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Introduction

The Landau equation (1936) models the evolution of a particle density
f (t, x , v) ≥ 0, where t ≥ 0, x ∈ R3, v ∈ R3. It reads

∂t f + v · ∇x f = QL(f , f ),

transport collision

where, for γ ∈ [−3, 1],

QL(f , f ) = ∇v ·
(∫

R3

a(v − w)[f (w)∇v f (v)− f (v)∇v f (w)]dw

)
,

a(z) := c |z |γ+2

(
Id− z

|z |
⊗ z

|z |

)
.

The collision operator QL is the limit of the non-cutoff Boltzmann collision
operator QB as grazing collisions predominate (when γ > −3).
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Introduction

Why study grazing collisions?

In plasma physics, collisions between charged particles are
predominantly grazing in typical regimes. (This is modeled by the
Coulomb (γ = −3) case of Landau.)

Grazing collisions in the Boltzmann equation are a source of
mathematical difficulties (cf. Grad’s cutoff assumption) but also lead
to smoothing effects.

Besides its importance in plasma physics, the Landau equation can
help us understand the role of grazing collisions in non-cutoff
Boltzmann.
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Introduction

The collision term can be written in divergence or nondivergence form:

∂t f + v · ∇x f = ∇v · (āf (t, x , v)∇v f ) + b̄f (t, x , v) · ∇v f + c̄ f (t, x , v)f ,

= tr(āf (t, x , v)D2
v f ) + c̄ f (t, x , v)f ,

where

āf (t, x , v) := aγ

∫
R3

(
Id − w

|w |
⊗ w

|w |

)
|w |γ+2f (t, x , v − w) dw ,

b̄f (t, x , v) := bγ

∫
R3

|w |γw f (t, x , v − w) dw ,

c̄ f (t, x , v) :=

{
cγ
∫
R3 |w |γf (t, x , v − w) dw , γ > −3,

cf (t, x , v), γ = −3.

Stanley Snelson (FIT) Regularity for the Landau equation CIRM 10/12/2018 5 / 26



Introduction

Cases:

γ = −3: Coulomb potentials.

γ ∈ [−3,−2]: very soft potentials.

γ ∈ (−2, 0): moderately soft potentials.

γ = 0: Maxwellian molecules.

γ ∈ (0, 1]: hard potentials.
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Introduction

Basic properties:

The total mass, momentum, and energy are formally conserved:

d

dt

∫
R3

∫
R3

 1
v
|v |2

 f (t, x , v)dv dx = 0.

The total entropy is decreasing:

d

dt

∫
R3

∫
R3

f (t, x , v) log f (t, x , v) dv dx ≤ 0.

Steady states: f (t, x , v) = ce−α|v−v0|2 , called Maxwellians.
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Well-posedness theory

It is unknown whether solutions can develop singularities in finite time.

In the hydrodynamic scaling limit, the densities
∫
f (t, x , v)dv ,∫

v f (t, x , v)dv , and
∫
|v |2f (t, x , v)dv converge formally to a solution of

the compressible Euler system (see e.g. Golse-Levermore,
Golse-Saint-Raymond), which can develop singularities.
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Well-posedness theory

Global, classical solutions have only been constructed in the following
special cases:

Spatially homogeneous case:

I Villani ’98 (γ = 0),
I Desvillettes-Villani ’00 (γ ∈ (0, 1]),
I Alexandre-Liao-Lin ’15 (γ ∈ (−2, 0)),
I Wu ’14 (γ = −2).

Close-to-equilibrium case: Guo ’02, Mouhot-Neumann ’06, Guo-Strain
’08, Liu-Ma ’14, Carrapatoso-Tristani-Wu ’17.

Close-to-vacuum case: Luk ’18.

Large-data global well-posedness is still unknown for γ < −2, even in the
spatially homogeneous case!
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Conditional regularity

In the inhomogeneous case, can we find conditions under which solutions
are smooth and global?

Chen-Desvillettes-He ’09: solutions satisfying 〈v〉`f ∈ L∞t H8
x ,v for all ` ≥ 0

are C∞ in all three variables.

Golse-Imbert-Mouhot-Vasseur ’17: Local Hölder estimate and Harnack
inequality for bounded solutions with mass, energy, and entropy densities
bounded above, and mass density bounded below.

