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Intermittency of random fields

@ Intermittency is a physical phenomena that a random field possesses when it
shows widely separated high peaks.

@ The most well-known field exhibiting this property is the magnetic field energy in
a star.

@ In our sun, this exhibits itself as sun spots where most of the magnetic field
energy is concentrated, thereby lowering the temperature and causing the
darkening which appears as a spot.

@ Sunspots may last anywhere from a few days to a few months, but all do
eventually decay and disappear.
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Sunspots
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A 1-D heat equation

PDE : &u:%afxu, t>0, 0<x<1,

IC: Uo(x) = sin(mx),
DBC: w(0)=uw(1)=0.

@ u(x) =temperature through a very thin slice of a rod of lenght 1 lying on the
x-axis from 0 to 1.

@ Since the end of the rods are kept at 0°, we expect that u — 0 as t — cc.

@ The unique solution is :
ut(x) = sin(mwx) exp (—7r22‘/2) ,
soindeed u — 0 as t — oo.
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Heat equation (Khoshnevisan-Kim’15)
dru = 302u on [0, 1] with Dirichlet BC, up(X) = sin(7x)

time 0 0

space
Figure: \ = 0; u;(z) = sin(nz) exp(—72t/2)
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General 1-D heat equation

PDE: Qu=0d%u, t>0, 0<x<1,
IC: uo(x) = f(x)
DBC: u(0)=w(1)=0.

@ General solution : .
Ur(x) = 3 ba®n(X) exp (—punt)
n=1

where un = M2, ®5(x) = V2sin(nmx), and by = [ ®n(x)f(x)dx.

@ unand &, are the eigenvalues and eigenfunctions of the Sturm-Liouville
problem :

@ Soagainu—0ast— oco.

Eulalia Nualart (UPF) Intermittency stochastic heat CIRM, 13th December 2018 7/45



A non-linear 1-D heat equation

The cable equation :

PDE: Qu=0d5u+ u, A>0, t>0, 0<x<1,
IC: Uo(x) = sin(mx)
DBC: w(0)=uw(1)=0.

@ When X =1, us(x) represents the electrical potential through an electrical cable.
Used for e.g. in the study of neurons.

@ General solution :
ut(x) = sin(mwx) exp ((—7r2 + /\)t> ,

@ When ) > 72, u — 40 as t — oo.

When A < 72, u — 0 as t — .

@ When we add a potential, if the potential is large enough it will beat the boundary
conditions !
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General non-linear heat equation on a bounded domain

PDE: Owu=Au+Xu, X>0, t>0  xecO,
IC:  w(x)=f(x), fel?0)
DBC: w(x)=0, x¢€00.

@ Let {ex}k>0 be a complete orthonormal system of L?(©) such that
Aex(x) = —pukex(x) xe€ O
e(x)=0 x €00,
where {p }k>0 is an increasing sequence of positive numbers.

@ In particular, f = >~ (f, ex)ex and the solution is given by

oo

ur(x) = D _(f, ex)e(x) exp ((—pu + A1),

k=0
@ Kwiecinsaka'99 : If k is the smallest integer such that (f, ey,) # 0, then

. 1
limsup — log ||tt|| ;2(0) = A — pikgy-
t—oo t
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Gaussian perturbation in time

@ Same equation as before but
Orur(x) = Au(x) + Aur(x)dW,

@ W; is a real-valued Wiener process. Then the solution is

%) 2
ur(x) = exp(AW;) > “(f, ex)ex(x) exp ((—pk — %)t%

k=0

@ Kwiecinsaka’99 :

. 1 A2
limsup — log [|tt]l 20y = — 5 — ki, S
t—oco t 2

@ Using similar computations, one can show that

)\2
lim sup 1? log Et(N) = & — 1ikys

t—oo 2

where £(X) := , /E[|utl2, -
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A non-linear 1-D stochastic heat equation

The Parabolic Anderson Model :

SPDE: du=03%u+ ulV, Xx>0, t>0, 0<x<1,
IC: uo(x) = f(x),
DBC: u(0)=w(1)=0.

@ When X =1, u(x) describes a random mass transport through a magnetic
random field of sinks and sources.

@ W(t, x) space-time white noise. W(t, x) is a centered Gaussian field with
covariance
E(W(t,x)W(s,y)) = (tAS)(X A y).

