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SQG

Active scalar

∂tθ + u · ∇θ = 0

θ = θ(x , t),

u = ∇⊥(−∆)−
1
2 θ

in R2. Hamiltonian H =
´
θ(−∆)−

1
2 θdx . Kinetic energy

´
|u|2dx

conserved.
∇⊥θ like vorticity in 3D Euler: level sets of theta are carried by the
flow, tangent field stretched:

(∂t + u · ∇)(∇⊥θ) = (∇u)∇⊥θ

Blow up problem open: 3D Euler, 2D SQG, 2D Boussinesq, 2D
incompressible porous medium, 2D Oldroyd B. Similar.
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Numerical results

SQG– geophysical origin: Charney.

Held, Swanson
C-Majda-Tabak: analogies to 3D Euler. Hyperbolic saddle blow up
prediction based on numerics. Ohkitani and Yamada: same data,
different extrapolation: no blow up.
Calculations up to time 7.
Diego Cordoba: no blow up, under assumption of hyperbolic saddle.
C-Lai-Sharma-Tseng-Wu. Parallel computation, cluster of 128
machines, well resolved for long time. Same initial data.
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Weak solutions, whole space

Weak L2 solutions known for SQG (Resnick, ’95), but not for 3D
Euler. The reason is structural not dimensional.

∂tθ + u · ∇θ = 0, u = R⊥θ.

For periodic θ =
∑

j∈Z2 θ̂(j)ei(j·x), infinite ODE

dθ
dt

= N(θ, θ).

Weak continuity:

‖(−∆)−1 [N(θ1, θ1)− N(θ2, θ2)] ‖w ≤
C
{
‖θ1 − θ2‖w

(
1 + log+ ‖θ1 − θ2‖w

)}
(‖θ1‖L2 + ‖θ2‖L2 )

with ‖f‖w = supj∈Z2

∣∣∣̂f (j)
∣∣∣. Quasi-Lipschitz, with loss of two

derivatives. A commutator structure.
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Critical Dissipative SQG

{
∂tθ + u · ∇θ + Λθ = 0,
u = R⊥θ

Λ = (−∆)
1
2 , R = ∇Λ−1

In Fourier:
Λ̂θ(k) = |k |θ̂(k), R̂θ(k) =

ik
|k |
θ̂(k).

I transport + nonlocal diffusion ⇒ L∞ is invariant
I L∞ not good for CZ operators
I quasilinear, critical in the sense of Goldilocks: easy for Λs, s > 1,

hard for s < 1.)



Critical Dissipative SQG

{
∂tθ + u · ∇θ + Λθ = 0,
u = R⊥θ

Λ = (−∆)
1
2 , R = ∇Λ−1

In Fourier:
Λ̂θ(k) = |k |θ̂(k), R̂θ(k) =

ik
|k |
θ̂(k).

I transport + nonlocal diffusion ⇒ L∞ is invariant
I L∞ not good for CZ operators
I quasilinear, critical in the sense of Goldilocks: easy for Λs, s > 1,

hard for s < 1.)



Critical Dissipative SQG

{
∂tθ + u · ∇θ + Λθ = 0,
u = R⊥θ

Λ = (−∆)
1
2 , R = ∇Λ−1

In Fourier:
Λ̂θ(k) = |k |θ̂(k), R̂θ(k) =

ik
|k |
θ̂(k).

I transport + nonlocal diffusion ⇒ L∞ is invariant
I L∞ not good for CZ operators
I quasilinear, critical in the sense of Goldilocks: easy for Λs, s > 1,

hard for s < 1.)



Critical Dissipative SQG

{
∂tθ + u · ∇θ + Λθ = 0,
u = R⊥θ

Λ = (−∆)
1
2 , R = ∇Λ−1

In Fourier:
Λ̂θ(k) = |k |θ̂(k), R̂θ(k) =

ik
|k |
θ̂(k).

I transport + nonlocal diffusion ⇒ L∞ is invariant

I L∞ not good for CZ operators
I quasilinear, critical in the sense of Goldilocks: easy for Λs, s > 1,

hard for s < 1.)



