SQG in Bounded Domains

Peter Constantin

CIRM, December 2018

Collaborators

- Mihaela Ignatova, (Princeton)
- Huy Nguyen (Princeton)

SQG

Active scalar

SQG

Active scalar

$$
\begin{gathered}
\partial_{t} \theta+u \cdot \nabla \theta=0 \\
\theta=\theta(x, t),
\end{gathered}
$$

$$
u=\nabla^{\perp}(-\Delta)^{-\frac{1}{2}} \theta
$$

in \mathbb{R}^{2}.

SQG

Active scalar

$$
\begin{gathered}
\partial_{t} \theta+u \cdot \nabla \theta=0 \\
\theta=\theta(x, t),
\end{gathered}
$$

$$
u=\nabla^{\perp}(-\Delta)^{-\frac{1}{2}} \theta
$$

in \mathbb{R}^{2}. Hamiltonian $H=\int \theta(-\Delta)^{-\frac{1}{2}} \theta d x$.

SQG

Active scalar

$$
\begin{gathered}
\partial_{t} \theta+u \cdot \nabla \theta=0 \\
\theta=\theta(x, t),
\end{gathered}
$$

$$
u=\nabla^{\perp}(-\Delta)^{-\frac{1}{2}} \theta
$$

in \mathbb{R}^{2}. Hamiltonian $H=\int \theta(-\Delta)^{-\frac{1}{2}} \theta d x$. Kinetic energy $\int|u|^{2} d x$ conserved.

SQG

Active scalar

$$
\begin{gathered}
\partial_{t} \theta+u \cdot \nabla \theta=0 \\
\theta=\theta(x, t),
\end{gathered}
$$

$$
u=\nabla^{\perp}(-\Delta)^{-\frac{1}{2}} \theta
$$

in \mathbb{R}^{2}. Hamiltonian $H=\int \theta(-\Delta)^{-\frac{1}{2}} \theta d x$. Kinetic energy $\int|u|^{2} d x$ conserved.
$\nabla^{\perp} \theta$ like vorticity in 3D Euler: level sets of theta are carried by the flow, tangent field stretched:

$$
\left(\partial_{t}+u \cdot \nabla\right)\left(\nabla^{\perp} \theta\right)=(\nabla u) \nabla^{\perp} \theta
$$

SQG

Active scalar

$$
\partial_{t} \theta+u \cdot \nabla \theta=0
$$

$$
\theta=\theta(x, t),
$$

$$
u=\nabla^{\perp}(-\Delta)^{-\frac{1}{2}} \theta
$$

in \mathbb{R}^{2}. Hamiltonian $H=\int \theta(-\Delta)^{-\frac{1}{2}} \theta d x$. Kinetic energy $\int|u|^{2} d x$ conserved.
$\nabla^{\perp} \theta$ like vorticity in 3D Euler: level sets of theta are carried by the flow, tangent field stretched:

$$
\left(\partial_{t}+u \cdot \nabla\right)\left(\nabla^{\perp} \theta\right)=(\nabla u) \nabla^{\perp} \theta
$$

Blow up problem open: 3D Euler, 2D SQG, 2D Boussinesq, 2D incompressible porous medium, 2D Oldroyd B. Similar.

Numerical results

SQG- geophysical origin: Charney.

Numerical results

SQG- geophysical origin: Charney. Held, Swanson

Numerical results

SQG- geophysical origin: Charney. Held, Swanson C-Majda-Tabak: analogies to 3D Euler. Hyperbolic saddle blow up prediction based on numerics.

Numerical results

SQG- geophysical origin: Charney. Held, Swanson C-Majda-Tabak: analogies to 3D Euler. Hyperbolic saddle blow up prediction based on numerics. Ohkitani and Yamada: same data, different extrapolation: no blow up.

Numerical results

SQG- geophysical origin: Charney. Held, Swanson C-Majda-Tabak: analogies to 3D Euler. Hyperbolic saddle blow up prediction based on numerics. Ohkitani and Yamada: same data, different extrapolation: no blow up.
Calculations up to time 7.

Numerical results

SQG- geophysical origin: Charney. Held, Swanson C-Majda-Tabak: analogies to 3D Euler. Hyperbolic saddle blow up prediction based on numerics. Ohkitani and Yamada: same data, different extrapolation: no blow up.
Calculations up to time 7.
Diego Cordoba: no blow up, under assumption of hyperbolic saddle.

Numerical results

SQG- geophysical origin: Charney. Held, Swanson C-Majda-Tabak: analogies to 3D Euler. Hyperbolic saddle blow up prediction based on numerics. Ohkitani and Yamada: same data, different extrapolation: no blow up.
Calculations up to time 7.
Diego Cordoba: no blow up, under assumption of hyperbolic saddle. C-Lai-Sharma-Tseng-Wu.

Numerical results

SQG- geophysical origin: Charney. Held, Swanson C-Majda-Tabak: analogies to 3D Euler. Hyperbolic saddle blow up prediction based on numerics. Ohkitani and Yamada: same data, different extrapolation: no blow up.
Calculations up to time 7.
Diego Cordoba: no blow up, under assumption of hyperbolic saddle. C-Lai-Sharma-Tseng-Wu. Parallel computation, cluster of 128 machines, well resolved for long time. Same initial data.

max of |grad theta| against $t, N=2048$

Weak solutions, whole space

Weak L^{2} solutions known for SQG (Resnick, '95), but not for 3D Euler. The reason is structural not dimensional.

Weak solutions, whole space

Weak L^{2} solutions known for SQG (Resnick, '95), but not for 3D Euler. The reason is structural not dimensional.

$$
\partial_{t} \theta+u \cdot \nabla \theta=0, \quad u=R^{\perp} \theta .
$$

For periodic $\theta=\sum_{j \in \mathbb{Z}^{2}} \widehat{\theta}(j) e^{i(j \cdot x)}$, infinite ODE

$$
\frac{d \theta}{d t}=N(\theta, \theta) .
$$

Weak solutions, whole space

Weak L^{2} solutions known for SQG (Resnick, '95), but not for 3D Euler. The reason is structural not dimensional.

$$
\partial_{t} \theta+u \cdot \nabla \theta=0, \quad u=R^{\perp} \theta
$$

For periodic $\theta=\sum_{j \in \mathbb{Z}^{2}} \widehat{\theta}(j) e^{i(j \cdot x)}$, infinite ODE

$$
\frac{d \theta}{d t}=N(\theta, \theta) .
$$

Weak continuity:

$$
\begin{aligned}
& \left\|(-\Delta)^{-1}\left[N\left(\theta_{1}, \theta_{1}\right)-N\left(\theta_{2}, \theta_{2}\right)\right]\right\|_{w} \leq \\
& C\left\{\left\|\theta_{1}-\theta_{2}\right\|_{w}\left(1+\log _{+}\left\|\theta_{1}-\theta_{2}\right\|_{w}\right)\right\}\left(\left\|\theta_{1}\right\|_{L^{2}}+\left\|\theta_{2}\right\|_{L^{2}}\right)
\end{aligned}
$$

with $\|f\|_{w}=\sup _{j \in \mathbb{Z}^{2}}|\widehat{f}(j)|$.

Weak solutions, whole space

Weak L^{2} solutions known for SQG (Resnick, '95), but not for 3D Euler. The reason is structural not dimensional.

$$
\partial_{t} \theta+u \cdot \nabla \theta=0, \quad u=R^{\perp} \theta
$$

For periodic $\theta=\sum_{j \in \mathbb{Z}^{2}} \widehat{\theta}(j) e^{i(j \cdot x)}$, infinite ODE

$$
\frac{d \theta}{d t}=N(\theta, \theta) .
$$

Weak continuity:

$$
\begin{aligned}
& \left\|(-\Delta)^{-1}\left[N\left(\theta_{1}, \theta_{1}\right)-N\left(\theta_{2}, \theta_{2}\right)\right]\right\|_{w} \leq \\
& C\left\{\left\|\theta_{1}-\theta_{2}\right\|_{w}\left(1+\log _{+}\left\|\theta_{1}-\theta_{2}\right\|_{w}\right)\right\}\left(\left\|\theta_{1}\right\|_{L^{2}}+\left\|\theta_{2}\right\|_{L^{2}}\right)
\end{aligned}
$$

with $\|f\|_{w}=\sup _{j \in \mathbb{Z}^{2}}|\widehat{f}(j)|$. Quasi-Lipschitz, with loss of two derivatives.

