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Intermittency of random fields

Intermittency is a physical phenomena that a random field possesses when it
shows widely separated high peaks.

The most well-known field exhibiting this property is the magnetic field energy in
a star.

In our sun, this exhibits itself as sun spots where most of the magnetic field
energy is concentrated, thereby lowering the temperature and causing the
darkening which appears as a spot.

Sunspots may last anywhere from a few days to a few months, but all do
eventually decay and disappear.
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Sunspots
Nonlinear noise excitation (Lecture 1)
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Number of sunspots
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A 1-D heat equation

PDE : ∂tu =
1
2
∂2

xx u, t > 0, 0 < x < 1,

IC : u0(x) = sin(πx),

DBC : ut (0) = ut (1) = 0.

ut (x) =temperature through a very thin slice of a rod of lenght 1 lying on the
x-axis from 0 to 1.

Since the end of the rods are kept at 0◦, we expect that u → 0 as t →∞.

The unique solution is :

ut (x) = sin(πx) exp
(
−π2t/2

)
,

so indeed u → 0 as t →∞.
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Heat equation (Khoshnevisan-Kim’15)

∂tu = 1
2∂

2
x u on [0,1] with Dirichlet BC, u0(x) = sin(πx)

Nonlinear noise excitation (Lecture 1)
∂tu = 1

2
∂2
xu+ λuξ on [0 , 1] with Dirichlet BC

u0(x) = sin(πx) [K-Kim, 2013]

Figure: λ = 0; ut(x) = sin(πx) exp(−π2t/2)

Eulalia Nualart (UPF) Intermittency stochastic heat CIRM, 13th December 2018 6 / 45



General 1-D heat equation

PDE : ∂tu = ∂2
xx u, t > 0, 0 < x < 1,

IC : u0(x) = f (x)

DBC : ut (0) = ut (1) = 0.

General solution :

ut (x) =
∞∑

n=1

bnΦn(x) exp (−µnt) ,

where µn = n2π2, Φn(x) =
√

2 sin(nπx), and bn =
∫ 1

0 Φn(x)f (x)dx .

µn and Φn are the eigenvalues and eigenfunctions of the Sturm-Liouville
problem :

X ′′(x) = −µX (x), 0 < x < 1

X (0) = X (1) = 0.

So again u → 0 as t →∞.
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A non-linear 1-D heat equation

The cable equation :

PDE : ∂tu = ∂2
xx u + λu, λ > 0, t > 0, 0 < x < 1,

IC : u0(x) = sin(πx)

DBC : ut (0) = ut (1) = 0.

When λ = 1, ut (x) represents the electrical potential through an electrical cable.
Used for e.g. in the study of neurons.

General solution :
ut (x) = sin(πx) exp

(
(−π2 + λ)t

)
,

When λ > π2, u → +∞ as t →∞.

When λ < π2, u → 0 as t →∞.

When we add a potential, if the potential is large enough it will beat the boundary
conditions !
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General non-linear heat equation on a bounded domain

PDE : ∂tu = ∆u + λu, λ > 0, t > 0, x ∈ O,

IC : u0(x) = f (x), f ∈ L2(O)

DBC : ut (x) = 0, x ∈ ∂O.

Let {ek}k≥0 be a complete orthonormal system of L2(O) such that∣∣∣∣∣∆ek (x) = −µk ek (x) x ∈ O
ek (x) = 0 x ∈ ∂O,

where {µk}k≥0 is an increasing sequence of positive numbers.
In particular, f =

∑∞
k=0〈f , ek 〉ek and the solution is given by

ut (x) =
∞∑

k=0

〈f , ek 〉ek (x) exp ((−µk + λ)t) ,

Kwiecinsaka’99 : If k0 is the smallest integer such that 〈f , ek0〉 6= 0, then

lim sup
t→∞

1
t

log ‖ut‖L2(O) = λ− µk0 .
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Gaussian perturbation in time

Same equation as before but

∂tut (x) = ∆ut (x) + λut (x)dWt ,

Wt is a real-valued Wiener process. Then the solution is

ut (x) = exp(λWt )
∞∑

k=0

〈f , ek 〉ek (x) exp
(
(−µk −

λ2

2
)t
)
,

Kwiecinsaka’99 :

lim sup
t→∞

1
t

log ‖ut‖L2(O) = −λ
2

2
− µk0 a.s.

