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Incompressible porous media equation in R?

pr+u-Vp=0
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Two-dimensional mass balance {
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Incompressible porous media equation in R?

Two-dimensional mass balance Z’;_u _gp i (()O )
equation in porous media (2D IPM) div u_— 0 P '8P

Remark: let y =k =g =1

> ()ZLPVI (_2y1)’2 Y%—y%) ( —Wdv — L(0
u(x o R? B i )P y)dy 2( ,p(x))

> ol (0) = lpllr(0)  p e [1,00] = [Jull(t) < C p e (l,00)

> (0, +u-V)Vip= (Vu)Vip.



Two Settings: Global existence and Mixing solutions

» Muskat: The density p takes takes two different constant values

e ={ 2 T

» Smooth solutions p(x, ) € H* for k > 3.



New Results

» Muskat equation Global existence with arbitrarily large slope.

with O. Lazar. arXiv 2018

» Weak Solutions Mixing solutions.
with A. Castro and D. Faraco. recent updated version of
arXiv:1605.04822

» Smooth initial data Global existence of quasi-stratified solutions for the

confined IPM equation

with A. Castro and D. Lear. arXiv 2018



Muskat: Contour equation

‘We consider

s ={ % TGl

with

oV (1) = {z(a, 1) = (z1(a, 1), 22(, 1))

a € R}



Muskat: Contour equation

‘We consider | Ql( )
Pt xeQl(s
p(x,t) = { P x€ Qz(t)

with
oV (1) = {z(a, 1) = (z1(a, 1), 22(r, 1)) : @ € R}.

We consider:

1. Open curves vanishing at infinity

lim (z(e, 1) — (a,0)) =0,

a— 00
2. Periodic curves in the space variable
Z(a + 2km, 1) = z(a, 1) + 2kn(1,0).

3. Closed curves = Unstable regime.
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Darcy’s law:
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Muskat: Contour equation

Darcy’s law:
u=—-Vp—(0,p) = V=t -u=—-0,p.

VJ_ ’ u(x, t) = _(pZ - pl)aaZZ(avt)é(x - Z(Oé, t))

Biot-Savart:
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for x # z(a, 1).
[Jull 2 (1) < oo.



Muskat: Contour equation

It yields

dfa) = P py [ (0 =20)

2m r [2(a) —2(B)]?

(Oaz(@) — 9pz(B))dp.

» SOLUTIONS OF THE MUSKAT PROBLEM = WEAK SOLUTIONS OF IPM



Contour equation as a graph

» The equation for a graph z(«, 1) = (o, f(a,1)).

P [ (o= B)Dua—0s8)
= o / (@ BP + (f(a) —r(5)2 "
0= 0)
T Pp [ (e A)0uf(@) - 04(B)
o) =" / (@ B2 + (@) )"

with initial data

721(,0) =«

2(a,0) =f(a,0) = fola).



The linearized equation

o =LA 00, A= (A

Fourier transform:

~ N |
FHgn) = oty exp (= 55 lelr).

> % > p! stable case,

> p? < p! unstable case.



Local existence theory
For a general interface
oV (1) = {z(a,t) = (z1(a, 1), 22(ev, 1)), a€R}
after taking k derivatives (k > 3) it can be shown that

Oaz1(a, 1)
|0az(a, 1)]?

o(a,t)=R-T

o0k z(a,t) = — (p* — p") AdEz(a,t) + ot

Thus we can distinguish three regimes:

» Stable regime: o > 0 = the denser fluid is always below.
The Muskat problem is locally well-posed in time in Sobolev’s spaces.
» Fully unstable regime: o < 0 = the denser fluid is always above.

The Muskat problem is ill-posed in Sobolev’s spaces.

» Partial unstable regime: ¢ has not a defined sign = there is a part of
the interface where the denser fluid is above.



Local existence results in the stable regime

» D.C. and F. Gancedo (2007). Local existence in H> (and ill-posedness
for p? < ph).

