

STABLE PHASE TRANSITIONS: FROM NONLOCAL TO LOCAL?

Joint works with A. Figalli X. Cabré, E. Cinti, S. Dipierro, E. Valdinoci

Non Standard Diffusions in Fluids, Kinetic Equations and Probability (Marseille 10-14th December 2018)

Joaquim Serra

The talked is based on

Cinti, S, Valdinoci, *Quantitative flatness results and BV-estimates for nonlocal minimal surfaces*, to appear in J. Diff. Geom.

Dipierro, S, Valdinoci, *Improvement of flatness for nonlocal phase transitions*, to appear in Amer. J. Math.

Cabré, Cinti, S, Stable s-minimal cones in \mathbb{R}^3 are flat for s~1 preprint arXiv (2017)

Figalli, S, On stable solutions for boundary reactions: a De Giorgi type result in dimension 4+1, preprint arXiv (2017).

Cabré, Cinti, S, Flatness of stable nonlocal phase transitions in \mathbb{R}^3 Forthcoming preprint (2018)

1. Two models for phase transitions and crystal dislocations vs. minimal surfaces

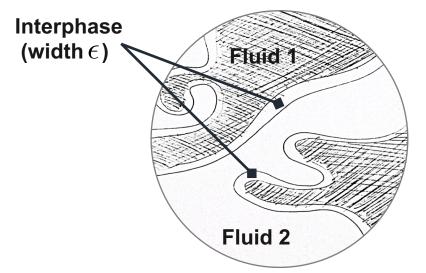
- 2. Stable solutions: known results and open questions
- 3. Nonlocal models and stronger consequences of stability
- 4. The De Giorgi conjecture for boundary reactions (or the half-Laplacian)
- 5. From nonlocal to local?

1. Two models for phase transitions and crystal dislocations vs. minimal surfaces

ALLEN-CAHN EQ'N (1950's)

Model for the **interphase** between **two fluids** / metal alloys / ...

$$\begin{split} u : \mathbb{R}^n &\to (-1, 1) & \text{Fluid 1: } u \sim +1 \\ (-\Delta)u + \epsilon^{-2} W'(u) &= 0 & \text{Fluid 2: } u \sim -1 \\ \epsilon^2 \int_{\mathbb{R}^n} |\nabla u|^2 + W(u) \, dx \end{split}$$

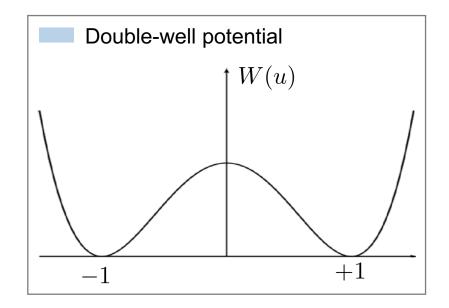


PEIERLS-NABARRO EQ'N (1940's)

Model for **crystal dislocations** / phase transition with line tension effect / ...

$$(-\Delta)^{1/2}u + \epsilon^{-1}W'(u) = 0$$

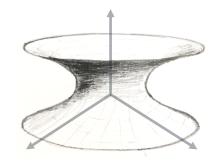
$$\epsilon \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u(x) - u(y))^2}{|x - y|^{n+1}} \, dxdy + \int_{\mathbb{R}^n} W(u) \, dx$$



1. Two models for phase transitions and crystal dislocations vs. minimal surfaces

 $\epsilon \downarrow 0$ **ALLEN-CAHN PEIERLS-NABARRO**

ΜΙΝΙΜΔΙ **SURFACES**



$$I_{\epsilon}(u) := \epsilon^2 \int_{\mathbb{R}^n} |\nabla u|^2 + W(u) \, dx$$
$$J_{\epsilon}(u) := \epsilon \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u(x) - u(y))^2}{|x - y|^{n+1}} \, dx \, dy + \int_{\mathbb{R}^n} W(u) \, dx$$