Weak solutions, whole space

Weak L^{2} solutions known for SQG (Resnick, '95), but not for 3D Euler. The reason is structural not dimensional.

$$
\partial_{t} \theta+u \cdot \nabla \theta=0, \quad u=R^{\perp} \theta
$$

For periodic $\theta=\sum_{j \in \mathbb{Z}^{2}} \widehat{\theta}(j) e^{i(j \cdot x)}$, infinite ODE

$$
\frac{d \theta}{d t}=N(\theta, \theta) .
$$

Weak continuity:

$$
\begin{aligned}
& \left\|(-\Delta)^{-1}\left[N\left(\theta_{1}, \theta_{1}\right)-N\left(\theta_{2}, \theta_{2}\right)\right]\right\|_{w} \leq \\
& C\left\{\left\|\theta_{1}-\theta_{2}\right\|_{w}\left(1+\log _{+}\left\|\theta_{1}-\theta_{2}\right\|_{w}\right)\right\}\left(\left\|\theta_{1}\right\|_{L^{2}}+\left\|\theta_{2}\right\|_{L^{2}}\right)
\end{aligned}
$$

with $\|f\|_{w}=\sup _{j \in \mathbb{Z}^{2}}|\widehat{f}(j)|$. Quasi-Lipschitz, with loss of two derivatives. A commutator structure.

Critical Dissipative SQG

$$
\left\{\begin{array}{l}
\partial_{t} \theta+u \cdot \nabla \theta+\Lambda \theta=0 \\
u=R^{\perp} \theta
\end{array}\right.
$$

Critical Dissipative SQG

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} \theta+u \cdot \nabla \theta+\Lambda \theta=0 \\
u=R^{\perp} \theta
\end{array}\right. \\
& \Lambda=(-\Delta)^{\frac{1}{2}}, \quad R=\nabla \Lambda^{-1}
\end{aligned}
$$

Critical Dissipative SQG

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} \theta+u \cdot \nabla \theta+\Lambda \theta=0, \\
u=R^{\perp} \theta
\end{array}\right. \\
& \wedge=(-\Delta)^{\frac{1}{2}}, \quad R=\nabla \Lambda^{-1}
\end{aligned}
$$

In Fourier:

$$
\widehat{\Lambda \theta}(k)=|k| \widehat{\theta}(k), \quad \widehat{R \theta}(k)=\frac{i k}{|k|} \widehat{\theta}(k) .
$$

Critical Dissipative SQG

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} \theta+u \cdot \nabla \theta+\Lambda \theta=0 \\
u=R^{\perp} \theta
\end{array}\right. \\
& \Lambda=(-\Delta)^{\frac{1}{2}}, \quad R=\nabla \Lambda^{-1}
\end{aligned}
$$

In Fourier:

$$
\widehat{\Lambda \theta}(k)=|k| \widehat{\theta}(k), \quad \widehat{R \theta}(k)=\frac{i k}{|k|} \widehat{\theta}(k) .
$$

- transport + nonlocal diffusion $\Rightarrow L^{\infty}$ is invariant

Critical Dissipative SQG

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} \theta+u \cdot \nabla \theta+\Lambda \theta=0 \\
u=R^{\perp} \theta
\end{array}\right. \\
& \Lambda=(-\Delta)^{\frac{1}{2}}, \quad R=\nabla \Lambda^{-1}
\end{aligned}
$$

In Fourier:

$$
\widehat{\Lambda \theta}(k)=|k| \widehat{\theta}(k), \quad \widehat{R \theta}(k)=\frac{i k}{|k|} \widehat{\theta}(k) .
$$

- transport + nonlocal diffusion $\Rightarrow L^{\infty}$ is invariant
- L^{∞} not good for CZ operators

Critical Dissipative SQG

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} \theta+u \cdot \nabla \theta+\Lambda \theta=0 \\
u=R^{\perp} \theta
\end{array}\right. \\
& \Lambda=(-\Delta)^{\frac{1}{2}}, \quad R=\nabla \Lambda^{-1}
\end{aligned}
$$

In Fourier:

$$
\widehat{\Lambda \theta}(k)=|k| \widehat{\theta}(k), \quad \widehat{R \theta}(k)=\frac{i k}{|k|} \widehat{\theta}(k) .
$$

- transport + nonlocal diffusion $\Rightarrow L^{\infty}$ is invariant
- L^{∞} not good for CZ operators
- quasilinear, critical in the sense of Goldilocks

Critical Dissipative SQG

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} \theta+u \cdot \nabla \theta+\Lambda \theta=0 \\
u=R^{\perp} \theta
\end{array}\right. \\
& \Lambda=(-\Delta)^{\frac{1}{2}}, \quad R=\nabla \Lambda^{-1}
\end{aligned}
$$

In Fourier:

$$
\widehat{\Lambda \theta}(k)=|k| \widehat{\theta}(k), \quad \widehat{R \theta}(k)=\frac{i k}{|k|} \widehat{\theta}(k) .
$$

- transport + nonlocal diffusion $\Rightarrow L^{\infty}$ is invariant
- L^{∞} not good for CZ operators
- quasilinear, critical in the sense of Goldilocks: easy for $\Lambda^{s}, s>1$, hard for $s<1$.)

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}.

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of continuity.

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of continuity. adequate $h(r)$ so that

$$
\left|\theta_{0}(x)-\theta_{0}(y)\right|<h(|x-y|) \Rightarrow|\theta(x, t)-\theta(y, t)|<h(|x-y|)
$$

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of continuity. adequate $h(r)$ so that

$$
\left|\theta_{0}(x)-\theta_{0}(y)\right|<h(|x-y|) \Rightarrow|\theta(x, t)-\theta(y, t)|<h(|x-y|)
$$

2. Caffarelli-Vasseur: de Giorgi strategy:

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of continuity. adequate $h(r)$ so that

$$
\left|\theta_{0}(x)-\theta_{0}(y)\right|<h(|x-y|) \Rightarrow|\theta(x, t)-\theta(y, t)|<h(|x-y|)
$$

2. Caffarelli-Vasseur: de Giorgi strategy: from L^{2} to L^{∞}, from L^{∞} to C^{α}, from C^{α} to C^{∞}.

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of continuity. adequate $h(r)$ so that

$$
\left|\theta_{0}(x)-\theta_{0}(y)\right|<h(|x-y|) \Rightarrow|\theta(x, t)-\theta(y, t)|<h(|x-y|)
$$

2. Caffarelli-Vasseur: de Giorgi strategy: from L^{2} to L^{∞}, from L^{∞} to C^{α}, from C^{α} to C^{∞}.
3. Kiselev-Nazarov: duality method, co-evolving molecules.

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of continuity. adequate $h(r)$ so that

$$
\left|\theta_{0}(x)-\theta_{0}(y)\right|<h(|x-y|) \Rightarrow|\theta(x, t)-\theta(y, t)|<h(|x-y|)
$$

2. Caffarelli-Vasseur: de Giorgi strategy: from L^{2} to L^{∞}, from L^{∞} to C^{α}, from C^{α} to C^{∞}.
3. Kiselev-Nazarov: duality method, co-evolving molecules.
4. C-Vicol: nonlinear maximum principle, stability of the "only small shocks" condition

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of continuity. adequate $h(r)$ so that

$$
\left|\theta_{0}(x)-\theta_{0}(y)\right|<h(|x-y|) \Rightarrow|\theta(x, t)-\theta(y, t)|<h(|x-y|)
$$

2. Caffarelli-Vasseur: de Giorgi strategy: from L^{2} to L^{∞}, from L^{∞} to C^{α}, from C^{α} to C^{∞}.
3. Kiselev-Nazarov: duality method, co-evolving molecules.
4. C-Vicol: nonlinear maximum principle, stability of the "only small shocks" condition
5. C-Tarfulea-Vicol: nonlinear maximum principle, small Hölder exponent.

Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C = small data in L^{∞}. Large data: many methods:

1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of continuity. adequate $h(r)$ so that

$$
\left|\theta_{0}(x)-\theta_{0}(y)\right|<h(|x-y|) \Rightarrow|\theta(x, t)-\theta(y, t)|<h(|x-y|)
$$

2. Caffarelli-Vasseur: de Giorgi strategy: from L^{2} to L^{∞}, from L^{∞} to C^{α}, from C^{α} to C^{∞}.
3. Kiselev-Nazarov: duality method, co-evolving molecules.
4. C-Vicol: nonlinear maximum principle, stability of the "only small shocks" condition
5. C-Tarfulea-Vicol: nonlinear maximum principle, small Hölder exponent. we'll explain this one

what's going on, whole space

θ bounded in L^{∞}.

what's going on, whole space

θ bounded in L^{∞}. The stretching equation

$$
\left(\partial_{t}+u \cdot \nabla+\Lambda\right) \nabla^{\perp} \theta=(\nabla u) \nabla^{\perp} \theta .
$$

what's going on, whole space

θ bounded in L^{∞}. The stretching equation

$$
\left(\partial_{t}+u \cdot \nabla+\Lambda\right) \nabla^{\perp} \theta=(\nabla u) \nabla^{\perp} \theta .
$$

Multiply by $\nabla^{\perp} \theta$ to have positive quantities:

$$
\frac{1}{2}\left(\partial_{t}+u \cdot \nabla+\Lambda\right) q^{2}+D(q)=Q
$$

for $q^{2}=\left|\nabla^{\perp} \theta\right|^{2}$, with

$$
Q=(\nabla u) \nabla^{\perp} \theta \cdot \nabla^{\perp} \theta \leq|\nabla u| q^{2} .
$$

what's going on, whole space

θ bounded in L^{∞}. The stretching equation

$$
\left(\partial_{t}+u \cdot \nabla+\Lambda\right) \nabla^{\perp} \theta=(\nabla u) \nabla^{\perp} \theta .
$$

Multiply by $\nabla^{\perp} \theta$ to have positive quantities:

$$
\frac{1}{2}\left(\partial_{t}+u \cdot \nabla+\Lambda\right) q^{2}+D(q)=Q
$$

for $q^{2}=\left|\nabla^{\perp} \theta\right|^{2}$, with

$$
Q=(\nabla u) \nabla^{\perp} \theta \cdot \nabla^{\perp} \theta \leq|\nabla u| q^{2} .
$$

$$
|\nabla u| \sim q:
$$

what's going on, whole space

θ bounded in L^{∞}. The stretching equation

$$
\left(\partial_{t}+u \cdot \nabla+\Lambda\right) \nabla^{\perp} \theta=(\nabla u) \nabla^{\perp} \theta .
$$

Multiply by $\nabla^{\perp} \theta$ to have positive quantities:

$$
\frac{1}{2}\left(\partial_{t}+u \cdot \nabla+\Lambda\right) q^{2}+D(q)=Q
$$

for $q^{2}=\left|\nabla^{\perp} \theta\right|^{2}$, with

$$
Q=(\nabla u) \nabla^{\perp} \theta \cdot \nabla^{\perp} \theta \leq|\nabla u| q^{2} .
$$

$|\nabla u| \sim q: Q$ is cubic.

what's going on, whole space

θ bounded in L^{∞}. The stretching equation

$$
\left(\partial_{t}+u \cdot \nabla+\Lambda\right) \nabla^{\perp} \theta=(\nabla u) \nabla^{\perp} \theta .
$$

Multiply by $\nabla^{\perp} \theta$ to have positive quantities:

$$
\frac{1}{2}\left(\partial_{t}+u \cdot \nabla+\Lambda\right) q^{2}+D(q)=Q
$$

for $q^{2}=\left|\nabla^{\perp} \theta\right|^{2}$, with

$$
Q=(\nabla u) \nabla^{\perp} \theta \cdot \nabla^{\perp} \theta \leq|\nabla u| q^{2} .
$$

$|\nabla u| \sim q: Q$ is cubic. Nonlinear lower bound! (Vicol, C)

$$
D(q)=q \wedge q-\frac{1}{2} \wedge\left(q^{2}\right) \geq \frac{q^{3}}{\|\theta\|_{L^{\infty}}}
$$

But wait

- Constants matter

But wait

- Constants matter
- $\nabla u=R^{\perp}(\nabla \theta)$ fails to be bounded in L^{∞} by the L^{∞} norm of $\nabla^{\perp} \theta$

But wait

- Constants matter
- $\nabla u=R^{\perp}(\nabla \theta)$ fails to be bounded in L^{∞} by the L^{∞} norm of $\nabla^{\perp} \theta$ What works for large data:

But wait

- Constants matter
- $\nabla u=R^{\perp}(\nabla \theta)$ fails to be bounded in L^{∞} by the L^{∞} norm of $\nabla^{\perp} \theta$ What works for large data:
- Any C^{α} with $\alpha>0$ implies C^{∞}.

But wait

- Constants matter
- $\nabla u=R^{\perp}(\nabla \theta)$ fails to be bounded in L^{∞} by the L^{∞} norm of $\nabla^{\perp} \theta$

What works for large data:

- Any \boldsymbol{C}^{α} with $\alpha>0$ implies \boldsymbol{C}^{∞}. Due to criticality.

But wait

- Constants matter
- $\nabla u=R^{\perp}(\nabla \theta)$ fails to be bounded in L^{∞} by the L^{∞} norm of $\nabla^{\perp} \theta$

What works for large data:

- Any C^{α} with $\alpha>0$ implies C^{∞}. Due to criticality. More generally, if the equation has a dissipation of order $s \leq 1$ and θ is bounded in C^{α} with $\alpha>1-s$, then the solution is smooth.(Wu , C).

But wait

- Constants matter
- $\nabla u=R^{\perp}(\nabla \theta)$ fails to be bounded in L^{∞} by the L^{∞} norm of $\nabla^{\perp} \theta$

What works for large data:

- Any C^{α} with $\alpha>0$ implies C^{∞}. Due to criticality. More generally, if the equation has a dissipation of order $s \leq 1$ and θ is bounded in C^{α} with $\alpha>1-s$, then the solution is smooth.(Wu , C).
- Smallness of α : The term corresponding to Q in the finite difference version of the argument has a small (α) prefactor and it is dominated by the term corresponding to $D(q)$

In this talk: SQG in Bounded Domains

In this talk: SQG in Bounded Domains

Main issues:

- No translation invariance

In this talk: SQG in Bounded Domains

Main issues:

- No translation invariance
- Kernels not explicit

In this talk: SQG in Bounded Domains

Main issues:

- No translation invariance
- Kernels not explicit
- Boundary supercriticality (commutators more expensive than gain from dissipation).

In this talk: SQG in Bounded Domains

Main issues:

- No translation invariance
- Kernels not explicit
- Boundary supercriticality (commutators more expensive than gain from dissipation).
Main results:
- Nonlinear lower bounds (nonlinear max principle) (Ignatova, C)

In this talk: SQG in Bounded Domains

Main issues:

- No translation invariance
- Kernels not explicit
- Boundary supercriticality (commutators more expensive than gain from dissipation).
Main results:
- Nonlinear lower bounds (nonlinear max principle) (Ignatova, C)
- Commutator estimates (Ignatova, C, and H.Q. Nguen, C)

In this talk: SQG in Bounded Domains

Main issues:

- No translation invariance
- Kernels not explicit
- Boundary supercriticality (commutators more expensive than gain from dissipation).
Main results:
- Nonlinear lower bounds (nonlinear max principle) (Ignatova, C)
- Commutator estimates (Ignatova, C, and H.Q. Nguen, C)
- Global existence of solutions for critical dissipative SQG: global interior Lipschitz bounds (Ignatova, C)

In this talk: SQG in Bounded Domains

Main issues:

- No translation invariance
- Kernels not explicit
- Boundary supercriticality (commutators more expensive than gain from dissipation).
Main results:
- Nonlinear lower bounds (nonlinear max principle) (Ignatova, C)
- Commutator estimates (Ignatova, C, and H.Q. Nguen, C)
- Global existence of solutions for critical dissipative SQG: global interior Lipschitz bounds (Ignatova, C)
- Global L^{2} weak solutions for inviscid SQG (H.Q. Nguyen, C)

Critical SQG in bounded domains

$$
\partial_{t} \theta+\left(R_{D}^{\perp} \theta\right) \cdot \nabla \theta+\Lambda_{D} \theta=0
$$

Critical SQG in bounded domains

$$
\partial_{t} \theta+\left(R_{D}^{\perp} \theta\right) \cdot \nabla \theta+\Lambda_{D} \theta=0
$$

with $R_{D}=\nabla \Lambda_{D}^{-1}$.