» A.Cheng, R. Granero and S. Shkoller (2016). Local existence in H>.

» P. Constantin, F. Gancedo, R. Shvydkoy and V. Vicol (2017). Local
existence in W27 for p>1.

» B-V. Matioc (arxiv). Local existence in H2 "¢,



Conserved quantities in the stable regime: (z,z) = (a,f(e, 1))

> [ftanda = [ fifa)da.



Conserved quantities in the stable regime: (z1,2) = (o, f(a,1))
> /f(a, t)da = /fg(a)da_

» Maximum principle for the L*—norm

Vel + [ [ [ ros (1 + (W)) dodB = 1)
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Conserved quantities in the stable regime: (z;,2) = (a.f(a,1))
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» Maximum principle for the L*—norm

Vel + [ [ [ ros <1 + (W)) dodB = 1)

Compare with the linear case

Wl + [ [ (HD=EY doas = il

= [pf()Af(x)dx=| |A%_/(_’1> [ |22 ®

/R/Rlog (1 + (W)2> dadB < Cl|f (-, )|

But

N =



Conserved quantities in the stable regime: (z;,2) = (a.f(a,1))
> /f(a, 1) do = /fo(a) do.

» Maximum principle for the L*—norm

el + [ [ [ ros <1 + (W)) dodB = 16,

» Maximum principle: ||f]|zec (£) < ||f||ze< (0).

Periodic case:

1 1 —ct
=37 [ fdalin (0 < 6= 5= [ fidallime™®.

IfollLo
1+Ct’

Flat at infinity: ||f]|z () <



Conserved quantities in the stable regime: (z,z) = (a,f(e, 1))

v

/f(a, Hda = /fo(a) do.

» Maximum principle for the L*—norm

el + [ [ [ ros <1 + (W)) dodB = 16,

» Maximum principle: ||f]|zec (£) < ||f||ze< (0).

Periodic case:
“) 2 /foda”L (1) < “fO 2 /foda”L e
T Jr T Jr .

- Lilles

Flat at infinity: ||f||ze~ (f) < T+ Cr

» Maximum principle: If ||f ||z (0) < 1 then ||fa||zoo (£) < |[fallzee (0).
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Global existence for ||0.fo|ro@) < 1

» D.C. and F. Gancedo (2007). Global existence and gain of analyticity from a
perturbation of flat interface.

» D. C., P. Constantin, F. Gancedo and R. Strain (2013). Global Lispschitz
solutions if ||Dafol|roe r) < 1.

» D. C., P. Constantin, F. Gancedo, L. Piazza and R. Strain (2016). Global
existence in H> if

[eblds <3 (= 10ufllme < 1

» P. Constantin, F. Gancedo, R. Shvydkoy and V. Vicol (2017). (1) Criterion for
blow-up with ||Oaf||.o0 r) < C. (2) Global existence in WP with initial data
fo € W?P and ||6qf0|\Loc(R) <e

» B-V. Matioc (arxiv2016). Global existence in H St with small initial data in
H2be

» S. Cameron (arxiv2017). Global classical solutions if ||Oafo||Loc r) < 1.



What happens if |[0.fo||r~®) > 1 (with finite energy)?

» Numerical simulations of Turning (i.e. shift of stability) by Maria
Lépez-Fernandez
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What happens if |[0.fo||r~®) > 1 (with finite energy)?

» Numerical simulations of Turning (i.e. shift of stability) by Maria
Lépez-Fernandez
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> Theorem (2012): 3fy € H* and a T* st limy—, 7+ ||Oaf || 100 (&) = 00 (joint work
with A. Castro, C. Fefferman, F. Gancedo and M. Lépez-Fernandez).



What happens if |[0.fo||r~®) > 1 (with finite energy)?