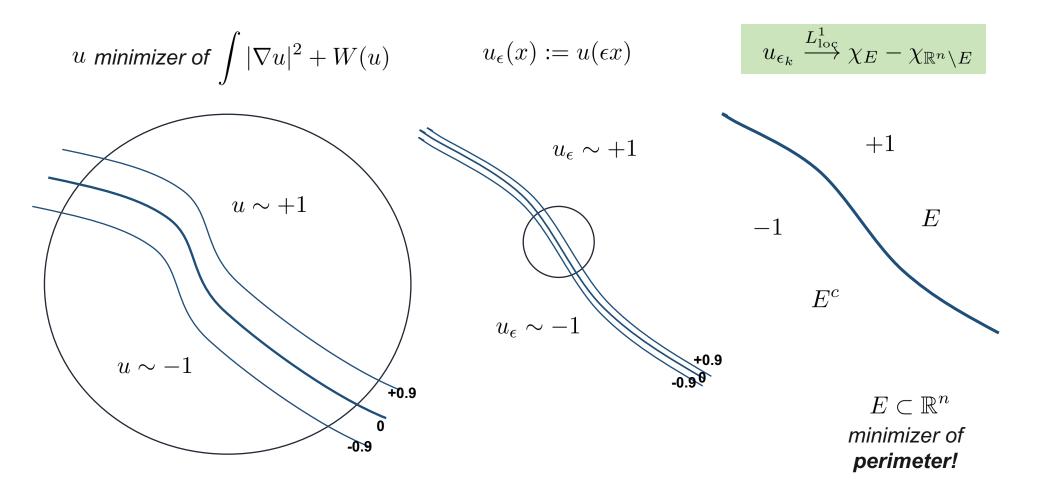
Theorem

Image: Theorem
$$u_{\epsilon_k}$$
 minimizers of either I_{ϵ_k} or J_{ϵ_k} u_{ϵ_k} $u_{\epsilon_k} \stackrel{L^1_{loc}}{\longrightarrow} \chi_E - \chi_{\mathbb{R}^n \setminus E}$ as $\epsilon_k \downarrow 0$ • Modica, Mortola 1977• Alberti, Bouchitte, Seppecher 1998 $U_{\epsilon_k} \stackrel{L^1_{loc}}{\longrightarrow} \chi_E - \chi_{\mathbb{R}^n \setminus E}$ as $\epsilon_k \downarrow 0$

Remark: Although J is nonlocal, the asymptotic limit is (as for I) the **local** perimeter!

1. Two models for phase transitions and crystal dislocations vs. minimal surfaces

CONVERGENCE OF LEVEL SETS OF BLOW-DOWN SEQUENCES TO MININAL SURFACES



1. Two models for phase transitions and crystal dislocations vs. minimal surfaces

BERNSTEIN PROBLEM (1914) IN MINIMAL SURFACES ...

Must any entire minimal graph¹ in \mathbb{R}^n be a hyperplane?

- Yes for $n \le 8$ (De Giorgi / Simons 1960's)
- No for $n \ge 9$ (Bombieri, De Giorgi, Giusti 1969)

... MOTIVATES A CONJECTURE OF DE GIORGI (1978)

 $u: \mathbb{R}^n \to (-1, 1)$ sol'n of the Allen-Cahn eq'n with $u_{x_n} > 0$

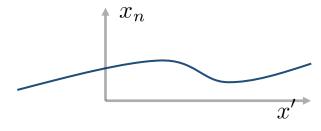
Must its level sets be hyperplanes if $n \le 8$?

