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Time-fractional diffusion

The classical heat equation ∂tu = ∆u describes heat propagation in
homogeneous medium. The time-fractional diffusion equation ∂βt u = ∆u with
0 < β < 1 has been widely used to model the anomalous diffusions exhibiting
subdiffusive behavior, due to particle sticking and trapping phenomena.

The (classical) fractional time derivative ∂βt in this talk is the Caputo
derivative of order β ∈ (0, 1), which can be defined by

∂βt f(t) =
1

Γ(1− β)

d

dt

∫ t

0

(t− s)−β (f(s)− f(0)) ds.
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Random conductance model

{µe}: random conductance, i.i.d. on each edge e of Zd s.t. ∃β ∈ (0, 1)

P(µe ≥ c1) = 1, P(µe ≥ u) = c2u
−β(1 + o(1)) as u→∞. (1.1)

(Note that Eµe =∞.)
{Xt}t≥0: cont. time Markov chain on Zd (holding time exp(1)).

μμ

μ
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Theorem 1.1 (d ≥ 3 (Barlow-Černý ’11))

εXctε−2/β→FKd,β(t) := BMd([S
β
t ]
−1

) P-a.s. on D([0,∞),Rd),

where {Sβt }t≥0: β-stable subordinator independent of Brownian motion
{BMd(t)}.

E[exp{−λSβt }] = exp{−tλβ}, [Sβt ]
−1

= inf{s > 0 : Sβ(s) > t}.

Theorem 1.2 (d = 2 (Černý ’11))

Same result by replacing ε−2/β to ε−2/β(log ε−1)1−1/β .

Note that BMd(S
β
t ) is isotropic 2β-stable process whose infinitesimal

generator is −(−∆)β , which gives “super-diffusive” behavior.
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FKd,β : Fractional-kinetics process

— It is no longer a Markov process!

Density of its fixed time distribution p(t, x) satisfies the fractional-kinetics
equation (fractional diffusion equation):

∂βt p(t, x) =
1

2
∆p(t, x).
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Classical case: 0 < β < 1

Riemann-Liouville fractional integral operator:

Iβψ(t) = Γ(β)−1

∫ t

0

(t− s)β−1ψ(s)ds.

Caputo derivative:

∂βt ψ(t) :=
d

dt
I1−β(ψ − ψ(0))(t) =

d

dt
I1−βψ(t)− ψ(0)

tβΓ(1− β)
.

Fractional diffusion equation in Rd :

∂βt p(t, x) = ∆p(t, x) t > 0, x ∈ Rd.

Estimates of p(t, x) were obtained (e.g. Eidelman-Kochubei (’04,)) by

Eβ(z) =
∞∑
k=1

zk

Γ(βk + 1)
: Mittag-Leffler function

p(t, x) = F
−1(Eβ(|ξ|2tβ)) and using Fourier analysis.
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(Q) More general case? (General spaces, general operators)

Motivation: Questions from industry

• The next two slides: J. Math. Ind. (2010) are by J. Nakagawa (Nippon Steel
Co.): Predict the progress of soil contamination.

• The third slide: Nature (2006, Jan.) by D. Brockmann, L. Hufnagel and T.
Geisel: Human travel.
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Illegal dumping

WasteGroundwater flow

Base rock

Underground 
storage

Pore size of soil：
Micro scale (about 100μm）

Field: Macro scale(100m-10ｋｍ）

Ocean

© 2009 Nippon Steel Corporation. All Rights ReservedDr. Yuko Hatano, Department of Risk Engineering, University of Tsukuba

Issues Seen by Academia Engineering Researchers
“The Prediction of the Progress of Soil Contamination”

1
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Observation well

Prediction by Advection-Diffusion equation

Result of Field Test 
(Adams& Gelhar, 1992)

t0 t1 t2
t3

t0

Pollution source

Model Prediction and Reality

Environmental criteria

Environmental criteria

© 2009 Nippon Steel Corporation. All Rights Reserved

1

Dr. Yuko Hatano, Department of Risk Engineering, University of Tsukuba
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Brockmann et. al., Nature (2006)
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Notation

Throughout this talk, we write h(s) ' f(s), if there exist constants c1, c2 > 0

such that c1f(s) ≤ h(s) ≤ c2f(s) for the specified range of the argument s.