Using similar computations, one can show that

lim sup
t→∞

1
t

log Et (λ) =
λ2

2
− µk0 ,

where Et (λ) :=
√

E‖ut‖2
L2(O)

.
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A non-linear 1-D stochastic heat equation

The Parabolic Anderson Model :

SPDE : ∂tu = ∂2
xx u + λuẆ , λ > 0, t > 0, 0 < x < 1,

IC : u0(x) = f (x),

DBC : ut (0) = ut (1) = 0.

When λ = 1, ut (x) describes a random mass transport through a magnetic
random field of sinks and sources.

Ẇ (t , x) space-time white noise. W (t , x) is a centered Gaussian field with
covariance

E (W (t , x)W (s, y)) = (t ∧ s)(x ∧ y).

This process is not differentiable in t or x , so we will rewritte the SPDE in an
integral form (Walsh’86) and understand Ẇ (t , x) as W (dt , dx), where W is a
Gaussian random measure.
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The mild formulation of Walsh

The mild solution of the SPDE is the solution to the integral equation

ut (x) =

∫ 1

0
pt (x , y)f (y)dy + λ

∫ t

0

∫ 1

0
pt−s(x , y)us(y)W (ds, dy),

where pt (x , y) is the Dirichlet heat kernel, that is, the solution to the 1-D heat
equation with initial condition f (x) = δy (x).

The stochastic integral was defined by Walsh’86 by extending the L2-theory of
Itô’44 for Brownian motion. It satisfies the following isometry property :

E

({∫ t

0

∫ 1

0
pt−s(x , y)us(y)W (ds, dy)

}2
)

=

∫ t

0

∫ 1

0
p2

t−s(x , y)E
(

u2
s (y)

)
dsdy
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Justification of the mild formulation

Let ϕt (x) be a test function with ϕt (0) = ϕt (1) = 0.

Multiplying the SPDE by ϕt (x) and integrating by parts yields∫ 1

0
[ut (x)ϕt (x)− u0(x)ϕ0(x)] dx =

∫ t

0

∫ 1

0
us(x)(∂2

xxϕ+ ∂tϕ)s(x)dxds

+ λ

∫ t

0

∫ 1

0
us(x)ϕs(x)W (ds, dx).

Set ϕs(y) =
∫ 1

0 pt−s(x , y)φ(x)dx , where φ is a test function with
φ(0) = φ(1) = 0. Then, ϕt (y) = φ(y). Set pt (φ, y) =

∫ 1
0 pt (x , y)φ(x)dx .

Integrating by parts,

pt (φ, y)− p0(φ, y) =

∫ t

0
ps(φ′′, y)ds.

Thus, ∂2
xxϕ+ ∂sϕ = 0. Therefore, we obtain∫ 1

0
ut (x)φ(x)dx =

∫ 1

0
u0(y)pt (φ, y)dy + λ

∫ t

0

∫ 1

0
pt−s(φ, y)us(y)W (ds, dy).

Choosing φ as an approximation of the delta function yields the mild formulation.
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Existence and uniqueness

SPDE : ∂tu = ∂2
xx u + λuẆ , λ > 0, t > 0, 0 < x < 1

IC : u0(x) = f (x),

DBC : ut (0) = ut (1) = 0.

Theorem (Walsh’86)

Assume f measurable and bounded. There exists a unique predictable jointly
measurable and adapted process (ut (x), t ≥ 0, x ∈ [0, 1]) satisfying the integral
equation

ut (x) =

∫ 1

0
pt (x , y)f (y)dy + λ

∫ t

0

∫ 1

0
pt−s(x , y)us(y)W (ds, dy).

