/2)
e−i(kj−kj+1)β/2

2n+l∏
j=2n+1

e−i(kj−kj+1)βe−ek2n+l+1β

=PV
∫ π
−π

sin ((k + k2n+1 − 2k2n+l+1)β/2)

2 sin (β/2)

2n∏
j=0

sin ((kj − kj+1)β/2)

(kj − kj+1) sin (β/2)
dβ

We would like to have a good bound for I.



D̂2(k) =
1

2π

∑
n,m,l≥0

(−1)n+m+l bm,nbl,n+1 ∗
mf̂ (k) ∗

∑
k1

. . .
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k2n+l+1

 2n∏
j=0

i(kj−kj+1)f̂ (kj−kj+1)

2n+l∏
j=2n+1

f̂ (kj − kj+1)ω̂(k2n+l+1)I(k, k1, . . . , k2n+l+1)

 ,

I(k, k1, . . . , k2n+l+1) = PV
∫ π
−π

dβ

2 sin (β/2)

2n∏
j=0

sin ((kj − kk+1)β/2)

(kj − kj+1) sin (β/2)
e−i(kj−kj+1)β/2

2n+l∏
j=2n+1

e−i(kj−kj+1)βe−ek2n+l+1β

=PV
∫ π
−π

sin ((k + k2n+1 − 2k2n+l+1)β/2)

2 sin (β/2)

2n∏
j=0

sin ((kj − kj+1)β/2)

(kj − kj+1) sin (β/2)
dβ

We would like to have a good bound for I.



I = PV
∫ π

−π

sin (kβ/2)

2 sin (β/2)

n∏
j=0

sin (kjβ/2)

kj sin (β/2)
dβ

sin (kjβ/2)

sin (β/2)
=

eikjβ/2 − e−ikjβ/2

eiβ/2 − e−iβ/2 =
eikjβ/2(1−e−ikjβ)

eiβ/2(1− e−iβ)

= ei(kj−1)β/2
kj−1∑
m=0

e−iβm =

kj−1∑
m=0

ei(−2m+kj−1)β/2.

I(0,0) = 0 and I(1,0) = π, and we can show that

I(k ,0) =


l∑

j=1

(−1)j+1

2j − 1
if k = 2l ,

π if k = 2l + 1,



In general

I = PV
∫ π

−π

sin (kβ/2)

2 sin (β/2)

n∏
j=0

sin (kjβ/2)

kj sin (β/2)
dβ

Eventually

I(A, k) =
1
2

A−1∑
n=0

sin ((A− k − 2n − 1)π2 )

A− k − 2n − 1

I(k ,A) =
1
2

k−1∑
n=0

sin ((k − A− 2n − 1)π2 )

k − A− 2n − 1

And finally

I(k ,A) =


π

4
if k − A is odd,

1
2

k−1∑
n=0

(−1)l−n+1

2(l − n)− 1
if k − A is even.

So we conclude that |I| ≤ |I(k ,A)| ≤ π for all 0 ≤ k ,A ∈ Z.



In general

I = PV
∫ π

−π
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1
2
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n=0

sin ((k − A− 2n − 1)π2 )

k − A− 2n − 1

And finally

I(k ,A) =


π

4
if k − A is odd,

1
2

k−1∑
n=0

(−1)l−n+1

2(l − n)− 1
if k − A is even.

So we conclude that |I| ≤ |I(k ,A)| ≤ π for all 0 ≤ k ,A ∈ Z.



THANK YOU!