Similarly, we write h(s) � f(s)g(s), if there exist constants C1, c1, C2, c2 > 0

such that f(C1s)g(c1s) ≤ h(s) ≤ f(C2s)g(c2s) for the specified range of s.

For a, b ∈ R we denote a ∧ b := min{a, b} and a ∨ b := max{a, b}.
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Subordinator

Throughout this talk, S = {St,P; t ≥ 0} is a driftless subordinator (St ≥ 0)
with S0 = 0 and φ is the Laplace exponent of S. That is,

E
[
e−λSt

]
= e−tφ(λ), λ > 0, t ≥ 0.

The Laplace exponent φ of S is also called Bernstein function (vanishes at
the origin) in the literature.
Since S has no drift, it is well known that there is a unique measure ν on

(0,∞), which is called Lévy measure of S, satisfying
∫ ∞

0

(1 ∧ x) ν(dx) <∞

such that
φ(λ) =

∫ ∞
0

(1− e−λx) ν(dx).

We will assume that St has a bounded density p̄(t, ·) for each t > 0.
Let

w(x) := ν(x,∞)

and we always assume that the Lévy measure ν is infinite , which is
equivalent to saying w(x) is unbounded. (w(x) is locally integrable on [0,∞))
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General time fractional derivative

Using w(x) = ν(x,∞), the time fractional derivative with weight w is defined
by

∂wt f(t) :=
d

dt

∫ t

0

w(t− s)(f(s)− f(0)) ds,

whenever the right hand side is well defined.
Define

Iwf(t) :=

∫ t

0

w(t− s)f(s) ds.

Clearly, for any locally integrable function f on [0,∞)

∂wt f(t) =
d

dt
Iwf(t)− w(t)f(0) for a.e. t > 0.
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Theorem 1. Existence and uniqueness of Strong solution

Suppose that {P 0
t ; t ≥ 0} is a uniformly bounded and strongly continuous

semigroup in some Banach space (B, ‖ · ‖) over a locally compact separable
metric space E and (L,D(L)) is its infinitesimal generator.
Let T0 ∈ (0,∞), g ∈ D(L) and f(t, x) be a function defined on (0, T0]× E so
that for a.e. t ∈ (0, T0], f(t, ·) ∈ D(L)and∫ T0

0

‖Lf(t, ·)‖ dt <∞ and ‖f(t, ·)‖ ≤ K <∞ for a.e. t ∈ (0, T0].

Then the function

u(t, x) := E
[
P 0

S−1
t
g(x)

]
+ E

[∫ ∞
r=0

1{Sr<t}P
0
r f(t− Sr, ·)(x) dr

]
= E

[
P 0

S−1
t
g(x)

]
+

∫ t

s=0

∫ ∞
r=0

P 0
r f(s, ·)(x)p̄(r, t− s) dr ds

(2.1)

is the unique strong solution of

∂wt u(t, x) = Lu(t, x) + f(t, x) on (0, T0]× E with u(0, x) = g(x)

in the following sense:
Kim, Panki (김판기) Generalized Time Fractional Poisson Equations
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r f(t− Sr, ·)(x) dr

]
= E

[
P 0

S−1
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s=0

∫ ∞
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P 0
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Theorem 1 (continue):
∂wt u(t, x) = Lu(t, x) + f(t, x) on (0, T0]× E with u(0, x) = g(x)

(i) u(t, ·) is well defined as an element in B for each t ∈ (0, T0] such that
sup

t∈(0,T0]

‖u(t, ·)‖ <∞, t 7→ u(t, x) is continuous in (B, ‖ · ‖) and

lim
t→0
‖u(t, ·)− g(·)‖ = 0.