» Numerical simulations of Turning (i.e. shift of stability) by Maria
Lépez-Fernandez
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> Theorem (2012): 3fy € H* and a T* st limy—, 7+ ||Oaf || 100 (&) = 00 (joint work
with A. Castro, C. Fefferman, F. Gancedo and M. Lépez-Fernandez).

» Numerical evidence of turning with ||0afo||zc = 22 by J. Gémez-Serrano.
Is there a turning for ||Oafo||re = 1 + €?



What happens after Turning?

» In the stable regime a solution of Muskat becomes immediately real-analytic
and then passes to the unstable regime in finite time. Moreover, the
Cauchy-Kowalewski theorem shows that a real-analytic Muskat solution
continues to exist for a short time after the turnover.
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What happens after Turning?

» In the stable regime a solution of Muskat becomes immediately real-analytic
and then passes to the unstable regime in finite time. Moreover, the
Cauchy-Kowalewski theorem shows that a real-analytic Muskat solution
continues to exist for a short time after the turnover.

» Breakdown of smoothness (2013): There exist interfaces of the Muskat
problem such that after turnover their smoothness breaks down (is not ch.
Joint work with A. Castro, C. Fefferman and F. Gancedo.

» Double shift of stability (2017): Turning stable-unstable-stable (also
unstable-stable-unstable). Joint work with J. Gémez-Serrano and A. Zlatos.
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Global existence for arbitrarily large slope

» F. Deng, Z. Lei and F.Lin (2017). Global existence for arbitrarily large
monotonic initial data (Not in L%).

» S. Cameron (2018 updated version of the arxives): Global existence for

(sup.fi(x,0)) (supy — fi(y,0)) <1

Theorem
Assume fy € H*/? with [foll 372 small enough, then, there exists a unique strong
solution f which verifies f € L> ([0, T], H*/*) N L*([0, T}, H>/?), for all T > 0.

Joint work with O. Lazar.



Global existence for arbitrarily large slope: proof

Main steps of the proof:

» The proof is based on the use of a new formulation of the Muskat equation that
involves oscillatory terms as well as a careful use of Besov space techniques.

»
fi(t,x) = pPV/aA,Xf/ 70056Aqf)d5da

whereAJ;W'



Global existence for arbitrarily large slope: proof
> A priori estimates in H>/%:
1
Eallfllf-,s/z = / Hfx / Oulaf / % cos(6Aaf(x)) d6 dov dx
- /fox /(&Aqf) / S % sin(6Aqf(x)) dé da dx
0
= hLh+Db
We can estimate
22| < W1 1f N o2

and the most singular term is /

113 S Wl (U 2+ Wl r2) = I+ 70— e

l—i—I(2

where K = ||f||rooroo.



Global existence for arbitrarily large slope: proof

> A priori estimates in H>/%:
1
Eallfllqu/z = / Hfx / Oulaf / % cos(6Aaf(x)) d6 dov dx

- /fox /(&Aqf) / S % sin(6Aqf(x)) dé da dx
= L+5h ’
We can estimate
L] < WG 1N 2

and the most singular term is /

2 2
1 S Wl (WF e+ W) = w7 s

where K = ||f||rooroo.
» Then

e

1 2 s
SO+ T e < PR (W1 + i



Global existence for arbitrarily large slope: proof

» Similar a priori estimates in H° /2.

Lemma
Let T > 0 andfy € H'* 0 H'? so that ||fo| ;52 < C(||fo.x||z>< ), then we have

T
™ 2
F2en(T) + / 11 ds
H3/2 ]+M2 0 H

T
2 2
S Wil + (Wlhow ooy + W qominrs) [ 11
0

where M is the space-time Lipschitz norm of f.



MIXING SOLUTIONS



Fully unstable regime p; > p»
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> ll-posedness in Sobolev spaces (D.C.-F. Gancedo 2007)

Theorem
Let s > 3/2, then for any £ > 0 there exists a solution f of the Muskat equation with
p1 > prand 0 < § < e such that ||f||ns(0) < € and ||f || (5) = oo.
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> CAN WE STILL FIND WEAK SOLUTIONS FOR IPM?