@ This process is not differentiable in ¢ or x, so we will rewritte the SPDE in an
integral form (Walsh’86) and understand W(t, x) as W(dt, dx), where W is a
Gaussian random measure.
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The mild formulation of Walsh

@ The mild solution of the SPDE is the solution to the integral equation

ui(x) = / pi(x.y)(Y)dy + A / / Pr_s(x, y)us(y) W(ds, dy),

where p:(x, y) is the Dirichlet heat kernel, that is, the solution to the 1-D heat
equation with initial condition f(x) = d,(x).

@ The stochastic integral was defined by Walsh’86 by extending the L2-theory of
[t6’44 for Brownian motion. It satisfies the following isometry property :

E ({/ot/()1 Pr—s(X, y)us(y)W(ds, dy)}2> = /Ot/o1 P o(X, ¥)E (ug(y)) dsdy
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Justification of the mild formulation

@ Let v1(x) be a test function with ¢:(0) = (1) = 0.
@ Multiplying the SPDE by ¢:(x) and integrating by parts yields

[ 100200 - wreatN 0 = [ [ wstoetie + one)e(xanas
+ A/OI/O1 us(x)ps(x)W(ds, dx).

@ Set ps(y) = J3 p—s(x, ¥)$(x)dx, where ¢ is a test function with

6(0) = ¢(1) = 0. Then, i(y) = ¢(y). Set pi(9,¥) = Jy pi(x, y)$(x)ax.

Integrating by parts,

p(6.y) ~pr(6.y) = [ pio" 9)ds.
Thus, 82, + ds¢ = 0. Therefore, we obtain
[ wsiax = [ wiponay 3 [ [ oo yutnwias. ).

@ Choosing ¢ as an approximation of the delta function yields the mild formulation.
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Existence and uniqueness

SPDE: Qw=0d5u+ uW, X>0, t>0 0<x<i
IC: uo(x) = f(x),
DBC: u(0) = w (1) =0.

Theorem (Walsh’86)

Assume f measurable and bounded. There exists a unique predictable jointly

measurable and adapted process (ui(x),t > 0, x € [0, 1]) satisfying the integral
equation

1 t 1
u(x) = / P, y)f(y)dy + A / / Pr—s(%, y)us(y) W(ds, dy).
Moreover, forallp > 2 and T > 0,

sup sup E(|u(X)|°) < co.
x€[0,1] t€[0,T]
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Stochastic heat equation (khoshnevisan-Kim'15)
du = 102u + AuW on [0, 1] with Dirichlet BC, up(x) = sin(7x)

time 0 0

space

Figure: A = 0.1; max. peak ~ 1.4
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Stochastic heat equation (khoshnevisan-Kim'15)
u = 0%u + AuW on [0, 1] with Dirichlet BC, uy(x) = sin(7x)

time 0 0

space

Figure: A = 2; max. peak =~ 35
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Stochastic heat equation (khoshnevisan-Kim'15)
u = 0%u + AuW on [0, 1] with Dirichlet BC, uy(x) = sin(7x)

time 0 0

space
Figure: A\ = 5; max. peak ~ 2.5 x 1019

Eulalia Nualart (UPF) Intermittency stochastic heat CIRM, 13th December 2018 17/45



Intermittency for SPDEs

@ Intermittency phenomenon : the solution u:(x) to the parabolic Anderson model
develops high peaks on small x-intervals when t increases.

@ Mathematical definition : consider the pth moment Lyapunov exponent

1(p) = im +log E(Ju(x)P).

@ (Gartner-Molchanov'90) : u is fully intermittent if for all x
p— % is strictly increasing for all p > 2.
(it is always nondecreasing)
@ (Foondun-Khoshnevisan’09) : u is weakly intermittent if for all x
~(2) > 0 and v(p) < oo forall p > 2.
@ If v(1) = 0 then weak intermittency implies full intermittency.
@ Moreover, if ui(x) > 0 a.s. for all t > 0 and x then v(1) = 0.
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Results for large A

Theorem (Khoshnevisan -Kim'14)
Ifinfxe(o,1) f(x) > 0, then for all t > 0,

fgnminfx2 log &(\) and |imsupx4log5,(A)gf,
2 A—00 4

A—00
where Ei(X) =, /E||u,||f2(071).