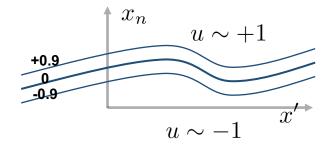
Positive results:

n =2 Ghoussoub, Gui 1998; *n* =3 Ambrosio, Cabre 2000 $4 \le n \le 8$ Savin 2009 **under the extra assumption**

• (Counter)example for $n \ge 9$: Del Pino, Kowalczyc, Wei 2011

1 Solutions to the minimal graph eq'n
$$\operatorname{div}\left(\frac{\nabla g}{\sqrt{1+|\nabla g|^2}}\right) = 0$$
 $g: \mathbb{R}^{n-1} \to \mathbb{R}$





n $\lim_{x_n \to \pm \infty} u(x', x_n) = \pm 1$

- 1. Two models for phase transitions and crystal dislocations vs. minimal surfaces
- 2. Stable solutions: known results and open questions
- 3. Nonlocal models and stronger consequences of stability
- 4. The De Giorgi conjecture for boundary reactions (or the half-Laplacian)
- 5. From nonlocal to local?

2. Stable solutions: known results and open questions

DEFINITION OF STABLE SOLUTIONS

 We say that a smooth, complete, embedded minimal hypersurface is stable if it is a stable critical point of the area functional

 We say that a sol'n of the Allen-Cahn eq'n (resp. Peierls-Nabarro eq'n) is stable if it is a stable critical point of the energy functional

STABILITY CONJECTURES

- Hyperplanes are the only smooth, complete, connected, embedded, stable minimal hypersurfaces in ambient dimensions n ≤ 7
- Any stable solution of Allen-Cahn [resp. Peierls-Nabarro] is 1D symmetric in dimensions $n \le 7$

Remark: Both statements are know to be true if we replace "Stable solutions" by "Energy minimizers"

2. Stable solutions: known results and open questions

MOTIVATIONS OF STABILITY CONJECTURES

 Stability conjecture for minimal surfaces is ~equivalent to the following universal curvature estimate

 $D_1 \subset \mathbb{R}^n$ stable minimal disc $|I| \leq c(n)$ in $D_{1/2}$

 Stability conjecture for Allen-Cahn [resp. Peierls-Nabarro] is ~equivalent to the following universal curvature estimate for level sets

Stability conjecture for minimal surfaces is ~equivalent to Schoen's conjecture below

 $D_1 \subset \mathbb{R}^n$ stable minimal disc $\longrightarrow \mathcal{H}^{n-1}(D_{1/2}) \leq C(n)$

 Stability conjecture for Allen-Cahn [resp. Peierls-Nabarro] in dimension n-1 implies full* De Giorgi conjecture in dimension n

Consider
$$U^{\pm}(x') := \lim_{x_n \to \pm \infty} u(x', x_n)$$

* without assuming $\lim_{x_n \to \pm \infty} u(x', x_n) = \pm 1$

2. Stable solutions: known results and open questions

TABLE: STATE OF THE ART ON THE CONJECTURES

POSITIVE ANSWER NEGATIVE ANSWER OPEN QUESTION

	Energy minimizers are 1D symmetric?	Stable solutions satisfy area bounds? ~ Schoen conjecture	Stable solutions are 1D symmetric? Stability conjecture
Allen-Cahn	3D (Ambrosio, Cabre 2000) 4D-8D (Savin 2009) From 9D (Del Pino, Kowalczyk, Wei 2011)	3D- ?	3D-7D ? 8D- (Pacard, Wei 2013)
Peierls- Nabarro	3D (Cabre, Cinti 2010) 4D-8D (Savin 2018) 9D- ?	3D* (Figalli, S 2017) 4D- ?	3D* (Figalli, S 2017) 4D- ?
Minimal surfaces	3D-7D (Simons 1968) From 8D (Bombieri, De Giorgi, Giusti 1969)	3D (Pogorelov 1981) 4D- ?	 3D (Do Carmo, Peng 1979; Fischer-Colbrie, Schoen 1980) 4D-7D ? 8D- (Simons 1968)

* Detailed later in part 4 of the talk

- 1. Two models for phase transitions and crystal dislocations vs. minimal surfaces
- 2. Stable solutions: known results and open questions

3. Nonlocal models and stronger consequences of stability

- 4. The De Giorgi conjecture for boundary reactions (or the half-Laplacian)
- 5. From nonlocal to local?