Critical SQG in bounded domains

$$
\partial_{t} \theta+\left(R_{D}^{\perp} \theta\right) \cdot \nabla \theta+\Lambda_{D} \theta=0
$$

with $R_{D}=\nabla \Lambda_{D}^{-1} . \Omega \subset \mathbb{R}^{d}$ bounded domain with smooth boundary. $\Lambda_{D}=$ square root of Dirichlet Laplacian.

Critical SQG in bounded domains

$$
\partial_{t} \theta+\left(R_{D}^{\perp} \theta\right) \cdot \nabla \theta+\Lambda_{D} \theta=0
$$

with $R_{D}=\nabla \Lambda_{D}^{-1} . \Omega \subset \mathbb{R}^{d}$ bounded domain with smooth boundary. $\Lambda_{D}=$ square root of Dirichlet Laplacian.

Theorem

(C, Ignatova) Let $\theta(x, t)$ be a smooth solution of critical SQG in the smooth bounded domain Ω. There exists $0<\alpha<1$ depending only on $\left\|\theta_{0}\right\|_{L^{\infty}(\Omega)}$ and Ω, and a constant $\Gamma>0$ depending only on the domain Ω (in particular: not on T) such that

Critical SQG in bounded domains

$$
\partial_{t} \theta+\left(R_{D}^{\perp} \theta\right) \cdot \nabla \theta+\Lambda_{D} \theta=0
$$

with $R_{D}=\nabla \Lambda_{D}^{-1} . \Omega \subset \mathbb{R}^{d}$ bounded domain with smooth boundary. $\Lambda_{D}=$ square root of Dirichlet Laplacian.

Theorem

(C, Ignatova) Let $\theta(x, t)$ be a smooth solution of critical SQG in the smooth bounded domain Ω. There exists $0<\alpha<1$ depending only on $\left\|\theta_{0}\right\|_{L^{\infty}(\Omega)}$ and Ω, and a constant $\Gamma>0$ depending only on the domain Ω (in particular: not on T) such that

$$
\sup _{0 \leq t<T}\|\theta(t)\|_{C^{\alpha}(\Omega)} \leq \Gamma\left\|\theta_{0}\right\|_{C^{\alpha}(\Omega)}
$$

Moreover,

$$
\sup _{x \in \Omega, 0 \leq t<T} d(x)\left|\nabla_{x} \theta(x, t)\right| \leq \Gamma_{1}\left[\sup _{x \in \Omega} d(x)\left|\nabla_{x} \theta_{0}(x)\right|+P\left(\left\|\theta_{0}\right\|_{L^{\infty}(\Omega)}\right)\right]
$$

Elements of the proof

$$
\begin{gathered}
{[f]_{\alpha}=\sup _{x \in \Omega}(d(x))^{\alpha}\left(\sup _{h \neq 0,|h|<d(x)} \frac{|f(x+h)-f(x)|}{|h|^{\alpha}}\right)<\infty .} \\
d(x)=\operatorname{dist}(x, \partial \Omega)) . \text { Norm in } C^{\alpha}(\Omega) \text { (interior) } \\
\|f\|_{C^{\alpha}}=\|f\|_{L^{\infty}(\Omega)}+[f]_{\alpha} .
\end{gathered}
$$

Elements of the proof

$$
\begin{gathered}
{[f]_{\alpha}=\sup _{x \in \Omega}(d(x))^{\alpha}\left(\sup _{h \neq 0,|h|<d(x)} \frac{|f(x+h)-f(x)|}{|h|^{\alpha}}\right)<\infty .} \\
d(x)=\operatorname{dist}(x, \partial \Omega)) . \text { Norm in } C^{\alpha}(\Omega) \text { (interior) } \\
\|f\|_{C^{\alpha}}=\|f\|_{L^{\infty}(\Omega)}+[f]_{\alpha} .
\end{gathered}
$$

- Gaussian bounds for heat kernel; cancellation due to translation invariance effective for small time.

Elements of the proof

$$
\begin{gathered}
{[f]_{\alpha}=\sup _{x \in \Omega}(d(x))^{\alpha}\left(\sup _{h \neq 0,|h|<d(x)} \frac{|f(x+h)-f(x)|}{|h|^{\alpha}}\right)<\infty .} \\
d(x)=\operatorname{dist}(x, \partial \Omega)) . \text { Norm in } C^{\alpha}(\Omega) \text { (interior) } \\
\|f\|_{C^{\alpha}}=\|f\|_{L^{\infty}(\Omega)}+[f]_{\alpha} .
\end{gathered}
$$

- Gaussian bounds for heat kernel; cancellation due to translation invariance effective for small time.
- Nonlinear maximum principle (lower bound for Λ_{D}) giving smoothing and a strong boundary repulsion damping effect.

Elements of the proof

$$
\begin{gathered}
{[f]_{\alpha}=\sup _{x \in \Omega}(d(x))^{\alpha}\left(\sup _{h \neq 0,|h|<d(x)} \frac{|f(x+h)-f(x)|}{|h|^{\alpha}}\right)<\infty .} \\
d(x)=\operatorname{dist}(x, \partial \Omega)) . \text { Norm in } C^{\alpha}(\Omega) \text { (interior) } \\
\|f\|_{C^{\alpha}}=\|f\|_{L^{\infty}(\Omega)}+[f]_{\alpha} .
\end{gathered}
$$

- Gaussian bounds for heat kernel; cancellation due to translation invariance effective for small time.
- Nonlinear maximum principle (lower bound for Λ_{D}) giving smoothing and a strong boundary repulsion damping effect.
- Good cutoff χ_{ℓ} and bound for the commutator $\left[\delta_{h}, \Lambda_{D}\right]$ away from boundary; (the most expensive item, fighting boundary repulsion)

Elements of the proof

$$
\begin{gathered}
{[f]_{\alpha}=\sup _{x \in \Omega}(d(x))^{\alpha}\left(\sup _{h \neq 0,|h|<d(x)} \frac{|f(x+h)-f(x)|}{|h|^{\alpha}}\right)<\infty .} \\
d(x)=\operatorname{dist}(x, \partial \Omega)) . \text { Norm in } C^{\alpha}(\Omega) \text { (interior) } \\
\|f\|_{C^{\alpha}}=\|f\|_{L^{\infty}(\Omega)}+[f]_{\alpha} .
\end{gathered}
$$

- Gaussian bounds for heat kernel; cancellation due to translation invariance effective for small time.
- Nonlinear maximum principle (lower bound for Λ_{D}) giving smoothing and a strong boundary repulsion damping effect.
- Good cutoff χ_{ℓ} and bound for the commutator $\left[\delta_{h}, \Lambda_{D}\right]$ away from boundary; (the most expensive item, fighting boundary repulsion)
- Finite difference bounds for Riesz transforms using the nonlinear max principle bound in its finite difference variant.