Theorem (Foondun-Joseph’14)

If there exists e € (0, §) such that infye(e1—q f(X) > 0, then for all t > 0

.. _log Ioginf,(€[€,1,€]E|ut(X)|2 . log |OgSUPxe[o,1]E|Ut(X)|2
lim inf = lim sup =4
A—o0 log A A o0 log A

These results show that for large \ the solution is intermittent.
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Intermittency for \ large and small

Assume the initial condition f is non-negative, bounded and has positive support
inside [0, 1].

Theorem (Foondun-Nualart'15)
For all p > 2, there exists \o > 0 such that for all A < \o and x € (0, 1),

1
—o0 < limsup ~ log E(|ut(x)|P) < 0.
t—oo t

If there exists € € (0, %) such thatinfycc 1—q f(x) > 0, then there exists A1 > 0 such
that for all \ > X\ and x € [e,1 — €],

0 < liminf 1 log E(|ut(x)[P) < oo.
t—oo t

This results shows that for A < \g the solution is nonintermittent, while for A > X\ the
solution is intermittent.
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Consequence

Corollary

Mo < \i. Moreover, there exist \ € [Xo, A\] and X € [\o, \1] such that resp.
lim sup 1 log Elur(x)[? =0, and liminf 1 log E|u(x)[? = 0.
tsoo | tsoo I

Moreover, X < X.

Open problem :is X = X ?
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Idea of proof

@ Proof of limsup,_, . +log E(|u:(x)|?) < 0 : It suffices that for some 8 > 0

|ullz, 5 := supsup €”'E|ui(x)]? < oc.
t>0 xeR

@ We show that for all 3 € (0,2u4),
lullz, s < 1+ c2X?||ull2, .

@ Proof of liminfi— log E(Jui(x)[?) > 0 : It suffices that for some 3 > 0
Is == / e P inf Elw(x)]?dt = co.
0 X€Ele,1—¢€]

@ We show that for all t > 1,
/5 > C3+ C4A2/5.
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Extension : The fractional stochastic heat equation

@ Fractional stochastic heat equation on the ball D = B(0, R)

drur(x) = —(—=D)*2ui(x) + Ao(u(x))F(t,x)  xe€D, t>0,
u(x)=0 xeD° t>0.

@ Initial condition : measurable and bounded function vy : D — R..

@ —(—A)*2,0 < a < 2: [2-generator of a symmetric a-stable process killed
when exiting D.

@ Gaussian noise F(t, x) : white in time and coloured in space :
E (F(t.0)F(s,5)) = o(t = $)9(x — ),

g : RY — R, is a nonnegative definite (generalized) function whose Fourier
transform g = . is a tempered measure.

@ ) > 0 (level of the noise).
@ o : R — R globally Lipschitz function
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The mild formulation

@ Following Walsh’86 the mild solution is the random field u = {ui(x)},-¢ yep
satisfying

t
ui(x) = / Uo(y)Pol(t, X, ) dy + A / /O po(t — s, x, y)o(us(y))F(ds. dy), (1)

po(t, x, y) denotes the Dirichlet fractional heat kernel on D and the stochastic
integral is understood in an extended It6 sense.

@ Following Dalang’99, if the spectral measure satisfies that

w(d€)
/Ra T+ Jgle = @)

then there exists a unique random field solution u to equation (1).
@ Moreover, forallp>2and T > 0,
sup  E|u(x)|P < oo.

te[0,T],xeD
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Examples of spatial correlations

@ The Riesz kernel :
gx)=Ix|"", 0<p<d.

Since g(¢) = c|¢|~(“=#) condition (2) holds iff 5 < a.

@ The fractional kernel :
a1
g(X)=E\XfI T g <H <1

Since g(¢) = c[12, |&|"~2" condition (2) holds iff >, H; > d — &.

@ The Bessel kernel :
9(x) = /Oo vz e e gy.
0
Since §(¢) = c(1 + |£[?)~"/2 condition (2) holds iff n > d — .