Moreover, for all p ≥ 2 and T > 0,

sup
x∈[0,1]

sup
t∈[0,T ]

E(|ut (x)|p) <∞.
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Stochastic heat equation (Khoshnevisan-Kim’15)

∂tu = 1
2∂

2
x u + λuẆ on [0,1] with Dirichlet BC, u0(x) = sin(πx)

Nonlinear noise excitation (Lecture 1)
∂tu = 1

2
∂2
xu+ λuξ on [0 , 1] with Dirichlet BC

u0(x) = sin(πx) [K-Kim, 2013]

Figure: λ = 0.1; max. peak ≈ 1.4
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Stochastic heat equation (Khoshnevisan-Kim’15)

∂tu = 1
2∂

2
x u + λuẆ on [0,1] with Dirichlet BC, u0(x) = sin(πx)

Nonlinear noise excitation (Lecture 1)
∂tu = 1

2
∂2
xu+ λuξ on [0 , 1] with Dirichlet BC

u0(x) = sin(πx) [K-Kim, 2013]

Figure: λ = 2; max. peak ≈ 35
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Stochastic heat equation (Khoshnevisan-Kim’15)

∂tu = 1
2∂

2
x u + λuẆ on [0,1] with Dirichlet BC, u0(x) = sin(πx)

Nonlinear noise excitation (Lecture 1)
∂tu = 1

2
∂2
xu+ λuξ on [0 , 1] with Dirichlet BC

u0(x) = sin(πx) [K-Kim, 2013]

Figure: λ = 5; max. peak ≈ 2.5× 1019

Eulalia Nualart (UPF) Intermittency stochastic heat CIRM, 13th December 2018 17 / 45



Intermittency for SPDEs

Intermittency phenomenon : the solution ut (x) to the parabolic Anderson model
develops high peaks on small x-intervals when t increases.

Mathematical definition : consider the pth moment Lyapunov exponent

γ(p) = lim
t→∞

1
t

log E(|ut (x)|p).

(Gärtner-Molchanov’90) : u is fully intermittent if for all x

p → γ(p)

p
is strictly increasing for all p ≥ 2.

(it is always nondecreasing)

(Foondun-Khoshnevisan’09) : u is weakly intermittent if for all x

γ(2) > 0 and γ(p) <∞ for all p > 2.

If γ(1) = 0 then weak intermittency implies full intermittency.

Moreover, if ut (x) ≥ 0 a.s. for all t > 0 and x then γ(1) = 0.
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Results for large λ

Theorem (Khoshnevisan -Kim’14)

If infx∈(0,1) f (x) > 0, then for all t > 0,

t
2
≤ lim inf

λ→∞
λ−2 log Et (λ) and lim sup

λ→∞
λ−4 log Et (λ) ≤ t

4
,

where Et (λ) :=
√

E‖ut‖2
L2(0,1)

.

Theorem (Foondun-Joseph’14)

If there exists ε ∈ (0, 1
2 ) such that infx∈[ε,1−ε] f (x) > 0, then for all t > 0

lim inf
λ→∞

log log infx∈[ε,1−ε] E|ut (x)|2

log λ
= lim sup

λ→∞

log log supx∈[0,1] E|ut (x)|2

log λ
= 4.

These results show that for large λ the solution is intermittent.
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Intermittency for λ large and small

Assume the initial condition f is non-negative, bounded and has positive support
inside [0, 1].

Theorem (Foondun-Nualart’15)

For all p ≥ 2, there exists λ0 > 0 such that for all λ < λ0 and x ∈ (0, 1),

−∞ < lim sup
t→∞

1
t

log E(|ut (x)|p) < 0.

If there exists ε ∈ (0, 1
2 ) such that infx∈[ε,1−ε] f (x) > 0, then there exists λ1 > 0 such

that for all λ > λ1 and x ∈ [ε, 1− ε],

0 < lim inf
t→∞

1
t

log E(|ut (x)|p) <∞.