Basics in bounded domains

- $\Omega \subset \mathbb{R}^{d}$ open, bounded, smooth boundary
- $-\Delta$ Laplacian operator with homogeneous Dirichlet boundary conditions
- w_{j} are $L^{2}(\Omega)$ - normalized eigenfunctions, λ_{j} corresponding eigenvalues counted with their multiplicities

$$
-\Delta w_{j}=\lambda_{j} w_{j}
$$

- $0<\lambda_{1} \leq \cdots \leq \lambda_{j} \rightarrow \infty$
- $-\Delta$ positive self-adjoint operator in L^{2} with domain

$$
\mathcal{D}(-\Delta)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

- The ground state is positive and

$$
c_{0} d(x) \leq w_{1}(x) \leq C_{0} d(x)
$$

for all $x \in \Omega$, where

$$
d(x)=\operatorname{dist}(x, \partial \Omega)
$$

Fractional powers in terms of heat kernel

$$
(-\Delta)^{\alpha} f=\sum_{j=1}^{\infty} \lambda_{j}^{\alpha} f_{j} w_{j}
$$

$$
f_{j}=\int_{\Omega} f(y) w_{j}(y) d y
$$

$$
\begin{gathered}
\Lambda_{D}=(-\Delta)^{\frac{1}{2}} \\
\mathcal{D}\left(\Lambda_{D}\right)=H_{0}^{1}(\Omega) .
\end{gathered}
$$

Fractional powers in terms of heat kernel

$$
(-\Delta)^{\alpha} f=\sum_{j=1}^{\infty} \lambda_{j}^{\alpha} f_{j} w_{j}
$$

$f_{j}=\int_{\Omega} f(y) w_{j}(y) d y$

$$
\begin{gathered}
\Lambda_{D}=(-\Delta)^{\frac{1}{2}} \\
\mathcal{D}\left(\Lambda_{D}\right)=H_{0}^{1}(\Omega) .
\end{gathered}
$$

$$
\Lambda_{D}^{2 \alpha} f(x)=\left((-\Delta)^{\alpha} f\right)(x)=c_{\alpha} \int_{0}^{\infty}\left[f(x)-e^{-t \Delta} f(x)\right] t^{-1-\alpha} d t
$$

for $f \in \mathcal{D}\left((-\Delta)^{\alpha}\right)$.

Fractional powers in terms of heat kernel

$$
(-\Delta)^{\alpha} f=\sum_{j=1}^{\infty} \lambda_{j}^{\alpha} f_{j} w_{j}
$$

$f_{j}=\int_{\Omega} f(y) w_{j}(y) d y$

$$
\begin{gathered}
\Lambda_{D}=(-\Delta)^{\frac{1}{2}} \\
\mathcal{D}\left(\Lambda_{D}\right)=H_{0}^{1}(\Omega) .
\end{gathered}
$$

$$
\Lambda_{D}^{2 \alpha} f(x)=\left((-\Delta)^{\alpha} f\right)(x)=c_{\alpha} \int_{0}^{\infty}\left[f(x)-e^{-t \Delta} f(x)\right] t^{-1-\alpha} d t
$$

for $f \in \mathcal{D}\left((-\Delta)^{\alpha}\right)$.

$$
\lambda^{\alpha}=c_{\alpha} \int_{0}^{\infty}\left(1-e^{-t \lambda}\right) t^{-1-\alpha} d t
$$

Gaussian bounds for the heat kernel

$$
\left(e^{t \Delta} f\right)(x)=\int_{\Omega} H_{D}(t, x, y) f(y) d y
$$

Gaussian bounds for the heat kernel

$$
\left(e^{t \Delta} f\right)(x)=\int_{\Omega} H_{D}(t, x, y) f(y) d y
$$

Davies '87, Zhang '02, '06: There exists a time $T>0$ depending on the domain Ω and constants c, C, k, K, depending on T and Ω such that

$$
\begin{aligned}
& \min \left(\frac{w_{1}(x)}{\mid x-y}, 1\right) \min \left(\frac{w_{1}(y)}{\mid x-y}, 1\right) t^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}} \leq H_{D}(t, x, y) \\
& \quad \leq C \min \left(\frac{w_{1}(x)}{|x-y|}, 1\right) \min \left(\frac{w_{1}(y)}{|x-y|}, 1\right) t^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}}
\end{aligned}
$$

holds for all $0 \leq t \leq T$.

Gaussian bounds for the heat kernel

$$
\left(e^{t \Delta} f\right)(x)=\int_{\Omega} H_{D}(t, x, y) f(y) d y
$$

Davies '87, Zhang '02, '06: There exists a time $T>0$ depending on the domain Ω and constants c, C, k, K, depending on T and Ω such that

$$
\begin{aligned}
& \min \left(\frac{w_{1}(x)}{\mid x-y}, 1\right) \min \left(\frac{w_{1}(y)}{\mid x-y}, 1\right) t^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}} \leq H_{D}(t, x, y) \\
& \quad \leq C \min \left(\frac{w_{1}(x)}{|x-y|}, 1\right) \min \left(\frac{w_{1}(y)}{|x-y|}, 1\right) t^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}}
\end{aligned}
$$

holds for all $0 \leq t \leq T$.

$$
\frac{\left|\nabla_{x} H_{D}(t, x, y)\right|}{H_{D}(t, x, y)} \leq C \begin{cases}\frac{1}{d(x)}, & \text { if } \sqrt{t} \geq d(x), \\ \frac{1}{\sqrt{t}}\left(1+\frac{|x-y|}{\sqrt{t}}\right), & \text { if } \sqrt{t} \leq d(x)\end{cases}
$$

holds for all $0 \leq t \leq T$.

Gaussian bounds for the heat kernel

$$
\left(e^{t \Delta} f\right)(x)=\int_{\Omega} H_{D}(t, x, y) f(y) d y
$$

Davies '87, Zhang '02, '06: There exists a time $T>0$ depending on the domain Ω and constants c, C, k, K, depending on T and Ω such that

$$
\begin{aligned}
& \min \left(\frac{w_{1}(x)}{\mid x-y}, 1\right) \min \left(\frac{w_{1}(y)}{\mid x-y}, 1\right) t^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}} \leq H_{D}(t, x, y) \\
& \quad \leq C \min \left(\frac{w_{1}(x)}{|x-y|}, 1\right) \min \left(\frac{w_{1}(y)}{|x-y|}, 1\right) t^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}}
\end{aligned}
$$

holds for all $0 \leq t \leq T$.

$$
\frac{\left|\nabla_{x} H_{D}(t, x, y)\right|}{H_{D}(t, x, y)} \leq C \begin{cases}\frac{1}{d(x)}, & \text { if } \sqrt{t} \geq d(x) \\ \frac{1}{\sqrt{t}}\left(1+\frac{|x-y|}{\sqrt{t}}\right), & \text { if } \sqrt{t} \leq d(x)\end{cases}
$$

holds for all $0 \leq t \leq T$. Interchange x and y :

$$
\partial_{1}^{\beta} H_{D}(t, y, x)=\partial_{2}^{\beta} H_{D}(t, x, y)=\sum_{j=1}^{\infty} e^{-t \lambda_{j}} \partial_{y}^{\beta} w_{j}(y) w_{j}(x)
$$

Additional bounds; translation invariance effect

$$
\left|\nabla_{x} \nabla_{x} H_{0}(x, y, t)\right| \leq C t^{-1-\frac{d}{2}} e^{-\frac{x-y^{2}}{k}}
$$

holds for $t \leq c d(x)^{2}$ and $0<t \leq T$.

Additional bounds; translation invariance effect

$$
\left|\nabla_{x} \nabla_{x} H_{D}(x, y, t)\right| \leq C t^{-1-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}}
$$

holds for $t \leq c d(x)^{2}$ and $0<t \leq T$. Important additional bounds we need are

$$
\left|\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+1}{2}} e^{-\frac{d(x)^{2}}{k t}}
$$

Additional bounds; translation invariance effect

$$
\left|\nabla_{x} \nabla_{x} H_{D}(x, y, t)\right| \leq C t^{-1-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}}
$$

holds for $t \leq c d(x)^{2}$ and $0<t \leq T$. Important additional bounds we need are

$$
\left|\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+1}{2}} e^{-\frac{d(x)^{2}}{k t}}
$$

and

$$
\left|\nabla_{x}\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+2}{2}} e^{-\frac{d(x)^{2}}{k t}}
$$

valid for $t \leq c d(x)^{2}$.

Additional bounds; translation invariance effect

$$
\left|\nabla_{x} \nabla_{x} H_{D}(x, y, t)\right| \leq C t^{-1-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}}
$$

holds for $t \leq c d(x)^{2}$ and $0<t \leq T$. Important additional bounds we need are

$$
\left|\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+1}{2}} e^{-\frac{d(x)^{2}}{k t}}
$$

and

$$
\left|\nabla_{x}\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+2}{2}} e^{-\frac{d(x))^{2}}{k t}}
$$

valid for $t \leq \operatorname{cd}(x)^{2}$. nonsingular at $x=y$!