@ The space-time whice noise case g = dpsince g(£¢) = 1, (2) is only satisfied
when a > d, thatis,d=1and 1 < a < 2.
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Intermittency for \ large and small

Assume that

lo|X| < |o(X)| < Lo|x|,
g locally integrable, positive continuous function on D\ {0},
f is non-negative, bounded with positive support in the clousure of D.
Theorem (Foondun-Nualart'15, Foondun-Guerngar-Nana’17)
For all p > 2, there exists \o > 0 such that for all \ < \o and x € D,

1
—o0 < limsup — log B(|uy(x)|P) < 0.
t—oo t

Moreover, for all e > 0, then there exists \1 > 0 such that for all X\ > \ and
x € B(0O,R —¢),

0 < liminf 1 log E(|ur(x)[°) < oc.
t—oo I

This results shows that for A < \g the solution is nonintermittent, while for A > A\ the
solution is intermittent.
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Neumann BC in Foondun-Nualart’'15

SPDE: dw=0d5u+Xo(u)W, A>0, t>0, 0<x<1,
IC: Uo(x) = f(x)
NBC : Oxut(0) = Oxur(1) = 0.

@ Mild formulation :

/ Pl (%, Y)F(y)ay + A / / P o(x, ¥ ) (us(y)) W(ds, dy).

where pM(x, y) is the Neumann heat kernel :

ol (x,y) =1+ Z e " cos(nmx) cos(nmy).

n=1
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Neumann BC : intermittency

Theorem (Foondun-Nualart'15)

Assume there exists ¢ € (0, }) such that infye(.1—q f(x) > 0. Then for all x € (0,1)
andt >0,

E|lu(x)P > cie2.
In particular, for all x € (0,1) and A > 0,

.o 1
0< ||tnl£f 7 log E(|ut(x)]?) < oco.

Therefore, the solution is intermittent for all A > 0. We use the following Gronwall’s
inequality :

Theorem (Foondun-Joseph’14)
Suppose that f(t) is a non-negative integrable function :

f(s)
Vi—s

where a, b > 0. Then, for all t > 0, f(t) > c;e%""!.

t
f(t)>a+ kb/ ds forall k,t>0
0

v
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The stochastic heat equation in R

SPDE: &= %afxw Ao(u)W, X>0, xcR
IC: uo(x) = f(x),

(x=y)?
2t

Mild formulation in terms of the pZ(x, y) =Gaussian heat kernel:ﬁ e

Theorem (Foondun-Khoshnevisan'09)

@ Assume
;21; @ >0 and ;21; f(x) > 0.
Then, for all X > 0 the solution is intermittent.
Q Assume

0 < inf |o(x)| < sup|o(x)| < co.
xER x€R

Then, for all A > 0, the solution is nonintermittent.

Multiple Extensions : fractional Laplacian, RY, 29, fractional Gaussian noise in time,...
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Precise estimates ? Feynman-Kac’s formula

Heat equation with cooling term :

PDE: 8w =0d3u— K(x)u, x€R
IC: uo(x) = f(x),

@ K(x) =amount of external cooling at x.
o ptG(x,y) is the transition density of a standard Brownian motion B.

@ Feynman-Kac’s formula

u(x) = EX (f(B,) exp <_ /Ot K(Bs)ds>> :

where E¥ means the expectation conditionned such that By = x.

@ Consequence of Itd’s formula.
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Feynman-Kac'’s formula for SPDEs

Parabolic Anderson model :

SPDE: gwu=03u+ uW, X>0,x€cR
IC: uo(x) =1,

o p?(x,y) is the transition density of a standard Brownian motion B.

@ By Hu-D.Nualart'09, for all p > 2,

Elu(x)°P =E | exp | A2 /50 (B — Bf)a
1<j<k<p

where B’ are p iid copies of the Brownian motion B.

(4] fo' do(Bs)ds =Brownian local time=time spent by the Brownian motion at 0 during
the time interval [0, {].
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Exact moment Lyapunov exponents

Parabolic Anderson model :

SPDE: 6= %aﬁxu+ AW, A>0,xeR

IC: up(x) =1,

Theorem (Bertini-Cancrini’95 and Chen'15)
For every integern=2,3,... andx € R
T 1 ny __ 1 2 4
y(n) = Jim = log E (ur(x)") = ﬂn(n — 1A%

In particular v(2) = *74

When n = 2 there is a formula for the fractional Laplacian in
Foondun-Khoshnevisan’09
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Feynman-Kac'’s formula and open problem
Parabolic Anderson model :

SPDE : 6tu:%8fxu+)\uW, A>0,0<x<1

IC: up(x) =1,
DBC: u(0) = u (1) = 0.