Fully unstable regime p; > p»

Previous work:

> ll-posedness in Sobolev spaces (D.C.-F. Gancedo 2007)

Theorem
Let s > 3/2, then for any £ > 0 there exists a solution f of the Muskat equation with
p1 > prand 0 < § < e such that ||f||ns(0) < € and ||f || (5) = oo.

> CAN WE STILL FIND WEAK SOLUTIONS FOR IPM?

> Mixing solutions from a flat interface (Székelyhidi 2012)

+1 x € {x; > at}
p(x,1) = +1 x € {—ar<x <at}
-1 X € {xn<—ar}

fora € (0,2).



Székelyhidi’s construction

Remarks:

» The solution starts in the fully unstable regime being flat. There exist a solution
for the Muskat equations: the flat interface is a stationary solutions

» There is a mixing zone: {—at < x» < at}.
» The solutions are not unique:

» For different values of « (the speed of the opening of the mixing
zone) we have different solutions.

» For a fixed value of «, inside of the mixing zone there are
infinitely many different densities.

——




The definition of a mixing solution

The density p(x, ¢) and the velocity (x, ¢) are a "mixing solution" of the IPM system
if they are a weak solution and also there exist, for every ¢ € [0, T], open simply
connected domains Q¥ (r) and Qi (¢) with QF U Q= U Qi = R? such that, for
almost every (x, ) € R? x [0, T}, the following holds:

(p=p")p—p7) =0 inQux(r)

For every r > 0,x € R*,0 < t < T B((x,1), r) C Uo<r<7Qmix(t) it holds that

/B(p—f)/g(p—p_)#O

+ N
p(x,1) = { p - .mQ ()



Main theorem: joint work with A. Castro and D. Faraco (arxiv2016)

Theorem

Let T'(0) = {z°(s) = (2}(s), 23(s)) € R*} with 2°(s) — (5,0) € H>. We will assume
852) (5)
\3szfl)(8)|
pT < p~. Then there exist infinitely many "mixing solutions" starting with the inital
data of Muskat type given by I'(0) (in the fully unstable regime) for the IPM system.

that T'(0) is run from left to right and that > 0. Let us suppose that

t=0

New results:
> Piecewise constant subsolutions. C. Forster and L. Székelyhidi (arxiv2017)

» Linear degraded mixing solutions. A. Castro, D. Faraco and F. Mengual
(arxiv2018)

» Updated version with a variable width of the mixing zone (2018)



Subsolution implies Mixing solutions

Definition

We will say that (p, u,m) is a subsolution of the IPM system if there exist open simply
connected domains Q* (¢) and Qu (1) with QU Q= UQu = Q and such that the
following holds:

» The flow is incompressible
V-u=0 inQ.
» InQ (p,u,m) satisfy the equations

VL~M:—axlp.



» The density and m satisfies
plx,t) =+1 m=pu inQF

and it is continuous in 2.

» 1In Qy the functions (p, u, m) are in the "Mixing hull"

<(0-9)

‘m—pu—i—%(o,]—pz)

p2 <1
Laszlo Székelyhidi 2012 proved

Theorem
Given a subsolution (p,u,m) there exist infinitely many mixing solutions
(p,u) € L= x L* such that (p,u) = (p,u) in Q \ Qu.



Example of a Mixing solution

The mixing zone
Qu={x€Q: x| < at}.

then

-1 x»n<-a,
plr,f) =14 2 |ol<a ,  m=(0,—a(l-p))
1 X2 > at,

is a subsolution with a € (0, 2).

u=(0,0)



Convex integration for IPM

» This work is based on a variant of the method of convex integration introduced
for Euler equations by C. de Lellis and L. Székelyhidi Jr. Lack of uniqueness
and Onsager’s conjecture (E. Wiedemann, C. Bardos, A. Choffrut, P. Isett, T.
Buckmaster, V. Vicol...).