(ii) For a.e. t ∈ (0, T0], u(t, ·) ∈ D(L) and Lu(t, ·) exists in the Banach

space B such that
∫ T0

0

‖Lu(t, ·)‖ dt <∞,

∫ t

0

w(t− s) (u(s, ·)− g(·)) ds =

∫ t

0

(f(s, ·) + Lu(s, ·)) ds in B.
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Theorem 2. Existence and uniqueness of Weak solution

We will always assume that (E, d) is a locally compact separable metric
space with a fully-supported Radon measure µ.

Suppose that (L,D(L)) is the infinitesimal generator of a (symmetric)
Dirichlet form on L2(E;µ) and {P 0

t ; t ≥ 0} is its associated transition
semigroup.

Denote by 〈·, ·〉 the inner product of L2(E;µ).

Suppose that g ∈ L2(E;µ) and that f(t, x) is a function on (0, T0]× E so that

‖f(t, ·)‖L2(E;µ) ≤ K <∞ for a.e. t ∈ (0, T0].

Then u(t, x) defined by (2.1) is the unique weak solution of

∂wt u(t, x) = Lu(t, x) + f(t, x) on (0, T0]× E with u(0, x) = g(x)

in the following sense:
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Theorem 2 (continue):
∂wt u(t, x) = Lu(t, x) + f(t, x) on (0, T0]× E with u(0, x) = g(x)

(i) t 7→ u(t, x) is continuous in L2(E;µ),

sup
t∈(0,T0]

‖u(t, ·)‖L2(E;µ) <∞ and u(t, ·)→ g in L2(E;µ) as t→ 0.

(ii) For every t ∈ (0, T0] and ϕ ∈ D(L),〈∫ t

0

w(t− s) (u(s, ·)− g(·)) ds, ϕ
〉

=

∫ t

0

〈f(s, ·), ϕ〉 ds+

∫ t

0

〈u(s, ·),Lϕ〉 ds
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Remarks on proofs

Recall that we have assumed that St has a bounded density p̄(t, ·) for each
t > 0.

Lemma 1

There is a Borel set N ⊂ (0,∞) having zero Lebesgue measure such that for
every t ∈ (0,∞) \N,

P(Ss ≥ t) =

∫ s

0

E
[
w(t− Sr)1{t≥Sr}

]
dr for every s > 0.

so that the inverse subordinator S−1
t has a density function given by

d

dr
P(S−1

t ≤ r) =

∫ t

0

w(t− s)p̄(r, s) ds, r > 0.

(Chen, 2017)
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Remarks on proofs

Let
G(S)(t) :=

∫ ∞
0

p̄(r, t) dr

be the potential density of the subordinator S,

Lemma 2

Let

w ∗G(S)(t) :=

∫ t

0

w(s)G(S)(t− s) ds.

Then w ∗G(S)(t) ≤ 1 for all t > 0, and w ∗G(S)(t) = 1 for a.e. t > 0.

Kim, Panki (김판기) Generalized Time Fractional Poisson Equations



Introduction
Uniqueness/existence of the solution

Fundamental solution to time fractional Poisson equation
Estimates

Seup
Strong solution
Weak solution

Remarks on proofs

For every f(t, ·) with
∫ T0

0

‖f(t, ·)‖ dt <∞,

v(t, x) :=

∫ t

s=0

∫ ∞
r=0

P 0
r f(s, ·)(x)p̄(r, t− s) dr ds

is well defined for a.e. t ∈ [0, T0] as an element in B such that∫ T0

0

‖v(t, x)‖ dt <∞. Moreover, for every T ∈ (0, T0],

∫ T

0

w(T − t)v(t, x) dt =

∫ T

0

E
[
P 0

S−1
T−s

f(s, ·)(x)

]
ds

as elements in B.