Additional bounds; translation invariance effect

$$
\left|\nabla_{x} \nabla_{x} H_{D}(x, y, t)\right| \leq C t^{-1-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}}
$$

holds for $t \leq c d(x)^{2}$ and $0<t \leq T$. Important additional bounds we need are

$$
\left|\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+1}{2}} e^{-\frac{d(x)^{2}}{k t}}
$$

and

$$
\left|\nabla_{x}\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+2}{2}} e^{-\frac{d(x)^{2}}{k t}}
$$

valid for $t \leq \operatorname{cd}(x)^{2}$. nonsingular at $x=y$! These bounds reflect the fact that translation invariance is remembered in the solution of the heat equation with Dirichlet boundary data for short time, away from the boundary.

Additional bounds; translation invariance effect

$$
\left|\nabla_{x} \nabla_{x} H_{D}(x, y, t)\right| \leq C t^{-1-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{k t}}
$$

holds for $t \leq c d(x)^{2}$ and $0<t \leq T$. Important additional bounds we need are

$$
\left|\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+1}{2}} e^{-\frac{d(x)^{2}}{k t}}
$$

and

$$
\left|\nabla_{x}\left(\nabla_{x}+\nabla_{y}\right) H_{D}(x, y, t)\right| \leq C t^{-\frac{d+2}{2}} e^{-\frac{d(x))^{2}}{k t}}
$$

valid for $t \leq \operatorname{cd}(x)^{2}$. nonsingular at $x=y$! These bounds reflect the fact that translation invariance is remembered in the solution of the heat equation with Dirichlet boundary data for short time, away from the boundary. They are essential in the proof of bounds for commutators with differentiation.

The convex damping inequality

Proposition
(C, Ignatova) Let Ω be a bounded domain with smooth boundary, let $0<s<2$. There exists a constant C depending on the domain and on s such that for every Φ, a C^{2} convex function satisfying $\Phi(0)=0$, and every $f \in C_{0}^{\infty}(\Omega)$

The convex damping inequality

Proposition

(C, Ignatova) Let Ω be a bounded domain with smooth boundary, let $0<s<2$. There exists a constant C depending on the domain and on s such that for every Φ, a C^{2} convex function satisfying $\Phi(0)=0$, and every $f \in C_{0}^{\infty}(\Omega)$

$$
\Phi^{\prime}(f) \Lambda_{D}^{s} f-\Lambda_{D}^{s}(\Phi(f)) \geq \frac{C}{d(x)^{s}}\left(f(x) \Phi^{\prime}(f(x))-\Phi(f(x))\right)
$$

holds pointwise in Ω.

The convex damping inequality

Proposition

(C, Ignatova) Let Ω be a bounded domain with smooth boundary, let $0<s<2$. There exists a constant C depending on the domain and on s such that for every Φ, a C^{2} convex function satisfying $\Phi(0)=0$, and every $f \in C_{0}^{\infty}(\Omega)$

$$
\Phi^{\prime}(f) \Lambda_{D}^{s} f-\Lambda_{D}^{s}(\Phi(f)) \geq \frac{C}{d(x)^{s}}\left(f(x) \Phi^{\prime}(f(x))-\Phi(f(x))\right)
$$

holds pointwise in Ω.
This generalizes the Córdoba-Córdoba inequality from \mathbb{R}^{d} $(d(x)=\infty)$.

The convex damping inequality

Proposition

(C, Ignatova) Let Ω be a bounded domain with smooth boundary, let $0<s<2$. There exists a constant C depending on the domain and on s such that for every Φ, a C^{2} convex function satisfying $\Phi(0)=0$, and every $f \in C_{0}^{\infty}(\Omega)$

$$
\Phi^{\prime}(f) \Lambda_{D}^{s} f-\Lambda_{D}^{s}(\Phi(f)) \geq \frac{C}{d(x)^{s}}\left(f(x) \Phi^{\prime}(f(x))-\Phi(f(x))\right)
$$

holds pointwise in Ω.
This generalizes the Córdoba-Córdoba inequality from \mathbb{R}^{d} $(d(x)=\infty)$. Example

$$
D(f)=f \Lambda_{D} f-\frac{1}{2} \Lambda_{D} f^{2} \geq \frac{C}{d(x)} f^{2}(x)
$$

The convex damping inequality

Proposition

(C, Ignatova) Let Ω be a bounded domain with smooth boundary, let $0<s<2$. There exists a constant C depending on the domain and on s such that for every Φ, a C^{2} convex function satisfying $\Phi(0)=0$, and every $f \in C_{0}^{\infty}(\Omega)$

$$
\Phi^{\prime}(f) \Lambda_{D}^{s} f-\Lambda_{D}^{s}(\Phi(f)) \geq \frac{C}{d(x)^{s}}\left(f(x) \Phi^{\prime}(f(x))-\Phi(f(x))\right)
$$

holds pointwise in Ω.
This generalizes the Córdoba-Córdoba inequality from \mathbb{R}^{d} $(d(x)=\infty)$. Example

$$
D(f)=f \Lambda_{D} f-\frac{1}{2} \Lambda_{D} f^{2} \geq \frac{C}{d(x)} f^{2}(x)
$$

Dramatically different from \mathbb{R}^{d} !

The nonlinear bound for derivatives

Theorem
(C, I) Let $f \in L^{\infty}(\Omega) \cap \mathcal{D}\left(\Lambda_{D}^{s}\right), 0 \leq s<2$. Assume that $f=\partial q$ with $q \in L^{\infty}(\Omega)$ and ∂ a first order derivative. Then there exist constants c, C depending on Ω and s such that

$$
f \wedge_{D}^{s} f-\frac{1}{2} \Lambda_{D}^{s} f^{2} \geq c\|q\|_{L \infty}^{-s}\left|f_{d}\right|^{2+s}
$$

holds pointwise in Ω, with

$$
\left|f_{d}(x)\right|= \begin{cases}|f(x)| & \text { if }|f(x)| \geq C\|q\|_{L^{\infty}(\Omega)} \frac{1}{d(x)} \\ 0 & \text { if }|f(x)| \leq C\|q\|_{L^{\infty}(\Omega) \frac{1}{d(x)}},\end{cases}
$$

The nonlinear bound for derivatives

Theorem
(C, I) Let $f \in L^{\infty}(\Omega) \cap \mathcal{D}\left(\wedge_{D}^{s}\right), 0 \leq s<2$. Assume that $f=\partial q$ with $q \in L^{\infty}(\Omega)$ and ∂ a first order derivative. Then there exist constants c, C depending on Ω and s such that

$$
f \wedge_{D}^{s} f-\frac{1}{2} \Lambda_{D}^{s} f^{2} \geq c\|q\|_{L \infty}^{-s}\left|f_{d}\right|^{2+s}
$$

holds pointwise in Ω, with

$$
\left|f_{d}(x)\right|=\left\{\begin{array}{lc}
|f(x)| & \text { if }|f(x)| \geq C\|q\|_{L^{\infty}(\Omega)} \frac{1}{d(x)}, \\
0 & \text { if }|f(x)| \leq C\|q\|_{L^{\infty}(\Omega)}^{d(x)},
\end{array}\right.
$$

Proof: nontrivial, uses precise bounds on the heat kernel and

$$
f \Lambda_{D}^{s} f-\frac{1}{2} \Lambda_{D}^{s} f^{2} \geq \frac{c_{s}}{2} \int_{0}^{\infty} t^{-1-\frac{s}{2}} d t \int_{\Omega} H_{D}(t, x, y)(f(x)-f(y))^{2} d y
$$

Good cutoff

Lemma

(C,I) Let Ω be a bounded domain with C^{2} boundary. For $\ell>0$ small enough (depending on Ω) there exist cutoff functions $\chi \ell \chi$ with the properties: $0 \leq \chi \leq 1, \chi(y)=0$ if $d(y) \leq \frac{\ell}{4}, \chi(y)=1$ for $d(y) \geq \frac{\ell}{2}$, $\left|\nabla^{\kappa} \chi\right| \leq C \ell^{-k}$ with C independent of ℓ and

$$
\int_{\Omega} \frac{(1-x(y))}{|x-y|^{d j j}} d y \leq C \frac{1}{d(x)^{j}}
$$

and

$$
\int_{\Omega}|\nabla \chi(y)| \frac{1}{|x-y|^{d}} \leq C \frac{1}{d(x)}
$$

hold for $j \geq 0$ and $d(x) \geq \ell$. We will refer to such χ as a "good cutoff".