Critical Dissipative SQG

{
∂tθ + u · ∇θ + Λθ = 0,
u = R⊥θ

Λ = (−∆)
1
2 , R = ∇Λ−1

In Fourier:
Λ̂θ(k) = |k |θ̂(k), R̂θ(k) =

ik
|k |
θ̂(k).

I transport + nonlocal diffusion ⇒ L∞ is invariant
I L∞ not good for CZ operators

I quasilinear, critical in the sense of Goldilocks: easy for Λs, s > 1,
hard for s < 1.)



Critical Dissipative SQG

{
∂tθ + u · ∇θ + Λθ = 0,
u = R⊥θ

Λ = (−∆)
1
2 , R = ∇Λ−1

In Fourier:
Λ̂θ(k) = |k |θ̂(k), R̂θ(k) =

ik
|k |
θ̂(k).

I transport + nonlocal diffusion ⇒ L∞ is invariant
I L∞ not good for CZ operators
I quasilinear, critical in the sense of Goldilocks

: easy for Λs, s > 1,
hard for s < 1.)



Critical Dissipative SQG

{
∂tθ + u · ∇θ + Λθ = 0,
u = R⊥θ

Λ = (−∆)
1
2 , R = ∇Λ−1

In Fourier:
Λ̂θ(k) = |k |θ̂(k), R̂θ(k) =

ik
|k |
θ̂(k).

I transport + nonlocal diffusion ⇒ L∞ is invariant
I L∞ not good for CZ operators
I quasilinear, critical in the sense of Goldilocks: easy for Λs, s > 1,

hard for s < 1.)



Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C =
small data in L∞.

Large data: many methods:
1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of
continuity. adequate h(r) so that

|θ0(x)− θ0(y)| < h(|x − y |)⇒ |θ(x , t)− θ(y , t)| < h(|x − y |)

2. Caffarelli-Vasseur: de Giorgi strategy: from L2 to L∞, from L∞ to
Cα, from Cα to C∞.
3. Kiselev-Nazarov: duality method, co-evolving molecules.
4. C-Vicol: nonlinear maximum principle, stability of the “only small
shocks” condition
5. C-Tarfulea-Vicol: nonlinear maximum principle, small Hölder
exponent. we’ll explain this one
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exponent. we’ll explain this one



Regularity and Uniqueness

Regularity and uniqueness: with critical dissipation: Cordoba-Wu-C =
small data in L∞. Large data: many methods:
1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus of
continuity. adequate h(r) so that

|θ0(x)− θ0(y)| < h(|x − y |)⇒ |θ(x , t)− θ(y , t)| < h(|x − y |)

2. Caffarelli-Vasseur: de Giorgi strategy: from L2 to L∞, from L∞ to
Cα, from Cα to C∞.
3. Kiselev-Nazarov: duality method, co-evolving molecules.
4. C-Vicol: nonlinear maximum principle, stability of the “only small
shocks” condition

5. C-Tarfulea-Vicol: nonlinear maximum principle, small Hölder
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what’s going on, whole space

θ bounded in L∞.

The stretching equation

(∂t + u · ∇+ Λ)∇⊥θ = (∇u)∇⊥θ.

Multiply by ∇⊥θ to have positive quantities:

1
2

(∂t + u · ∇+ Λ)q2 + D(q) = Q

for q2 = |∇⊥θ|2, with

Q = (∇u)∇⊥θ · ∇⊥θ ≤ |∇u|q2.

|∇u| ∼ q: Q is cubic. Nonlinear lower bound ! (Vicol, C)

D(q) = qΛq − 1
2

Λ
(
q2) ≥ q3

‖θ‖L∞
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(∂t + u · ∇+ Λ)q2 + D(q) = Q

for q2 = |∇⊥θ|2, with
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But wait

I Constants matter

I ∇u = R⊥(∇θ) fails to be bounded in L∞ by the L∞ norm of ∇⊥θ

What works for large data:
I Any Cα with α > 0 implies C∞. Due to criticality. More

generally, if the equation has a dissipation of order s ≤ 1 and θ is
bounded in Cα with α > 1− s, then the solution is smooth.(Wu,
C).