> D.C., D. Faraco and F. Gancedo. Lack of uniqueness for IPM.

» R. Shvydkoy. Non-uniqueness for active scalars with a divergence free velocity
given by a Fourier multiplier operator with an even symbol.

> L. Székelyhidi. Lack of uniqueness for IPM (computation of the A-convex
hull). Flat mixing solutions.

> P Isett, V. Vicol. Global existence of weak solutions for active scalars with
multipliers that are not odd from arbitrarily smooth initial data. And there exist
nontrivial solutions, compact support in time, having any Holder regularity
p € C with v < é.



Constructing a subsolution (p, u, m) from zo € H*

We define the set Qy C R?
Qu={xeR* :x=x(s,\) for (s,\) € (—o0,00) x (—¢,¢)}.
with
x(s, A) = z(s,1) + (0, \)

We take

(x) = +1 inQ*
P o % in QM ’
by Biot-Savart

u(x) = l/ dz(s)) 1 / wd)\/dsf.

™ 22 ) = x(s V)P



Constructing a subsolution (p, u, m) from zo € H*

We take
m = pu— (B, ) (1 —pz)

then

dp+u-Vp=V- ((ﬂ,a) (1 —pz))

Given (g(t), z(s, t)) we have (p, u, m)



Constructing a subsolution (p, u, m) from zo € H*

If there is a solution (£(7), z(s, ?)) to the following system

Oz(s,t) =Mz, €](s, 1) z(s,0) = 2°(s)
0e(t) =c e(0) =0,

where ¢ > 0 is a constant and the velocity M|z, €|(s, t) is given by

Mz, 5](s 1)

B V2(s") (z1(s) — z1(s")) s
=~ // / N1 =W, 1 N

then the solution is in the Mixing Hull.




Contour dynamics

P> We have to solve the equation
afz(svl) :M[Z7€](S7 Z) Z(S,O) = zo(s) ey
Oe(t) =c e(0) =0, 2)

P We can use that the the interface can be parametrize as the graph a function
f(x 1),
(Z| (S, t)7 ZZ(S7 t)) = (x,f(x, t))

» Quasi-linearization. We take 83f (x, ) = F(x, ). We can write

afF(x7 t) = /‘Ka(f(x,t) (-x - y)axF(yv t)dy + a(x7 t)axF(y7 t)dy + G()C, t) (3)

where G(x, t) and a(x, t) are low order functions.



The kernel K,
Takinge =t(c=1)

KA(y7 t)

2t+ A
{—ZAy arctan (A) + (2f + Ay) arctan ( s y>

" 4ni y
+ (Ay — 2t) arctan (u> + ylog (y2(1 —I-Az))
y

f% log (y2 e +Ay)2) - % log (yz 4 (Ay — 2;)2)}

kA(gvt)
_ —isign(€) {1+ 1 (e—‘“rlﬁlm (cos(4r|E|toA)

27|t 4m|€|t
—Asin(4r|€|toA)) — 1)} .



Existence of solutions z(s, ) € H*

Let F(s, 1) = 07 z(s, 1) then

OF = L+ AF + a(s,1)0,F + Lo.t.

where E/;”(E) ~ ﬁ,mﬂg)

Goal: By choosing the correct energy we can prove

[[F(t)| s < C(T)||F°|[gsr-



Mixing in the stable regime

‘We can obtain mixing in the stable regime.




SMOOTH SETTING
Goal:

Global Existence of small data with
finite energy and bounded density



IPM

do+u-Vop=0
V-u=0

On the Asymptotic Stability of Stationary Solutions of the Inviscid Incompressible

Porous Medium Equation.
Tarek M. Elgindi. ARMA, 2017.

UNBOUNDED DENSITY

Stationary Solution:

The perturbation:

Q(x7y3 t) = _y+p(x’y7 t)?