@ p:i(x,y) is the transition density of a Brownian motion B killed when exiting the
interval.

@ By Hu-D.Nualart'09, for all p > 2,

t .
Elu( =E2 (e 3 3° [ a8, - Bs | |,
1<jzk<p” 0

where B’ are p iid copies of the Brownian motion B.

Open problem : exact formulas for v(n), n =2,3,... ?

Conjecture : v(2) = *74 -2 ..

Eulalia Nualart (UPF) Intermittency stochastic heat CIRM, 13th December 2018 33/45



Partial answer : Moment bounds

Consider the fractional stochastic heat equation on D = B(0, 1).

@ Hypothesis 1 : There exist positive constants ¢, ¢; and 0 < § < a A d such that
for all x € RY,
cilx|™7 < g(x) < celx| 7.
@ Hypothesis 2 : There exist positive constants ¢, L, such that for all x € R,

lo|X| < lo(x)] < Lo|x].

@ Hypothesis 3 : There exists € € (0, 3) such that

xlenge f(x) >0,

where D. = {y € R? : |y| <1 —¢}.
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Moment bounds

Theorem (Nualart'18)
Assume Hypothesis 3.
a) If g satisfies Hypothesis 1 and o(x) = x, then for allp > 2 and 6 > 0,

2a _a  _2a
P —m) < inf Elu(x)|P < supE|u(x)|P < TePlep A=l —(1=0)u1)
2 X€eD, xeb i

b) If g = o and o satisfies Hypothesis 2, then for allp > 2 and ¢ > 0,

2a 2a 20

o—T _ ) . a—Tya-9_(1_s .
EgeP(OzA T —p1) < inf E|u(x)|° < supE|u(x)|P < C{‘Jept(qu A=t —(1=d)p1)
xeDe xeD

Upper bounds hold for all t > 0 while lower bounds holds for all t > c(a)\~ 227 When
a = 2, lower bounds hold for all t > 0.
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Consequences

Moment-type Lyapunov upper and lower exponents in terms of A > 0 :

Corollary
In case a), for all X > 0,

p (Cg)\jifﬁ = m) < Iitm inf 1 log inf E|ut(X)|p
—oo I xeD,

< limsup  logsup Elu()|” < p (& (AT — (1 )
€

t—oco X
&(p) = c1ip=—7.

Similar bounds for case b).
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Remarks

@ The lower bound when oo = 2 and F is space-time white noise on R, x (0, 1)
was already obtained by Xie’16.

@ This theorem implies thatforallp > 2,t > 0 and x € D.,

lim log log E|lur(x)|P 2«
A—o0 log A T a-—a

)

which is known as the excitation index of the solution introduced by
Khoshnevisan-Kim’15. This result with p = 2 was already obtained by
Liu-Tian-Foondun’17 in the case that g is the Riesz kernel and o satisfies
Hypothesis 2.
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Heat kernel estimates 1

Proposition 1
For any e € (0, }), there exist ci(¢), cz2(€) and cs(e) such that for all x € D. and t > 0,

/ pD(ta X7 Y)dy 2 Cy eiu1t7
D.
forall x € D. and t > 0,
/ Pa(t, x, y)dy > coe™ 21119/,
D.

and if g satisfies Hypothesis 2, then for all x, w € D. and t > 0 such that |x — w| < t,

/ po(t, x, y)po(t, w, 2)g(y — z)dydz > cse 21t 7/,
D¢ X De
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Heat kernel estimates 2

Proposition 2
For all § > 0, there exist ¢1, c2(d) > 0 such that for all x, w € Dand t > 0,

/po(t, x,y)dy < cre” 1",
D

and
po(t, x, ¥)po(t, w, 2)g(y — z)dydz < cpe™ G20 g=a/e

DxD
where

a— d, if g= (507
|8, if g satisfies Hypothesis 2.
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Fractional Gronwall’s inequalities

Proposition 3 (Henry’81, Foondun-Liu-Omaba’17)

Let p > 0 and G a locally integrable function satisfying
t
G(t) <ci + k/ (t—s)"'G(s)ds forall t>0, (3)
0
for some ¢y, k > 0. Then there exist ¢, ¢ > 0 such that

1/pl/pt

G(t) < %" forall t> 0.