Kim, Panki (김판기) Generalized Time Fractional Poisson Equations



Introduction
Uniqueness/existence of the solution

Fundamental solution to time fractional Poisson equation
Estimates

Setup
p versus q

Outline

1 Introduction
Introduction to classical time fractional equations
Motivation to study Fractional equation in general settings

2 Uniqueness/existence of the solution
Seup
Strong solution
Weak solution

3 Fundamental solution to time fractional Poisson equation
Setup
p versus q

4 Estimates
Toy model
Density estimates for subordinators
General Estimates

Kim, Panki (김판기) Generalized Time Fractional Poisson Equations



Introduction
Uniqueness/existence of the solution

Fundamental solution to time fractional Poisson equation
Estimates

Setup
p versus q

We assume that the Banach space (B, ‖ · ‖) is either B = Lp(E;µ) with p ≥ 1,
or B = C∞(E), the space of continuous functions on E that vanish at infinity.

Let {P 0
t ; t ≥ 0} be a uniformly bounded and strongly continuous semigroup in

(B, ‖ · ‖).

Recall that S = {St,P; t ≥ 0} is a driftless subordinator with infinite Lévy
measure ν such that the subordinator Sr has a bounded density function
p̄(r, ·) for each r > 0.

As a particular case of Theorems 1 and 2, we know that

u(t, x) :=

∫ t

s=0

∫ ∞
r=0

P 0
r f(s, ·)(x)p̄(r, t− s) dr ds (3.1)

is the unique solution to the general time fractional Poisson equation
∂wt u(t, x) = Lu(t, x) + f(t, x) with u(0, x) = 0 under suitable conditions on
f(t, x).
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We now assume that {P 0
t ; t ≥ 0} has a density function p0(t, x, y) with

respect to some σ-finite measure µ on E with full support.
Then u(t, x) of (3.1) can be written as

u(t, x) =

∫ t

0

∫
E

q(t− s, x, y)f(s, y)µ(dy) ds,

where
q(t, x, y) :=

∫ ∞
0

p0(r, x, y)p̄(r, t) dr.

In other words, q(t, x, y) is the fundamental solution for solving the time
fractional Poisson equation ∂wt u(t, x) = Lu(t, x) + f(t, x) with zero initial
value. This enables us to establish two-sided estimates for the fundamental
solution q(t, x, y) for the time fractional Poisson equation using estimates of
p0(r, x, y) and p̄(r, t) only.
On the other hand, recently in [CKKW0], we have shown that

p(t, x, y) :=

∫ ∞
0

p0(r, x, y) drP(Sr ≥ t)

is the fundamental solution of the homogenous time fractional equation
∂wt u(t, x) = Lu(t, x).
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is the fundamental solution of the homogenous time fractional equation
∂wt u(t, x) = Lu(t, x).
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The subordinator S is said to be special, if its Laplace exponent φ is a special
Bernstein function; that is, λ 7→ φ∗(λ) := λ/φ(λ) is still a Bernstein function.

In this case, let S∗ = {S∗t ,P; t ≥ 0} be the subordinator with the Laplace
exponent φ∗(λ).

We call S∗ the conjugate subordinator to S. Let ν∗ be the Lévy measure of
S∗ and w∗(x) := ν∗(x,∞).

See Bernstein Functions. Theory and Applications (2nd Edn), 2012 (R. L.
Schilling, R. Song and Z. Vondraček) for examples.
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Kim, Panki (김판기) Generalized Time Fractional Poisson Equations



Introduction
Uniqueness/existence of the solution

Fundamental solution to time fractional Poisson equation
Estimates

Setup
p versus q

The subordinator S is said to be special, if its Laplace exponent φ is a special
Bernstein function; that is, λ 7→ φ∗(λ) := λ/φ(λ) is still a Bernstein function.

In this case, let S∗ = {S∗t ,P; t ≥ 0} be the subordinator with the Laplace
exponent φ∗(λ).

We call S∗ the conjugate subordinator to S. Let ν∗ be the Lévy measure of
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Proposition 3.1

Suppose that S is a special subordinator. Then the following two statements
hold.

(i) For any local Lipschitz function f on [0,∞),

Iw
∗
◦ ∂wt f(t) = f(t)− f(0), t ≥ 0.