This results shows that for λ < λ0 the solution is nonintermittent, while for λ > λ1 the
solution is intermittent.
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Consequence

Corollary
λ0 ≤ λ1. Moreover, there exist λ̄ ∈ [λ0, λ1] and λ̃ ∈ [λ0, λ1] such that resp.

lim sup
t→∞

1
t

log E|ut (x)|2 = 0, and lim inf
t→∞

1
t

log E|ut (x)|2 = 0.

Moreover, λ̄ ≤ λ̃.

Open problem : is λ̄ = λ̃?
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Idea of proof

Proof of lim supt→∞
1
t log E(|ut (x)|2) < 0 : It suffices that for some β > 0

‖u‖2, β := sup
t>0

sup
x∈R

eβt E|ut (x)|2 <∞.

We show that for all β ∈ (0, 2µ1),

‖u‖2, β ≤ c1 + c2λ
2‖u‖2, β .

Proof of lim inf t→∞
1
t log E(|ut (x)|2) > 0 : It suffices that for some β > 0

Iβ :=

∫ ∞
0

e−βt inf
x∈[ε,1−ε]

E|ut (x)|2 dt =∞.

We show that for all t ≥ t0,
Iβ ≥ c3 + c4λ

2Iβ .
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Extension : The fractional stochastic heat equation

Fractional stochastic heat equation on the ball D = B(0,R){
∂tut (x) = −(−∆)α/2ut (x) + λσ(ut (x))Ḟ (t , x) x ∈ D, t > 0,
ut (x) = 0 x ∈ Dc , t > 0.

Initial condition : measurable and bounded function u0 : D → R+.

−(−∆)α/2, 0 < α ≤ 2 : L2-generator of a symmetric α-stable process killed
when exiting D.

Gaussian noise Ḟ (t , x) : white in time and coloured in space :

E
(

Ḟ (t , x)Ḟ (s, y)
)

= δ0(t − s)g(x − y),

g : Rd → R+ is a nonnegative definite (generalized) function whose Fourier
transform ĝ = µ is a tempered measure.

λ > 0 (level of the noise).

σ : R→ R globally Lipschitz function
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The mild formulation

Following Walsh’86 the mild solution is the random field u = {ut (x)}t>0,x∈D
satisfying

ut (x) =

∫
D

u0(y)pD(t , x , y) dy + λ

∫
D

∫ t

0
pD(t − s, x , y)σ(us(y))F (ds, dy), (1)

pD(t , x , y) denotes the Dirichlet fractional heat kernel on D and the stochastic
integral is understood in an extended Itô sense.

Following Dalang’99, if the spectral measure satisfies that∫
Rd

µ(dξ)

1 + |ξ|α <∞, (2)

then there exists a unique random field solution u to equation (1).

Moreover, for all p ≥ 2 and T > 0,

sup
t∈[0,T ],x∈D

E|ut (x)|p <∞.
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Examples of spatial correlations

The Riesz kernel :
g(x) = |x |−β , 0 < β < d .

Since ĝ(ξ) = c|ξ|−(d−β) condition (2) holds iff β < α.

The fractional kernel :

g(x) =
d∏

i=1

|xi |2Hi−2,
1
2
< Hi < 1.

Since ĝ(ξ) = c
∏d

i=1 |ξi |1−2Hi condition (2) holds iff
∑d

i=1 Hi > d − α
2 .

The Bessel kernel :

g(x) =

∫ ∞
0

y
η−d

2 e−y e−
|x|2
4y dy .

Since ĝ(ξ) = c(1 + |ξ|2)−η/2 condition (2) holds iff η > d − α.

The space-time whice noise case g = δ0since ĝ(ξ) = 1, (2) is only satisfied
when α > d , that is, d = 1 and 1 < α ≤ 2.
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Intermittency for λ large and small

Assume that
`σ|x | ≤ |σ(x)| ≤ Lσ|x |,

g locally integrable, positive continuous function on D \ {0},
f is non-negative, bounded with positive support in the clousure of D.