Strategy: adapt De Giorgi’s method to linear Fokker-Plank equations
∂tg + v · ∇xg = ∇v · (A∇vg) + B · ∇vg + s with A,B, s ∈ L∞(Q1).
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Conditional regularity

In more detail: define

Mf (t, x) =

∫
R3

f (t, x , v) dv , (mass density)

Ef (t, x) =

∫
R3

|v |2f (t, x , v) dv , (energy density)

Hf (t, x) =

∫
R3

f (t, x , v) log f (t, x , v) dv . (entropy density)

If m0 ≤ Mf (t, x) ≤ M0, Ef (t, x) ≤ E0, and Hf (t, x) ≤ H0, then the
nonlocal coefficients āf , b̄f , c̄ f are bounded, āf is uniformly elliptic.

Therefore, the local Hölder estimates of [ GIMV] for linear kinetic
equations can be applied. Constants depend on m0, M0, E0, H0, and
‖f ‖L∞ .
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Conditional regularity

Cameron-Silvestre-S ’17:

Under the same assumptions as [GIMV], solutions satisfy global upper
bounds of the form f (t, x , v) ≤ K (t−3/2 + 1)(1 + |v |)−1, for
γ ∈ (−2, 0].

If, in addition, fin ≤ Ce−α|v |
2
, then this decay is propagated.

(Gaussian decay is not generated.)

These constants depend on m0, M0, E0, and H0, but not on ‖f ‖L∞ .
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Conditional regularity

Technical tools:

Anisotropic upper and lower bounds for āf of the form

āfij(t, x , v)eiej ≈ |e|2
{

(1 + |v |)γ , e ‖ v ,
(1 + |v |)γ+2, e ⊥ v ,

with constants depending on the mass, energy, and entropy.

A change of variables that deals with this degenerating ellipticity.

Comparison principle arguments with barriers of the form e−α|v |
2
.
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Conditional regularity

Theorem (Henderson-S ’17)

If γ ∈ (−2, 0] and a weak solution f satisfies

0 < m0 ≤ Mf (t, x) ≤ M0,Ef (t, x) ≤ E0,Hf (t, x) ≤ H0 for all
t ∈ [0,T ], x ∈ R3,

fin(x , v) ≤ Ce−α|v |
2

for some α > 0,

then f ∈ C∞((0,T ]× R3 × R3).

If γ ∈ [−3,−2], we must also assume an a priori bound on ‖f ‖L∞ and∫
|v |pf (t, x , v) dv for p > 3/(5 + γ).

Any loss of smoothness can be detected at the macroscopic scale (when
γ ∈ (−2, 0]).
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Conditional regularity

Strategy: Prove Schauder estimates for linear Fokker-Plank equations

∂tg + v · ∇xg = tr(AD2
v g) + s,

with A, s Hölder continuous, and A uniformly elliptic.

Properties:

Diffusion acts only in v , but Hörmander’s condition is satisfied.

Symmetries: this class of equations is invariant under
(t, x , v) 7→ (r2t, r3x , rv) and (t, x , v) 7→ (t0 + t, x0 + x + tv0, v0 + v).

Scaling suggests Schauder estimates would control g in

C 2+α
v C

1+α/2
t C

(2+α)/3
x , not enough to conclude weak solutions are

classical.

Even worse, Schauder actually only controls ∂tg +∇xg , not ∂tg .
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Conditional regularity

To get around this difficulty, use coupling between solution f and
coefficients A = āf , s = c̄ f f , prove a second estimate with A, s ∈ C 1+α.

This requires us to pass regularity of f to regularity of the nonlocal
coefficients. This is where the assumption that fin(x , v) ≤ Ce−α|v |

2
comes

in.

One finally has f ∈ Cα ⇒ f ∈ C 3+α
t,x ,v . Differentiate equation (after

applying change of variables) and bootstrap to obtain C∞.
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Conditional regularity

For γ ∈ (−2, 0], the constants in these regularity estimates depend on m0,
M0, E0, and H0.

For γ ∈ [−3,−2], the constants depend additionally on ‖f ‖L∞ and
P0 = supt,x

∫
|v |pf (t, x , v)dv .