DEFINITION OF NONLOCAL PERIMETER

Let L_K be the infinitesimal generator of a Levy process

$$L_K u(x) := \int_{\mathbb{R}^n} \left(u(x) - u(y) \right) K(x - y) dy \qquad K \ge 0$$

Assume in addition

$$\int_{\mathbb{R}^n} \min(1, |z|) K(z) dz < +\infty$$

Define the *K*-perimeter as

$$\operatorname{Per}_{K}(E) := \iint_{E^{c} \times E} K(x-y) dx dy \qquad E \subset \mathbb{R}^{n}$$

We call it fractional s-perimeter in the particular case

$$K(z) = \frac{1}{|x - y|^{n + s}} \qquad 0 < s < 1$$

SOME MOTIVATIONS OF THE K-PERIMETER

- If we have a uniform density of particles each driven by Levy motion (L_{κ}) then $\operatorname{Per}_{K}(E)$ measures the **intensity**¹ of **particles changing side** (between *E* and *E^c*)
- When one considers the fractional Ginzburg-Landau energies

$$E_{s,\epsilon}(u) := \epsilon^s \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{\left(u(x) - u(y)\right)^2}{|x - y|^{n+s}} dx dy + \int_{\mathbb{R}^n} W(u) dx \qquad s \in (0,2)$$

interpolating **Peierls-Nabarro and Allen-Cahn** then the fractional *s*-perimeter arises in the limit $\epsilon \downarrow 0$ when s < 1

- Caffarelli, Souganidis 2010 "cellular automats" giving motion by fractional mean curvature
- Related with Bouet, Leonardi, Masnou 2016 definition of mean curvature for point clouds
- Fractional perimeters provided an elegant way to estimate perimeters of pixeled images (see Cinti, S, Valdinoci 2017)

SOME ANALOGIES BETWEEN CLASSICAL AND FRACTIONAL PERIMETERS

Links and analogies of fractional and classical perimeters	Ву	Year
- Gamma-convergence of the fractional perimeter to the classical perimeter as $s \to 1^-$	Ambrosio, De Philipis, Martinazzi	2011
 Improvement of flatness for minimizers of the nonlocal perimeter 	Caffarelli, Roquejoffre, Savin	2010
 Flatness of s-minimizing cones in dimension 2 	Savin, Valdinoci	2013
 Bernstein type result in dimension 3 	Figalli, Valdinoci	2015
 Flatness of s-minimizing cones in dimensions <8 for s~1 	Caffarelli, Valdinoci	2015
 Smoothness of minimizers of the fractional perimeter in dimension 2 [resp. in dimensions <8 for s~1] 	Barrios, Figalli, Valdinoci	2012
 Co-area type formula relating W^{s,1} norm of a function and the fractional perimeters of its level sets 	Visintin	1991
 Isoperimetric inequality with deficit estimates 	Figalli, Fusco, Maggi, Millot, Morini	2014
 Alexandroff type result for sets of constant fractional mean curvature and Delaunay like cylinders 	Cabré, Fall, Solà- Morales, Weth	2015

DEFINITION OF STABLE SOLUTIONS

• We say that *E* with smooth boundary is **stable** *K*-minimal set if it is a stable critical point of P_K

$$\longrightarrow \iint_{\partial E \times \partial E} \left(\left(\varphi(x) - \varphi(y) \right)^2 - \left(\nu(x) - \nu(y) \right)^2 \varphi^2(x) \right) K(x - y) d\mathcal{H}^{n-1}(x) d\mathcal{H}^{n-1}(y) \ge 0$$
$$\forall \varphi \in C_c^{\infty}(\partial E)$$