In particular, ∂w
∗

t ◦ ∂wt f(t) = f ′(t) for a.e. t > 0.

(ii) For any locally integrable function f on [0,∞),

∂wt ◦ Iw
∗
f(t) = f(t), a.e. t ≥ 0.
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q(t, x, y) =

∫ ∞
0

p0(r, x, y)p̄(r, t)dr

p(t, x, y) =

∫ ∞
0

p0(r, x, y) drP(Sr ≥ t)

Theorem 3.2

Suppose that S is a special subordinator. Denote by ν∗ the Lévy measure of
the conjugate subordinator S∗ to S and set w∗(x) := ν∗(x,∞).
Then for µ-a.e. x, y ∈ E,∫ t

0

q(s, x, y) ds =

∫ t

0

w∗(t− s)p(s, x, y) ds <∞ for t > 0.

Hence,
q(t, x, y) = ∂w

∗
t p(·, x, y)(t) for a.e. t > 0.
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Suppose that the fundamental solution p0(t, x, y) of L admits the following
two-sided estimates:

p0(t, x, y) � t−d/αF (d(x, y)/t1/α), (4.1)

where either
(i) F (r) = exp

(
−rα/(α−1)

)
with α > 1.

or
(ii) F (r) = (1 + r)−d−α, with α > 0.
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Case (i) F (r) = exp
(
−rα/(α−1)

)
typically corresponds to diffusion case.

When L =

d∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
with λ−1Id×d ≤ (aij(x)) ≤ λId×d on Rd, it

is known due to a result by Aronson (67) that L admits such an estimate with
α = 2.

When L is the Laplacian on a two-dimensional unbounded Sierpinski gasket,
it is shown by Barlow and Perkins (88) that the the case (i) hold
d = log 3/ log 2 and α = dw := log 5/ log 2.

Case (ii) F (r) = (1 + r)−d−α typically corresponds to pure jump processes.

It is shown in Chen and Kumagai (03) that case (ii) hold for symmetric
α-stable-like process on Alfhors d-regular space E for 0 < α < 2.
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Suppose that (L,D(L)) is the infinitesimal generator of a (symmetric)
Dirichlet form (E,F) on L2(E;µ) and {P 0

t ; t ≥ 0} is its associated transition
semigroup.

Grigor’yan-Kumagai ’08

Assume that (E, d) satisfies the chain condition (∃C > 0, ∀x, y ∈M ∀n ∈ N,
∃{xi}ni=0 ⊂ E s.t. x0 = x, xn = y, and d(xi, xi+1) ≤ Cd(x, y)/n) and all balls
are relatively compact. Assume further that (E,F) is regular, conservative
and (4.1) holds with some d, α > 0 and non-increasing function F .

Then α ≤ d+ 1, µ (B (x, r)) ' rd for all x ∈M and r > 0, and the following
dichotomy holds:
either (1) the Dirichlet form (E,F) is local, α ≥ 2 , E is connected, and
F (s) � exp

(
− sα/(α−1)),

or (2) the Dirichlet form (E,F) is of pure jump type and F (s) ' (1 + s)−(d+α) .

Note: α = 2 and Ψ(s) = exp(−s2) is the classical case.
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For β ∈ (0, 1), define

h(t, r) =


t−βd/α, d < α,

t−β log

(
2tβ

rα

)
, d = α,

t−β/rd−α, d > α,

Theorem 4.1

Suppose that {St,P; t ≥ 0} is a β-stable subordinator with 0 < β < 1.

(i) Suppose F (s) = (1 + s)−d−α. Then,

p(t, x, y) '

{
h(t, d(x, y)) if d(x, y) ≤ tβ/α,
tβ/d(x, y)d+α if d(x, y) ≥ tβ/α.

(ii) Suppose F (s) = exp(−sα/(α−1)) with α ≥ 2. Then

p(t, x, y) ' h(t, d(x, y)) if d(x, y) ≤ tβ/α,

p(t, x, y) � t−βd/α exp
(

(d(x, y)t−β/α)α/(α−β)
)

if d(x, y) ≥ tβ/α.