Theorem (Foondun-Nualart’15, Foondun-Guerngar-Nana’17)

For all p ≥ 2, there exists λ0 > 0 such that for all λ < λ0 and x ∈ D,

−∞ < lim sup
t→∞

1
t

log E(|ut (x)|p) < 0.

Moreover, for all ε > 0, then there exists λ1 > 0 such that for all λ > λ1 and
x ∈ B(0,R − ε),

0 < lim inf
t→∞

1
t

log E(|ut (x)|p) <∞.

This results shows that for λ < λ0 the solution is nonintermittent, while for λ > λ1 the
solution is intermittent.
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Neumann BC in Foondun-Nualart’15

SPDE : ∂tu = ∂2
xx u + λσ(u)Ẇ , λ > 0, t > 0, 0 < x < 1,

IC : u0(x) = f (x)

NBC : ∂x ut (0) = ∂x ut (1) = 0.

Mild formulation :

ut (x) =

∫ 1

0
pN

t (x , y)f (y)dy + λ

∫ 1

0

∫ t

0
pN

t−s(x , y)σ(us(y))W (ds, dy).

where pN
t (x , y) is the Neumann heat kernel :

pN
t (x , y) = 1 +

∞∑
n=1

e−µn t cos(nπx) cos(nπy).
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Neumann BC : intermittency

Theorem (Foondun-Nualart’15)

Assume there exists ε ∈ (0, 1
2 ) such that infx∈[ε,1−ε] f (x) > 0. Then for all x ∈ (0, 1)

and t > 0,
E|ut (x)|2 ≥ c1ec2λ

4t .

In particular, for all x ∈ (0, 1) and λ > 0,

0 < lim inf
t→∞

1
t

log E(|ut (x)|2) <∞.

Therefore, the solution is intermittent for all λ > 0. We use the following Gronwall’s
inequality :

Theorem (Foondun-Joseph’14)

Suppose that f (t) is a non-negative integrable function :

f (t) ≥ a + kb
∫ t

0

f (s)√
t − s

ds for all k , t > 0

where a, b > 0. Then, for all t > 0, f (t) ≥ c1ec2k2t .
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The stochastic heat equation in R

SPDE : ∂tu =
1
2
∂2

xx u + λσ(u)Ẇ , λ > 0, x ∈ R

IC : u0(x) = f (x),

Mild formulation in terms of the pG
t (x , y) =Gaussian heat kernel= 1√

2πt
e−

(x−y)2

2t

Theorem (Foondun-Khoshnevisan’09)

1 Assume

inf
x∈R

∣∣∣∣σ(x)

x

∣∣∣∣ > 0 and inf
x∈R

f (x) > 0.

Then, for all λ > 0 the solution is intermittent.
2 Assume

0 < inf
x∈R
|σ(x)| ≤ sup

x∈R
|σ(x)| <∞.

Then, for all λ > 0, the solution is nonintermittent.

Multiple Extensions : fractional Laplacian, Rd , Zd , fractional Gaussian noise in time,...
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Precise estimates? Feynman-Kac’s formula

Heat equation with cooling term :

PDE : ∂tu = ∂2
xx u − K (x)u, x ∈ R

IC : u0(x) = f (x),

K (x) =amount of external cooling at x .

pG
t (x , y) is the transition density of a standard Brownian motion B.

Feynman-Kac’s formula

ut (x) = Ex
(

f (Bt ) exp

(
−
∫ t

0
K (Bs)ds

))
,

where Ex means the expectation conditionned such that B0 = x .

Consequence of Itô’s formula.
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Feynman-Kac’s formula for SPDEs

Parabolic Anderson model :

SPDE : ∂tu = ∂2
xx u + λuẆ , λ > 0, x ∈ R

IC : u0(x) = 1,

pG
t (x , y) is the transition density of a standard Brownian motion B.