To get a good continuation criterion, we want to remove the dependence
on some of these constants.
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Conditional regularity

Next step: remove the assumptions that Mf (t, x) is bounded from below
and Hf (t, x) is bounded from above, from the smoothing criteria.

Theorem (Henderson-S-Tarfulea ’17)

If γ ∈ (−2, 0) and eα|v |
2
fin ∈ H4

x ,v (R6), then a classical solution f exists on
some interval [0,T ], with mass and energy densities uniformly bounded. If
f 6≡ 0, then f satisfies uniform pointwise lower bounds in any compact
K ⊂ (0,T ]× R6, with constants depending on K , T , fin, and the upper
bounds on the mass and energy densities. In particular, Mf (t, x) is
uniformly positive for t ≥ t0, for any t0 > 0.

For γ ∈ [−3,−2], the same conclusion holds with constants depending
additionally on ‖f ‖L∞ .

Note that the initial data may contain vacuum regions.
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Conditional regularity

Key tool: relate f to the expectation of a stochastic process via a formula
of Feynmann-Kac type.

Let σ̄ε be such that āf + εId = σ̄2
ε .

Define the stochastic process (Xt ,Vt) by
dVs = σ̄ε (t − s,Xs ,Vs) dWs ,

dXs = −Vs ds,

V0 = v , X0 = x .

It can be shown that

fε(t, x , v) = E
[
e
∫ t

0 c̄ f (t−s,Xs ,Vs)ds fin (Xt ,Vt)
]
,

where fε → f in Cαloc([0,T ]× R6).
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Conditional regularity

Using this stochastic process, we can show that mass is spread instantly to
every point in the domain.

Step 1: Initial data has a positive “mass core” that is spread forward
to small values of t.

Step 2: The core of mass implies the diffusion matrix σ̄ε is uniformly
elliptic near (x0, v0) ⇒ mass is spread to every velocity, near x0.

Step 3: Use transport term to spread mass from x0 to any x , along
trajectory v ∼ (x − x0)/t.

Step 4: Repeat Step 2 to show mass is spread to every v at every x .
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Conditional regularity

Asymptotics of lower bounds:

If we assume the initial data is “well-distributed” (roughly, that every
point x is close to some uniform amount of mass at small velocities) then
for t ≥ t0,

f (t, x , v) ≥ ce−α|v |
2+|γ|

.

In fact, this super-Gaussian rate of decay is achieved for certain initial data.
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Conditional regularity

By combining these lower bounds with our previous a priori estimates, it
follows that (for well-distributed data) the constructed solution is C∞ and
can be extended past T > 0 as long as

sup
0≤t≤T
x∈R3

(Mf (t, x) + Ef (t, x)) <∞, γ ∈ (−2, 0),

sup
0≤t≤T
x∈R3

(Mf (t, x) + Ef (t, x) + ‖f (t, x , ·)‖L∞) , γ ∈ [−3,−2].
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Conditional regularity

Theorem (S ’18)

If γ ∈ (0, 1], and a weak solution f satisfies
0 < m0 ≤ Mf (t, x) ≤ M0,Ef (t, x) ≤ E0,Hf (t, x) ≤ H0 and∫
R3 |v |γ+2f dv ≤ G0 for all t ∈ [0,T ], x ∈ R3, then for any t0 > 0 we have

ce−α|v |
2 ≤ f (t, x , v) ≤ Ce−β|v |

2
, t ≥ t0,

where c ,C , α, β depend on m0,M0,E0,H0, and t0. (Not on G0.)

No decay assumption is needed on initial data, unlike in γ ≤ 0 case.
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Looking forward

Our continuation criterion suggests two (broad) obstructions to proving
GWP for large data:

1 Guaranteeing that mass and energy densities of f cannot concentrate
at any x . (Not a problem in the space homogeneous case.)

2 For fixed x , guaranteeing the solution f cannot concentrate at any v .
(Not a problem when γ > −2.)
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See also:

There is a parallel program on conditional regularity for the non-cutoff
Boltzmann equation, under similar a priori assumptions (bounds on the
mass/energy/entropy):

Silvestre CMP ’16: local boundedness

Imbert-Silvestre JEMS ’18: Hölder regularity

Imbert-Mouhot-Silvestre, preprint: decay for large |v |
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Thank you!
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