Kim, Panki (김판기) Generalized Time Fractional Poisson Equations



Introduction
Uniqueness/existence of the solution

Fundamental solution to time fractional Poisson equation
Estimates

Toy model
Density estimates for subordinators
General Estimates

For β ∈ (0, 1), define

H(t, r) =


tβ−1−βd/α, d < 2α,

t−1−β log

(
2tβ

rα

)
, d = 2α,

t−1−β/rd−2α, d > 2α,

Theorem 4.2

Suppose that {St,P; t ≥ 0} is a β-stable subordinator with 0 < β < 1.

(i) Suppose F (r) = (1 + r)−d−α with α > 0. Then,

q(t, x, y) '

{
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t2β−1/d(x, y)d+α if d(x, y) ≥ tβ/α.

(ii) Suppose F (r) = exp(−rα/(α−1)) with α > 1. Then,

q(t, x, y) ' H(t, d(x, y)) if d(x, y) ≤ tβ/α,

q(t, x, y) � tβ−1−βd/α exp
(
− (d(x, y)α/tβ)1/(α−β)

)
if d(x, y) ≥ tβ/α.
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Assumption 4.3

(i) The Laplace exponent φ of S satisfies that

c1κ
β1 ≤ φ(κλ)

φ(λ)
≤ c2κβ2 for all λ > 0 and κ ≥ 1,

where 0 < β1 < β2 < 1. Without loss of generality, we assume φ(1) = 1.
(ii) The Lévy measure ν(dz) of S has a density function ν(z) with respect to
the Lebesgue measure such that

t 7→ tν(t) is non-increasing on (0,∞).
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Remark

c1κ
β1 ≤ φ(κλ)

φ(λ)
≤ c2κβ2 for all λ > 0 and κ ≥ 1, (4.2)

t 7→ tν(t) is non-increasing on (0,∞). (4.3)

(i) Under (4.2), the Lévy measure ν of S is infinite as
ν(0,∞) = lim

λ→∞
φ(λ) =∞, excluding compound Poisson processes.

(ii) Under (4.2) and (4.3), that ν(t) ' t−1φ(t−1) for all t > 0. (K, Song and
Vondracek (13))

(iii) (4.2) and (4.3) together imply that Sr has a density p̄(r, t) so that
P(Sr ∈ dt) = p̄(r, t) dt; moreover, t 7→ p̄(r, t) is smooth for any r > 0.
(Sato [Theorems 27.13 and 28.4(ii)] (99))
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(1) Let 0 < β1 < β2 < 1.
Suppose a positive function κ(β, t) defined on [β1, β2]× (0,∞) satisfies that
c−1
1 ≤ κ(β, t) ≤ c1 for all (β, t) ∈ [β1, β2]× (0,∞), and that t 7→ κ(β, t) is

non-increasing on (0,∞) for any fixed β ∈ [β1, β2].
Define

φ(λ) :=

∫ ∞
0

(1− e−λt)ν(t) dt, where ν(t) := t−1

∫ β2

β1

κ(β, t)t−β µI(dβ)

and µI is a finite measure on [β1, β2]. Then clearly (4.3) holds.
Furthermore, since

φ(λ) '
∫ β2

β1

(∫ ∞
0

(1− e−s)s−1−β ds

)
λβ µI(dβ),

it is easy to see that (4.2) holds too.
In particular, stable subordinators, which correspond to µI being a Dirac
measure δ{β} for some β ∈ (0, 1) and κ(β, t) ≡ c0 for all t > 0 for some
positive constant c0, and a larger class of mixtures of stable subordinators
satisfy both (4.2) and (4.3).
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(2) A function f : (0,∞)→ [0,∞) is said to be completely monotone, if f is of
class C∞ and (−1)nf (n) ≥ 0 on (0,∞) for every integer n ≥ 0.

A Bernstein function is said to be a complete Bernstein function, if its Lévy
measure has a completely monotone density with respect to the Lebesgue
measure.