By Hu-D.Nualart’09, for all p ≥ 2,

E|ut (x)|p = E

exp

λ2
∑

1≤j<k≤p

∫ t

0
δ0(B j

s − Bk
s )ds

 ,

where B i are p iid copies of the Brownian motion B.

∫ t
0 δ0(Bs)ds =Brownian local time=time spent by the Brownian motion at 0 during

the time interval [0, t ].
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Exact moment Lyapunov exponents

Parabolic Anderson model :

SPDE : ∂tu =
1
2
∂2

xx u + λuẆ , λ > 0, x ∈ R

IC : u0(x) = 1,

Theorem (Bertini-Cancrini’95 and Chen’15)

For every integer n = 2, 3, . . . and x ∈ R

γ(n) = lim
t→∞

1
t

log E
(
ut (x)n) =

1
24

n(n2 − 1)λ4.

In particular γ(2) = λ4

4 .

When n = 2 there is a formula for the fractional Laplacian in
Foondun-Khoshnevisan’09
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Feynman-Kac’s formula and open problem

Parabolic Anderson model :

SPDE : ∂tu =
1
2
∂2

xx u + λuẆ , λ > 0, 0 < x < 1

IC : u0(x) = 1,

DBC : ut (0) = ut (1) = 0.

pt (x , y) is the transition density of a Brownian motion B killed when exiting the
interval.

By Hu-D.Nualart’09, for all p ≥ 2,

E|ut (x)|p = EB
x

exp

λ2
∑

1≤j 6=k≤p

∫ t

0
δ0(B j

s − Bk
s )ds

 ,

where B i are p iid copies of the Brownian motion B.

Open problem : exact formulas for γ(n), n = 2, 3, . . . ?

Conjecture : γ(2) = λ4

4 − π
2 . . .
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Partial answer : Moment bounds

Consider the fractional stochastic heat equation on D = B(0, 1).

Hypothesis 1 : There exist positive constants c1, c2 and 0 < β < α∧ d such that
for all x ∈ Rd ,

c1|x |−β ≤ g(x) ≤ c2|x |−β .

Hypothesis 2 : There exist positive constants `σ, Lσ such that for all x ∈ Rd ,

`σ|x | ≤ |σ(x)| ≤ Lσ|x |.

Hypothesis 3 : There exists ε ∈ (0, 1
2 ) such that

inf
x∈Dε

f (x) > 0,

where Dε = {y ∈ Rd : |y | ≤ 1− ε}.
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Moment bounds

Theorem (Nualart’18)

Assume Hypothesis 3.

a) If g satisfies Hypothesis 1 and σ(x) = x, then for all p ≥ 2 and δ > 0,

cp
2ept(c2λ

2α
α−β −µ1) ≤ inf

x∈Dε
E|ut (x)|p ≤ sup

x∈D
E|ut (x)|p ≤ cp

1ept(c1p
α

α−β λ
2α
α−β −(1−δ)µ1).

b) If g = δ0 and σ satisfies Hypothesis 2, then for all p ≥ 2 and δ > 0,

cp
2ep(c2λ

2α
α−1−µ1) ≤ inf

x∈Dε
E|ut (x)|p ≤ sup

x∈D
E|ut (x)|p ≤ cp

1ept(c1z
2α
α−1

p λ
2α
α−1−(1−δ)µ1).

Upper bounds hold for all t > 0 while lower bounds holds for all t > c(α)λ−
2α
α−1 . When

α = 2, lower bounds hold for all t > 0.
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Consequences

Moment-type Lyapunov upper and lower exponents in terms of λ > 0 :

Corollary
In case a), for all λ > 0,

p
(

c2λ
2α
α−β − µ1

)
≤ lim inf

t→∞

1
t

log inf
x∈Dε

E|ut (x)|p

≤ lim sup
t→∞

1
t

log sup
x∈D

E|ut (x)|p ≤ p
(

c̃1(p)λ
2α
α−β − (1− δ)µ1

)
,

c̃1(p) = c1p
α

α−β .