Good cutoff

Lemma

(C,I) Let Ω be a bounded domain with C^{2} boundary. For $\ell>0$ small enough (depending on Ω) there exist cutoff functions $\chi_{\ell}=\chi$ with the properties: $0 \leq \chi \leq 1, \chi(y)=0$ if $d(y) \leq \frac{\ell}{4}, \chi(y)=1$ for $d(y) \geq \frac{\ell}{2}$, $\left|\nabla^{k} \chi\right| \leq C \ell^{-k}$ with C independent of ℓ and

$$
\int_{\Omega} \frac{(1-\chi(y))}{|x-y|^{d+j}} d y \leq C \frac{1}{d(x)^{j}}
$$

and

$$
\int_{\Omega}|\nabla \chi(y)| \frac{1}{|x-y|^{d}} \leq C \frac{1}{d(x)}
$$

hold for $j \geq 0$ and $d(x) \geq \ell$. We will refer to such χ as a "good cutoff". Useful because of the Gaussian bounds on the heat kernel. Makes work in Ω look like work in half-space, where $\chi_{\ell}=\chi_{1}\left(\frac{\chi_{d}}{\ell}\right)$, without changing coordinates.

Nonlinear bound, finite differences

Theorem
(C, I) Let Ω be a bounded domain with smooth boundary. Let $\chi \in C_{0}^{\infty}(\Omega)$ be a good cutoff with scale $\ell>0$ and let

$$
f(x)=\chi(x)\left(\delta_{h} q(x)\right)=\chi(x)(q(x+h)-q(x))
$$

with $q \in L^{\infty}(\Omega) \cap H_{0}^{1}(\Omega)$. Then

$$
D(f)(x)=\left(f \Lambda_{D} f\right)(x)-\frac{1}{2}\left(\Lambda_{D} f^{2}\right)(x) \geq \gamma_{1}|h|^{-1} \frac{\left|f_{d}(x)\right|^{3}}{\|q\|_{L^{\infty}}}+\gamma_{1} \frac{f^{2}(x)}{d(x)}
$$

holds a.e. pointwise in Ω when $|h| \leq \frac{\ell}{16}$, and $d(x) \geq \ell$ with

$$
\left|f_{d}(x)\right|=|f(x)|, \quad \text { if }|f(x)| \geq M\|q\|_{L^{\infty}(\Omega)} \frac{|h|}{d(x)}
$$

Commutator

Let χ be a good cutoff.
Lemma
(C,l) There exists a constant Γ_{0} such that the commutator

$$
C_{h}(\theta)=\chi \delta_{h} \Lambda_{D} \theta-\Lambda_{D}\left(\chi \delta_{h} \theta\right)
$$

obeys

$$
\left|C_{h}(\theta)(x)\right| \leq \Gamma_{0} \frac{|h|}{d(x)^{2}}\|\theta\|_{L^{\infty}(\Omega)}
$$

for $d(x) \geq \ell,|h| \leq \frac{\ell}{16}$.

Finite difference of Riesz transform

Lemma
(C,I) Let χ be a good cutoff, and let u be defined by

$$
u=R_{D}^{\perp} \theta .
$$

Then

$$
\left|\delta_{h} u(x)\right| \leq C\left(\sqrt{\rho D(f)(x)}+\|\theta\|_{L^{\infty}}\left(\frac{|h|}{d(x)}+\frac{|h|}{\rho}\right)+\left|\delta_{h} \theta(x)\right|\right)
$$

holds for $d(x) \geq \ell, \rho \leq c d(x), f=\chi \delta_{h} \theta$ and with C a constant depending on Ω.

Finite difference of Riesz transform

Lemma

(C,I) Let χ be a good cutoff, and let u be defined by

$$
u=R_{D}^{\perp} \theta .
$$

Then

$$
\left|\delta_{h} u(x)\right| \leq C\left(\sqrt{\rho D(f)(x)}+\|\theta\|_{L^{\infty}}\left(\frac{|h|}{d(x)}+\frac{|h|}{\rho}\right)+\left|\delta_{h} \theta(x)\right|\right)
$$

holds for $d(x) \geq \ell, \rho \leq c d(x), f=\chi \delta_{h} \theta$ and with C a constant depending on Ω.
This gives a bound on $|h|^{-1}\left|\delta_{h} u(x)\right|$ which costs $D(f)$.

Idea of proof of Hölder bound

Good cutoff, and equation for $\delta_{h} \theta$ imply:

$$
\frac{1}{2} L_{\chi}\left(\delta_{h} \theta\right)^{2}+D(f)+\left(\delta_{h} \theta\right) C_{h}(\theta)=0
$$

with

$$
L_{\chi} g=\partial_{t} g+u \cdot \nabla_{x} g+\delta_{h} u \cdot \nabla_{h} g+\Lambda_{D}\left(\chi^{2} g\right) .
$$

and

$$
D(f) \geq \gamma_{1}|h|^{-1}\|\theta\|_{L \infty}^{-1}\left|\left(\delta_{h} \theta\right)_{d}\right|^{3}+\gamma_{1}(d(x))^{-1}\left|\delta_{h} \theta\right|^{2}
$$

Idea of proof of Hölder bound

Good cutoff, and equation for $\delta_{h} \theta$ imply:

$$
\frac{1}{2} L_{\chi}\left(\delta_{h} \theta\right)^{2}+D(f)+\left(\delta_{h} \theta\right) C_{h}(\theta)=0
$$

with

$$
L_{\chi} g=\partial_{t} g+u \cdot \nabla_{x} g+\delta_{h} u \cdot \nabla_{h} g+\Lambda_{D}\left(\chi^{2} g\right) .
$$

and

$$
D(f) \geq \gamma_{1}|h|^{-1}\|\theta\|_{L \infty}^{-1}\left|\left(\delta_{h} \theta\right)_{d}\right|^{3}+\gamma_{1}(d(x))^{-1}\left|\delta_{h} \theta\right|^{2}
$$

Multiply by $|h|^{-2 \alpha}$ with $\epsilon=\alpha\left\|\theta_{0}\right\|_{L \infty}$ small.

Idea of proof of Hölder bound

Good cutoff, and equation for $\delta_{h} \theta$ imply:

$$
\frac{1}{2} L_{\chi}\left(\delta_{h} \theta\right)^{2}+D(f)+\left(\delta_{h} \theta\right) C_{h}(\theta)=0
$$

with

$$
L_{\chi} g=\partial_{t} g+u \cdot \nabla_{x} g+\delta_{h} u \cdot \nabla_{h} g+\Lambda_{D}\left(\chi^{2} g\right) .
$$

and

$$
D(f) \geq \gamma_{1}|h|^{-1}\|\theta\|_{L \infty}^{-1}\left|\left(\delta_{h} \theta\right)_{d}\right|^{3}+\gamma_{1}(d(x))^{-1}\left|\delta_{h} \theta\right|^{2}
$$

Multiply by $|h|^{-2 \alpha}$ with $\epsilon=\alpha\left\|\theta_{0}\right\|_{L_{\infty}}$ small. Obtain:

$$
L_{\chi}\left(\frac{\delta_{h} \theta(x)^{2}}{|h|^{2 \alpha}}\right)+\frac{\gamma_{1}}{4 d(x)}\left(\frac{\delta_{h} \theta(x)^{2}}{|h|^{2 \alpha}}-\Gamma_{1} \ell^{-2 \alpha}\|\theta\|_{L \infty}^{2}\right) \leq 0 .
$$

Inviscid global weak solutions, bounded domains

Theorem

(C, Q.H. Nguyen.) Let $\theta_{0} \in L^{2}(\Omega)$. There exists a weak solution of inviscid SQG

$$
\partial_{t} \theta+R_{D}^{\perp} \theta \cdot \nabla \theta=0
$$

with $\psi=\Lambda_{D}^{-1} \theta \in C\left([0, \infty), H_{0}^{1-\epsilon}(\Omega)\right)$ for any $0<\epsilon<1$. The Hamiltonian

$$
\int_{\Omega} \theta(t) \Lambda_{D}^{-1} \theta(t) d x
$$

is conserved in time, and the $L^{2}(\Omega)$ norm of $\theta(t)$ is nonincreasing in time.