1
P(x7y7 t) = H(x7y>t) - §y2.



Stratified Solution in a bounded domain

Our setting:
D=Tx[-1,1]

No-slip boundary condition:

Our perturbation:
o(x,y,1) = =y + p(x, 1),
1
P(x7y7 t) = H(x7y7t) - §y2.
op+u-Vp=u
()3 u=—VII- (0,p)

V-u=0

besides the boundary condition u - n = 0 on OD.



Well-posedness

In order to solve our problem in the bounded domain §2, in certain Sobolev space, we
have to overcome new difficulties:

» To be able to handle the boundary terms that appear in the computations.
We can be bypass if our perturbation has a special structure.
X4(Q) = {f € H'(Q) : Oifloo =0 forn=0,2,4,...},
Q) = {f € H'(Q) : difloa =0 forn=1,3,5,...}



Local Existence

Theorem
Let k > 3 and p(0) € X*(Q). There exists T > 0 and a unique solution
p € C(0,T;X"()) of the perturbated IPM system () such that:

sup ||pllar (o) (1) < Cllpllar(0)(0).
0<r<T

Moreover, for all 7 € [0, T) we have:

ol () < 1lpllpe(0) exp {5/0t(IIVpHL°°(S) + [[Vul[(s)) ds| -

Key points of the proof:

» Galerkin approximation

> Properties of our ONB



Global existence: Energy Estimate

The following estimate holds for £ > 4

%8f||p”i1k(D) Sl0uz| o< () ||P|‘§1k(n) - (1 - ||P||Hk(u)) ||“H?1k(n)
+ BOUNDARY TERMS
Solution Boundary Terms:

p(0) € X* = p(t) € X* is preserved in time (local existence).

u(f) € X*

)X = {ul(l) e vt



Global existence: Energy Estimate

The following estimate holds for £ > 4

301l oy SHOu2llioo oy 1oy — (1= el coy) 11l oy
+ BOUNDARY TERMS

Solution Boundary Terms:
p(0) € X* = p(t) € X* is preserved in time (local existence).

u(f) € X*
ui(t) € Y*

BOUNDARY TERMS= 0

p(t) € X* = {



The Boostraping

For k > 4:

3010l iy SN|Ou2lleoo oy 1ol oy = (1= 11pllmt o)) 11l o
Take: ||p[|= ) (0) < &

Bootstrap hypothesis: ||p||g+p)(t) < 4e 1€ [0,T]
By Gronwall’s inequality in [0, 7] we have:

1
ol 0y (1) < lpllam 0y (0) - exp (/0 |10uz | oo () (5) dS)
Bootstrap conclusion:

llollasy(t) <26 t€0,T]



Linear Estimates

Linearized equation around (p,u) = (0,0):

Op =u
x,y) €D
{uz — oM (x,y)

Remark: If D = R, u = R1Rip
dp = Rip

[uz] |Hk+a(D) (0)
2]t (py (1) S W

Linear Decay



Non-Linear Estimates

Perturbation of the linear system:

Oy — Luy = F F=u-Vp
Luy = —0,0,I1 — up

Duhamel’s formula:

(1) = "'up (0) + /Ot U7 (w-Vp) (s) ds

Non-linear Decay If || p|| = () (f) < 4e fort € [0, T] with k = k().

3

oems €01

[[Ouz|[ 100 (p) <



Finishing the proof

Hypothesis: [lolm= Dy (0) < €
[|pl|m= 0y () < 4e forallr € [0, 7]

1
ol 0y () < 1ol 0y (0) - exp ( [ 10wl (9 ds)

! Ce
<o (|| )

< eexp(Ce)

Conclusion:
Take 0 < € << 1 = ||p||u= ) (t) < 2e forallr € [0, 7]

A continuity Argument:

1ol oy (£) < 26 forallz >0



THANK YOU