Similar bounds for case b).
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Remarks

The lower bound when α = 2 and F is space-time white noise on R+ × (0, 1)
was already obtained by Xie’16.

This theorem implies that for all p ≥ 2, t > 0 and x ∈ Dε,

lim
λ→∞

log log E|ut (x)|p

log λ
=

2α
α− a

,

which is known as the excitation index of the solution introduced by
Khoshnevisan-Kim’15. This result with p = 2 was already obtained by
Liu-Tian-Foondun’17 in the case that g is the Riesz kernel and σ satisfies
Hypothesis 2.
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Heat kernel estimates 1

Proposition 1
For any ε ∈ (0, 1

2 ), there exist c1(ε), c2(ε) and c3(ε) such that for all x ∈ Dε and t > 0,∫
Dε

pD(t , x , y)dy ≥ c1e−µ1t ,

for all x ∈ Dε and t > 0, ∫
Dε

p2
D(t , x , y)dy ≥ c2e−2µ1t t−d/α,

and if g satisfies Hypothesis 2, then for all x ,w ∈ Dε and t > 0 such that |x − w | ≤ tα,∫
Dε×Dε

pD(t , x , y)pD(t ,w , z)g(y − z)dydz ≥ c3e−2µ1t t−β/α.

Eulalia Nualart (UPF) Intermittency stochastic heat CIRM, 13th December 2018 38 / 45



Heat kernel estimates 2

Proposition 2
For all δ > 0, there exist c1, c2(δ) > 0 such that for all x ,w ∈ D and t > 0,∫

D
pD(t , x , y)dy ≤ c1e−µ1t ,

and ∫
D×D

pD(t , x , y)pD(t ,w , z)g(y − z)dydz ≤ c2e−(2−δ)µ1t t−a/α,

where

a =

{
d , if g = δ0,

β, if g satisfies Hypothesis 2.
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Fractional Gronwall’s inequalities

Proposition 3 (Henry’81, Foondun-Liu-Omaba’17)
Let ρ > 0 and G a locally integrable function satisfying

G(t) ≤ c1 + k
∫ t

0
(t − s)ρ−1G(s)ds for all t > 0, (3)

for some c1, k > 0. Then there exist c2, c3 > 0 such that

G(t) ≤ c2ec3Γ(ρ)1/ρk1/ρ t for all t > 0.

If instead of (3) the function is non-negative and satisfies

G(t) ≥ c1 + k
∫ t

0
(t − s)ρ−1G(s)ds for all t > 0,

then
G(t) ≥ c2ec3Γ(ρ)1/ρk1/ρt for all t >

e
ρ

(Γ(ρ)k)−1/ρ.

If ρ = 1
2 , the latter lower bound holds for all t > 0.
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Proof of the lower bound

Case g = δ0 and d = 1.

By Jensen’s inequality, for any p ≥ 2,

E|ut (x)|p ≥
(

E|ut (x)|2
)p/2

.

Therefore, it suffices to prove the lower bound for p = 2.

Taking the second moment to the mild formulation

E|ut (x)|2 =

(∫
D

u0(y)pD(t , x , y)dy
)2

+ λ2
∫ t

0

∫
D

p2
D(t − s, x , y)E|σ(us(y))|2dyds.

By the heat kernel estimates, and Hypotheses 2-3,

Gε(t) ≥ c
(

1 + λ2
∫ t

0
(t − s)−1/αGε(s)ds

)
,

where
Gε(t) = e2µ1t inf

y∈Dε
E|us(y)|2.

Proposition 3 with ρ = 1− 1
α

concludes.
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Proof of the upper bound

Case g = δ0 and d = 1.

Taking the pth moment to the mild formulation and appealing to Burkhölder’s and
Minkowski’s inequalities

E|ut (x)|p ≤ 2p−1
{(∫

D
u0(y)pD(t , x , y)dy

)p

+ λpcp

(∫ t

0

∫
D

p2
D(t − s, x , y)(E|σ(us(y))|p)2/pdyds

)p/2}
.