If instead of (3) the function is non-negative and satisfies
t
G(t) > ¢ + k/ (t—s)"'G(s)ds forall t>0,
0

then
G(t) > 2%kt ol 2‘>§(r(p)k)_1/p.

If p= % the latter lower bound holds for all { > 0.
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Proof of the lower bound

@ Caseg=4dpandd =1.
@ By Jensen’s inequality, for any p > 2,

Elu()” > (Blu(ol)”".

Therefore, it suffices to prove the lower bound for p = 2.
@ Taking the second moment to the mild formulation

2 t
Blu(OR = ([ wpoltxnay ) + 32 [ [ bt s.xy)Bla(usty)Payes.
@ By the heat kernel estimates, and Hypotheses 2-3,

G(t)> ¢ (1 e /Ot(r - s)’”“Gg(s)ds) ,

where
G(t) = ™" inf E|us(y)|?.
y€De

@ Proposition 3 with p = 1 — 1 concludes.
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Proof of the upper bound

@ Caseg=4dpandd=1.

@ Taking the pth moment to the mild formulation and appealing to Burkhélder’s and
Minkowski’s inequalities

su()” <2 { ([ wpo(txiar)

ot

X6, ( | [ebie-s x,y)(E|o(us(y>>|P)2/pdyds)p/z }

@ Since wp is bounded, and by the heat kernel estimates, and Hypothesis 2,

G(t)Sc(1+>\2/0t%ds>,

G(t) = e® "1 sup(E|us(y)[*)*/".
yeD

where

@ Proposition 3 with p = 1 — 1 concludes.
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Proof for d > 1 and o(x) = x

@ Consider the Wiener-chaos expansion in L2(Q)

u(x) =S vi"(x),

n>0

where v(?(x) = Jp w(y)po(t, x, y)dy and for n > 1,

viP(x) = /\”/ / po(t — tn, X, X0)Pp(tr — a1, Xn, Xn—1)
RL’r Dn
cpo(te — b, %, X )V (%) 1 (0t <oty F(dltr, A1) - - F(dlt, dlXn).
@ This means that
v (x) = Ah(hn(-, £, X)),
where I, denotes the multiple Wiener integral with respect to F, and

hn(t17X1 yeees tny X, 1, X) = pD(1L —t, X, Xn)pD(tn — th—1, Xn, Xn71)

- pp(te — 1, X2, X4 )V,EO)(X1 Mio<t < <to<ty-
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Proof for d > 1 and o(x) = x

@ Therefore, 3
Elur(x)* = VO ()P + 3 X1 Bo(-, 1, %) |[5,02.

n>1
where h, denotes the symmetrization of h,. That is,
n!‘|77’7('7 t: X)H’2H®2 = / pD(t - tn,X, X")pD(t - tn,X,_yn)g(Xn - yn)
0<ty < - <tp<t J D20
X po(tn — th—1, Xn, Xn—1)Po(tn — th—1, Xn, Yn—1)9(Xn—1 — ¥n—1) - - - Po(f — 1, X2, X41)
x po(te — t, %2, y1)g(x1 — y1) VO (x1)|Pdxi - - - dxadlys - - - dyndlty - - ditn.

@ The heat kernels estimates imply

n

ci 972M1t/ (t—ta) 7 It = ts)"7%aty - dlty <
0<l < <tp<t ol
n

| Pn(-, t, X)||3,00 < cge—2<‘—“>“1’/ (t—t2) P Tt — tia) ™"ty - c
O<ty < <th<t

2=1
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Proof for d > 1 and o(x) = x

@ Following Balan-Conus’16, we conclude that

B s
cre” {3 NCI(n) =T | < Blu(x)f
n>0

— — B_4,_08
< ce 2pq(1=96)t Z AZHcg(nl)u 1t & tn ,
n>0

and

C1 exp (CM"%M) e 21" <E|u(x)]? < coe” 1Ml exp (Cz)\f%ﬁlj
@ Use Minkowski’s inequality and the equivalence of the LP-norms in a fixed chaos

o < 3 (bt X))o < S0 = 172 (Bl £ 0) ez

n>0 n>0
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