We say that a solution of the fractional Allen-Cahn eq'n

$$(-\Delta)^{s/2}u_{\epsilon} + \epsilon^{-s}W'(u_{\epsilon}) = 0 \quad \text{(FAC)}$$

is stable if it is a stable critical point of the energy functional

$$\longleftrightarrow \quad \epsilon^s \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{\left(\varphi(x) - \varphi(y)\right)^2}{|x - y|^{n + s}} dx dy + \int_{\mathbb{R}^n} W''(u_\epsilon) \varphi^2 \, dx \ge 0 \qquad \forall \varphi \in C_c^\infty(\mathbb{R}^n)$$

THE MORE NONLOCAL, THE STONGER IS THE INFORMATION GIVEN BY STABILITY

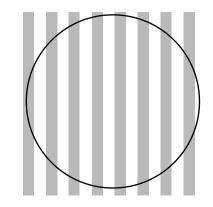
A striking difference with local perimeters and energy functionals: new a priori BV estimates

Cinti, S, Valdinoci 2017	$E \subset \mathbb{R}^n$ stable s-minimal set in B_1 (with smooth boundary)	 $\mathcal{H}^{n-1}(\partial E \cap B_{1/2}) \le \frac{C(n)}{1-s}$
Cabre, Cinti, S 2018	$\left \begin{array}{c} u_{\epsilon}:\mathbb{R}^{n}\rightarrow(-1,1)\\ \text{solution of FAC, stable in }B_{1}\\ s<1 \end{array}\right $	 $\int_{B_{1/2}} \nabla u_\epsilon \leq \frac{C(n)}{1-s}$

Remark 1: These estimates are in every dimension, and are a nonlocal (stronger) analogue of Schoen's conjecture (area bound for stable minimal surfaces)

Remark 2:

This picture is **not stable** in the ball for *s*-perimeter



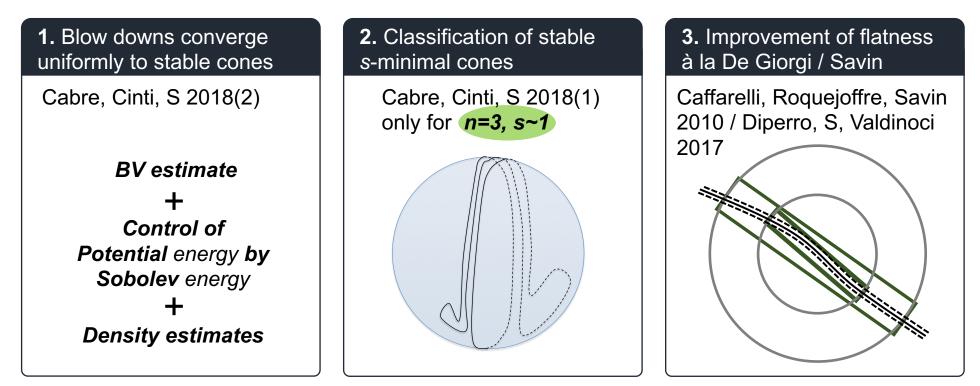
Remark 3:

- BV estimate blows up as s to 1
- In particular, this does not apply to 1/2-Laplacian (s=1)

 $(-\Delta)^{1/2}u + \epsilon^{-1}W'(u) = 0$

- Recall that the limit $\epsilon \downarrow 0$ of FAC gives local minimal surfaces for $1/2 \le s/2 \le 1$

USING THE NEW BV ESTIMATES WE CAN ADAPT THE CLASSICAL STRATEGY FOR MINIMIZING MINIMAL SURFACES ...



... AND PROVE THE "ABSTRACT CLASSIFICTION RESULT" BELOW

Assume: for some pair (n,s) with 0<s<1 hyperplanes are the only stable s-minimal cones in dimension n

- Hyperplanes are the only (smooth) minimal sets stable in the whole \mathbb{R}^n
- Every entire stable solution of FAC is 1D symmetric

- 1. Two models for phase transitions and crystal dislocations vs. minimal surfaces
- 2. Stable solutions: known results and open questions
- 3. Nonlocal models and stronger consequences of stability
- 4. The De Giorgi conjecture for boundary reactions (or the half-Laplacian)
- 5. From nonlocal to local?