Since u0 is bounded, and by the heat kernel estimates, and Hypothesis 2,

G(t) ≤ c
(

1 + λ2
∫ t

0

G(s)

(t − s)1/α ds
)
,

where
G(t) = e(2−δ)µ1t sup

y∈D
(E|us(y)|p)2/p.

Proposition 3 with ρ = 1− 1
α

concludes.
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Proof for d > 1 and σ(x) = x

Consider the Wiener-chaos expansion in L2(Ω)

ut (x) =
∑
n≥0

v (n)
t (x),

where v (0)
t (x) =

∫
D u0(y)pD(t , x , y)dy and for n ≥ 1,

v (n)
t (x) = λn

∫
Rn

+

∫
Dn

pD(t − tn, x , xn)pD(tn − tn−1, xn, xn−1)

· · · pD(t2 − t1, x2, x1)v (0)
t1

(x1)1{0<t1<···<tn<t}F (dt1, dx1) · · ·F (dtn, dxn).

This means that

v (n)
t (x) = λnIn(hn(·, t , x)),

where In denotes the multiple Wiener integral with respect to F , and

hn(t1, x1, ..., tn, xn, t , x) = pD(t − tn, x , xn)pD(tn − tn−1, xn, xn−1)

· · · pD(t2 − t1, x2, x1)v (0)
t1

(x1)1{0<t1<···<tn<t}.
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Proof for d > 1 and σ(x) = x

Therefore,
E|ut (x)|2 = |v (0)

t (x)|2 +
∑
n≥1

λ2nn!‖h̃n(·, t , x)‖2
H⊗2 ,

where h̃n denotes the symmetrization of hn. That is,

n!‖h̃n(·, t , x)‖2
H⊗2 =

∫
0<t1<···<tn<t

∫
D2n

pD(t − tn, x , xn)pD(t − tn, x , yn)g(xn − yn)

× pD(tn − tn−1, xn, xn−1)pD(tn − tn−1, xn, yn−1)g(xn−1 − yn−1) · · · pD(t2 − t1, x2, x1)

× pD(t2 − t1, x2, y1)g(x1 − y1)|v (0)
t1

(x1)|2dx1 · · · dxndy1 · · · dyndt1 · · · dtn.

The heat kernels estimates imply

c1e−2µ1t
∫

0<t1<···<tn<t
(t − tn)−β/α

n∏
2=1

(ti − ti−1)−β/αdt1 · · · dtn ≤

n!‖h̃n(·, t , x)‖2
H⊗2 ≤ c2e−2(1−δ)µ1t

∫
0<t1<···<tn<t

(t − tn)−β/α
n∏

2=1

(ti − ti−1)−β/αdt1 · · · dtn
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Proof for d > 1 and σ(x) = x

Following Balan-Conus’16, we conclude that

c1e−2µ1t

∑
n≥0

λ2nCn
1 (n!)

β
α
−1t−

nβ
α

+n

 ≤ E|ut (x)|2

≤ c2e−2µ1(1−δ)t

∑
n≥0

λ2nCn
2 (n!)

β
α
−1t−

nβ
α

+n

 ,

and

c1 exp
(

C1λ
2α
α−β t

)
e−2µ1t ≤ E|ut (x)|2 ≤ c2e−2(1−δ)µ1t exp

(
C2λ

2α
α−β t

)
Use Minkowski’s inequality and the equivalence of the Lp-norms in a fixed chaos

‖ut (x)‖p ≤
∑
n≥0

‖In(hn(·, t , x))‖p ≤
∑
n≥0

(p − 1)n/2
(

n!‖h̃n(·, t , x)‖2
H⊗2

)1/2

Eulalia Nualart (UPF) Intermittency stochastic heat CIRM, 13th December 2018 45 / 45