Inviscid global weak solutions, bounded domains

Theorem

(C, Q.H. Nguyen.) Let $\theta_{0} \in L^{2}(\Omega)$. There exists a weak solution of inviscid SQG

$$
\partial_{t} \theta+R_{D}^{\perp} \theta \cdot \nabla \theta=0
$$

with $\psi=\Lambda_{D}^{-1} \theta \in C\left([0, \infty), H_{0}^{1-\epsilon}(\Omega)\right)$ for any $0<\epsilon<1$. The Hamiltonian

$$
\int_{\Omega} \theta(t) \wedge_{D}^{-1} \theta(t) d x
$$

is conserved in time, and the $L^{2}(\Omega)$ norm of $\theta(t)$ is nonincreasing in time.

[^0]
Elements of Proof

Weak continuity from commutator structure (adapted for bounded domains): ϕ test function, $\psi=\Lambda_{D}^{-1} \theta$:

$$
\begin{aligned}
& \int_{\Omega}\left(R_{D}^{\perp} \theta \cdot \nabla \theta\right) \phi d x \\
& =-\frac{1}{2} \int_{\Omega} \psi\left[\Lambda_{D}, \nabla^{\perp}\right] \psi \cdot \nabla \phi d x+\frac{1}{2} \int_{\Omega} \nabla^{\perp} \psi \cdot\left[\Lambda_{D}, \nabla \phi\right] \psi d x
\end{aligned}
$$

Elements of Proof

Weak continuity from commutator structure (adapted for bounded domains): ϕ test function, $\psi=\Lambda_{D}^{-1} \theta$:

$$
\begin{aligned}
& \int_{\Omega}\left(R_{D}^{\perp} \theta \cdot \nabla \theta\right) \phi d x \\
& =-\frac{1}{2} \int_{\Omega} \psi\left[\Lambda_{D}, \nabla^{\perp}\right] \psi \cdot \nabla \phi d x+\frac{1}{2} \int_{\Omega} \nabla^{\perp} \psi \cdot\left[\Lambda_{D}, \nabla \phi\right] \psi d x
\end{aligned}
$$

Together with commutator estimates
Theorem
(Ignatova, C) Let $\chi \in B(\Omega)$ with $B(\Omega)=W^{2, \infty}(\Omega) \cap W^{1, \infty}(\Omega)$ if $d \geq 3$, and $B(\Omega)=W^{2, p}(\Omega)$ with $p>2$ if $d=2$. There exists a constant $C=C(d, p, \Omega)$ such that

$$
\left\|\Lambda_{D}^{\frac{1}{2}}\left[\Lambda_{D}, \chi\right] \psi\right\|_{L^{2}(\Omega)} \leq C\|\chi\|_{B(\Omega)}\left\|\Lambda_{D}^{\frac{1}{2}} \psi\right\|_{L^{2}(\Omega)} .
$$

Elements of Proof

Weak continuity from commutator structure (adapted for bounded domains): ϕ test function, $\psi=\Lambda_{D}^{-1} \theta$:

$$
\begin{aligned}
& \int_{\Omega}\left(R \frac{\perp}{D} \theta \cdot \nabla \theta\right) \phi d x \\
& =-\frac{1}{2} \int_{\Omega} \psi\left[\Lambda_{D}, \nabla^{\perp}\right] \psi \cdot \nabla \phi d x+\frac{1}{2} \int_{\Omega} \nabla^{\perp} \psi \cdot\left[\Lambda_{D}, \nabla \phi\right] \psi d x
\end{aligned}
$$

Together with commutator estimates
Theorem
(Ignatova, C) Let $\chi \in B(\Omega)$ with $B(\Omega)=W^{2, \infty}(\Omega) \cap W^{1, \infty}(\Omega)$ if $d \geq 3$, and $B(\Omega)=W^{2, p}(\Omega)$ with $p>2$ if $d=2$. There exists a constant $C=C(d, p, \Omega)$ such that

$$
\left\|\Lambda_{D}^{\frac{1}{2}}\left[\Lambda_{D}, \chi\right] \psi\right\|_{L^{2}(\Omega)} \leq C\|\chi\|_{B(\Omega)}\left\|\Lambda_{D}^{\frac{1}{2}} \psi\right\|_{L^{2}(\Omega)}
$$

Theorem

(Ignatova, Nguyen, C.) For $1 \leq p \leq \infty, 0<s<2$, there exists C such that for all $x \in \Omega$

$$
\left|\left[\Lambda_{D}^{s}, \nabla\right] \psi(x)\right| \leq \operatorname{Cd}(x)^{-1-s-\frac{d}{p}}\|\psi\|_{L^{p}(\Omega)}
$$

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG
- Inviscid limit: Any L^{2} weak limit of decent regularizations of SQG converge to weak solutions of SQG.

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG
- Inviscid limit: Any L^{2} weak limit of decent regularizations of SQG converge to weak solutions of SQG.
- Construction of global interior Lipschitz solutions: good approximations

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG
- Inviscid limit: Any L^{2} weak limit of decent regularizations of SQG converge to weak solutions of SQG.
- Construction of global interior Lipschitz solutions: good approximations

$$
u_{\tau}(x, t)=\nabla^{\perp} \int_{\tau}^{\infty} s^{-\frac{1}{2}} e^{s \Delta} \theta(x, t) d s, \quad \tau>0
$$

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG
- Inviscid limit: Any L^{2} weak limit of decent regularizations of SQG converge to weak solutions of SQG.
- Construction of global interior Lipschitz solutions: good approximations

$$
u_{\tau}(x, t)=\nabla^{\perp} \int_{\tau}^{\infty} s^{-\frac{1}{2}} e^{s \Delta} \theta(x, t) d s, \quad \tau>0
$$

In preparation.

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG
- Inviscid limit: Any L^{2} weak limit of decent regularizations of SQG converge to weak solutions of SQG.
- Construction of global interior Lipschitz solutions: good approximations

$$
u_{\tau}(x, t)=\nabla^{\perp} \int_{\tau}^{\infty} s^{-\frac{1}{2}} e^{s \Delta} \theta(x, t) d s, \quad \tau>0 .
$$

In preparation.

- Uniqueness

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG
- Inviscid limit: Any L^{2} weak limit of decent regularizations of SQG converge to weak solutions of SQG.
- Construction of global interior Lipschitz solutions: good approximations

$$
u_{\tau}(x, t)=\nabla^{\perp} \int_{\tau}^{\infty} s^{-\frac{1}{2}} e^{s \Delta} \theta(x, t) d s, \quad \tau>0
$$

In preparation.

- Uniqueness?

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG
- Inviscid limit: Any L^{2} weak limit of decent regularizations of SQG converge to weak solutions of SQG.
- Construction of global interior Lipschitz solutions: good approximations

$$
u_{\tau}(x, t)=\nabla^{\perp} \int_{\tau}^{\infty} s^{-\frac{1}{2}} e^{s \Delta} \theta(x, t) d s, \quad \tau>0 .
$$

In preparation.

- Uniqueness?
- Uniform gradient bounds up to the boundary

Conclusions and Outlook

- Global interior regularity a priori bounds for critical SQG
- Inviscid limit: Any L^{2} weak limit of decent regularizations of SQG converge to weak solutions of SQG.
- Construction of global interior Lipschitz solutions: good approximations

$$
u_{\tau}(x, t)=\nabla^{\perp} \int_{\tau}^{\infty} s^{-\frac{1}{2}} e^{s \Delta} \theta(x, t) d s, \quad \tau>0 .
$$

In preparation.

- Uniqueness?
- Uniform gradient bounds up to the boundary?

[^0]: Theorem
 (C, Ignatova, Nguyen) Let $T>0$ and let $\theta_{k}(x, t), 0 \leq t \leq T$ be a sequence of solutions of critical SQG with "viscosities" $\nu_{k} \rightarrow 0$ and initial data uniformly bounded in $L^{2}(\Omega)$. Then the limit of any weakly L^{2} convergent subsequence is a weak solution of inviscid SQG.