A sufficient condition on φ which implies (4.3) is that φ is a Thorin-Bernstein
function; that is, both φ(λ) and λφ′(λ) are complete Bernstein functions.

In this case, both t 7→ ν(t) and t 7→ tν(t) are completely monotone.
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Proposition 4.4

(i) For each L > 0, there exist constants c1,L, c2,L > 0 such that for all
rφ(t−1) ≤ L,

c1,Lrφ(t−1) ≤ P(Sr ≥ t) ≤ c2,Lrφ(t−1).

(ii) There is a constant c1 > 0 such that for all r, t > 0,

P(Sr ≤ t) ≤ exp(−c1rφ ◦ [(φ′)−1](t/r)) ≤ exp(−c1t(φ′)−1(t/r)).

Moreover, there is a constant c0 > 0 such that for each L > 0, there
exists a constant cc0,L > 0 so that for rφ(t−1) > L

P(Sr ≤ t) ≥ cc0,L exp
(
−c0rφ ◦ [(φ′)−1](t/r)

)
≥ cc0,L exp(−c0C∗t(φ′)−1(t/r)),

where C∗ > 0 is an absolute constant only depending on φ.
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Lemma 3

There exists a constant ar > 0 such that for all r > 0,
t 7→ p̄(r, t) is strictly increasing on [0, ar) and
t 7→ p̄(r, t) is strictly decreasing on (ar,∞).
Moreover, there exists a constant c1 ≥ 1 such that

c−1
1 /φ−1(1/r) ≤ ar ≤ c1/φ−1(1/r) for all r > 0.

Theorem 4.5

For each L > 0, there exist constants ci := ci,L ≥ 1 (i = 1, 2, 3) such that

1

c1t
rφ(t−1) ≤ p̄(r, t) ≤ c1

t
rφ(t−1) ∀r, t > 0 with rφ(t−1) ≤ L

and

1

c2t
e−c3t(φ

′)−1(t/r) ≤ p̄(r, t) ≤ c2
t
e−c
−1
3 t(φ′)−1(t/r) ∀r, t > 0 with rφ(t−1) ≥ L.
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Suppose that 0 < α1 ≤ α2 <∞. We say that a non-decreasing function
Ψ : (0,∞)→ (0,∞) satisfies the weak scaling property with (α1, α2) if there
exist constants c1 and c2 > 0 such that

c1(R/r)α1 ≤ Ψ(R)/Ψ(r) ≤ c2(R/r)α2 for all 0 < r ≤ R <∞. (4.4)

We say that a family of non-decreasing functions {Ψx}x∈Λ satisfies the weak
scaling property uniformly with (α1, α2) if each Ψx satisfies the weak scaling
property with constants c1, c2 > 0 and 0 < α1 ≤ α2 <∞ independent of the
choice of x ∈ Λ.
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For x ∈ E and r ≥ 0, define

V (x, r) = µ(B(x, r)).

We further assume that for each x ∈ E, V (x, ·) satisfies the weak scaling
property uniformly with (d1, d2) for some d2 ≥ d1 > 0; that is, for any
0 < r ≤ R and x ∈ E,

c1

(
R

r

)d1
≤ V (x,R)

V (x, r)
≤ c2

(
R

r

)d2
. (4.5)

Note that (4.5) is equivalent to the so-called volume doubling and reverse
volume doubling conditions.
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Pure jump case

We assume that

p0(t, x, y) ' 1

V (x,Φ−1(t))
∧ t

V (x, d(x, y))Φ(d(x, y))
, t > 0, x, y ∈ E.

Here Φ : [0,+∞)→ [0,+∞) is a strictly increasing function with Φ(0) = 0

that satisfies the weak scaling property with (α1, α2). (See Chen, Kumagai &
Wang ,16+.)

Theorem 4.6

(i) If Φ(d(x, y))φ(t−1) ≤ 1, then

p(t, x, y) ' φ(t−1)

∫ 2/φ(t−1)

Φ(d(x,y))

1

V (x,Φ−1(r))
dr.