4. The De Giorgi conjecture for boundary reactions (or the half-Laplacian)

FOR THE HALF LAPLACIAN THE NONLOCAL INFORMATION DEGENERATES AS $\ \epsilon \downarrow 0$ but, surprisingly, it is still enough to prove the stability conjectue in dimension 3

	Theorem 1. Any bounded stable solution of any semilinear equation		
Figalli, S 2017	$(-\Delta)^{1/2}u=f(u)$ in \mathbb{R}^3		
	is 1D symmetric and increasing (equivalently, its level sets are parallel planes)		
	Consequences:		
	 The stability conjecture for Peierls-Nabarro is true for n=3 		
	 The "full" De Giorgi type result for Peierls-Nabarro is true for n=4 		
	Theorem 2. In any dimension, a bounded any entire stable solution of Peierls-Nabarro ($\epsilon=1$) satisfies the BV estimate		
	$\int_{B_R} \nabla u \le C(n, W) R^{n-1} \log R \qquad \forall R \ge 1$		

4. The De Giorgi conjecture for boundary reactions (or the half-Laplacian)

THE STRATEGY OF PROOF IS 100% "NONLOCAL STYLE"

$$\begin{array}{ll} \begin{array}{l} \mbox{Nonlocal}\\ \mbox{approach}\\ \mbox{approach}\\ \mbox{+}\\ \end{array} \\ \begin{array}{l} \mbox{A sharp}\\ \mbox{interpolation}\\ \mbox{inequality}\\ \mbox{inequality}\\ \mbox{+}\\ \hline \\ \mbox{Scaling}\\ \end{array} \\ \begin{array}{l} \mbox{H}\\ \mbox{H}\\ \mbox{energy}\\ \mbox{estimates}\\ \end{array} \\ \begin{array}{l} \mbox{J}(u_{\epsilon},B_{1}) & = \\ \mbox{J}(u_{\epsilon},B_{1}) & = \\ \mbox{J}(u_{\epsilon}(x) - u_{\epsilon}(y))^{2} \\ \mbox{J}(u_{\epsilon},B_{1}) & = \\ \mbox{J}(u_{\epsilon}(x) - u_{\epsilon}(y))^{2} \\ \mbox{J}(u_{\epsilon}(x) - u_{\epsilon}(y))^{2} \\ \mbox{J}(u_{\epsilon},B_{1}) & = \\ \mbox{J}(u_{\epsilon}(x) - u_{\epsilon}(y))^{2} \\ \mbox{J}(u_{\epsilon}(x) - u_{\epsilon}(y)^{2} \\ \mbox{J}(u_{\epsilon}(x) - u_{\epsilon}(y))^{2} \\ \mbox{J}(u_{\epsilon}(x) - u_{\epsilon}(y)^{2} \\ \mbox{J}(u_{\epsilon}(x) - u_{\epsilon}(y)^{2}$$

- 1. Two models for phase transitions and crystal dislocations vs. minimal surfaces
- 2. Stable solutions: known results and open questions
- 3. Nonlocal models and stronger consequences of stability
- 4. The De Giorgi conjecture for boundary reactions (or the half-Laplacian)

5. From nonlocal to local?

5. From nonlocal to local?

Some open questions and future lines of research

Main difficulties

- 1) Classification of stable *s*minimal cones in dimension n=4 for $s\sim1$
- 2) Stability conjecture for FAC with $1 \le s \le 2$ cones in dimension n=3
- **3)** New *robust* proof of the area bound for stable minimal surfaces (*n*=3)

- No Simons type identity (only with errors)
 Minimal surfaces in S³ can be very complicated (compared with curves in S²)
- The nonlocal proof does not give for 1<s<2 a quasi-optimal area estimate (as for s=1)
- Monotonicity formula is not known (it is only known for s=2 or for s<1)
- No known replacement for Gauss-Bonet formula of surfaces

Thank you for your attention