(ii) If Φ(d(x, y))φ(t−1) ≥ 1, then p(t, x, y) ' 1

φ(t−1)V (x, d(x, y)) Φ(d(x, y))
.
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Pure jump case

Theorem 4.7

(i) If Φ(d(x, y))φ(t−1) ≤ 1, then

q(t, x, y) ' φ(t−1)

t

∫ 2/φ(t−1)

Φ(d(x,y))

r

V (x,Φ−1(r))
dr. (4.6)

(ii) If Φ(d(x, y))φ(t−1) ≥ 1, then

q(t, x, y) ' 1

tφ(t−1)2V (x, d(x, y)) Φ(d(x, y))
.
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Diffusion case

We assume that the heat kernel p0(t, x, y) of the diffusion X with respect to µ
exists and enjoys the following two-sided estimates

p0(t, x, y) � 1

V (x,Φ−1(t))
exp (−m(t, d(x, y))) , t > 0, x, y ∈ E.

Here, Φ : [0,+∞)→ [0,+∞) is a strictly increasing function with Φ(0) = 0,
and satisfies the weak scaling property with (α1, α2) such that α2 ≥ α1 > 1

and the function m(t, r) is strictly positive for all t, r > 0, non-increasing on
t ∈ (0,∞) for fixed r > 0, and determined by

t

m(t, r)
' Φ

(
r

m(t, r)

)
, t, r > 0.
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Diffusion case

We assume that the heat kernel p0(t, x, y) of the diffusion X with respect to µ
exists and enjoys the following two-sided estimates

p0(t, x, y) � 1

V (x,Φ−1(t))
exp (−m(t, d(x, y))) , t > 0, x, y ∈ E.

Here, Φ : [0,+∞)→ [0,+∞) is a strictly increasing function with Φ(0) = 0,
and satisfies the weak scaling property with (α1, α2) such that α2 ≥ α1 > 1

and the function m(t, r) is strictly positive for all t, r > 0, non-increasing on
t ∈ (0,∞) for fixed r > 0, and determined by

t

m(t, r)
' Φ

(
r

m(t, r)

)
, t, r > 0.
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Diffusion case

Theorem 4.8

(i) If Φ(d(x, y))φ(t−1) ≤ 1, then

p(t, x, y) 'φ(t−1)

∫ 2/φ(t−1)

Φ(d(x,y))

1

V (x,Φ−1(r))
dr.

(ii) If Φ(d(x, y))φ(t−1) ≥ 1, then there exist constants ci > 0 (i = 1, . . . , 4)
such that

c1
V (x,Φ−1(1/φ(t−1))))

exp(−c2n(t, d(x, y))) ≤ p(t, x, y)

≤ c3
V (x,Φ−1(1/φ(t−1))))

exp(−c4n(t, d(x, y))),

where n(·, r) is a non-increasing function on (0,∞) determined by

1

φ(n(t, r)/t)
' Φ

(
r

n(t, r)

)
, t, r > 0.
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Diffusion case

Theorem 4.9

(i) If Φ(d(x, y))φ(t−1) ≤ 1, then

q(t, x, y) ' φ(t−1)

t

∫ 2/φ(t−1)

Φ(d(x,y))

r

V (x,Φ−1(r))
dr.

(ii) If Φ(d(x, y))φ(t−1) ≥ 1, then there exist constants ci > 0 (i = 1, . . . , 4)
such that

c1
tV (x,Φ−1(1/φ(t−1))))

n(t, d(x, y))

φ(n(t, d(x, y))/t)
exp(−c2n(t, d(x, y)))

≤ q(t, x, y) ≤ c3
tV (x,Φ−1(1/φ(t−1))))

n(t, d(x, y))

φ(n(t, d(x, y))/t)
exp(−c4n(t, d(x, y))),

where n(·, r) is a non-increasing function on (0,∞) determined by

1

φ(n(t, r)/t)
' Φ

(
r

n(t, r)

)
, t, r > 0.
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Thank you.

감사합니다.
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