I Smallness of α: The term corresponding to Q in the finite
difference version of the argument has a small (α) prefactor and
it is dominated by the term corresponding to D(q)
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In this talk: SQG in Bounded Domains

Main issues:
I No translation invariance
I Kernels not explicit
I Boundary supercriticality (commutators more expensive than

gain from dissipation).
Main results:

I Nonlinear lower bounds ( nonlinear max principle) (Ignatova, C)
I Commutator estimates (Ignatova, C, and H.Q. Nguen, C)
I Global existence of solutions for critical dissipative SQG: global

interior Lipschitz bounds (Ignatova, C)
I Global L2 weak solutions for inviscid SQG (H.Q. Nguyen, C)
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Critical SQG in bounded domains

∂tθ + (R⊥D θ) · ∇θ + ΛDθ = 0

with RD = ∇Λ−1
D . Ω ⊂ Rd bounded domain with smooth boundary.

ΛD = square root of Dirichlet Laplacian.

Theorem
(C, Ignatova) Let θ(x , t) be a smooth solution of critical SQG in the
smooth bounded domain Ω. There exists 0 < α < 1 depending only
on ‖θ0‖L∞(Ω) and Ω, and a constant Γ > 0 depending only on the
domain Ω (in particular: not on T ) such that

sup
0≤t<T

‖θ(t)‖Cα(Ω) ≤ Γ‖θ0‖Cα(Ω).

Moreover,

sup
x∈Ω,0≤t<T

d(x)|∇xθ(x , t)| ≤ Γ1

[
sup
x∈Ω

d(x)|∇xθ0(x)|+ P
(
‖θ0‖L∞(Ω)

)]
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Elements of the proof

[f ]α = sup
x∈Ω

(d(x))α

(
sup

h 6=0,|h|<d(x)

|f (x + h)− f (x)|
|h|α

)
<∞.

d(x) = dist(x , ∂Ω)). Norm in Cα(Ω) (interior)

‖f‖Cα = ‖f‖L∞(Ω) + [f ]α.

I Gaussian bounds for heat kernel; cancellation due to translation
invariance effective for small time.

I Nonlinear maximum principle (lower bound for ΛD) giving
smoothing and a strong boundary repulsion damping effect.

I Good cutoff χ` and bound for the commutator [δh,ΛD] away from
boundary; (the most expensive item, fighting boundary repulsion)

I Finite difference bounds for Riesz transforms using the nonlinear
max principle bound in its finite difference variant.
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Basics in bounded domains
I Ω ⊂ Rd open, bounded, smooth boundary
I −∆ Laplacian operator with homogeneous Dirichlet boundary

conditions
I wj are L2(Ω) - normalized eigenfunctions, λj corresponding

eigenvalues counted with their multiplicities

−∆wj = λjwj

I 0 < λ1 ≤ · · · ≤ λj →∞
I −∆ positive self-adjoint operator in L2 with domain

D(−∆) = H2(Ω) ∩ H1
0 (Ω)

I The ground state is positive and

c0d(x) ≤ w1(x) ≤ C0d(x)

for all x ∈ Ω, where

d(x) = dist(x , ∂Ω)



Fractional powers in terms of heat kernel

(−∆)αf =
∞∑
j=1

λαj fjwj

fj =
´

Ω
f (y)wj (y) dy

ΛD = (−∆)
1
2

D(ΛD) = H1
0 (Ω).

Λ2α
D f (x) = ((−∆)αf )(x) = cα

ˆ ∞
0

[f (x)− e−t∆f (x)]t−1−α dt

for f ∈ D((−∆)α).

λα = cα
ˆ ∞

0
(1− e−tλ)t−1−α dt
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Gaussian bounds for the heat kernel

(et∆f )(x) =

ˆ
Ω

HD(t , x , y)f (y)dy

Davies ’87, Zhang ’02, ’06: There exists a time T > 0 depending on
the domain Ω and constants c, C, k , K , depending on T and Ω such
that

min
(

w1(x)
|x−y| ,1

)
min

(
w1(y)
|x−y| ,1

)
t−

d
2 e−

|x−y|2
kt ≤ HD(t , x , y)

≤ C min
(

w1(x)
|x−y| ,1

)
min

(
w1(y)
|x−y| ,1

)
t−

d
2 e−

|x−y|2
Kt

holds for all 0 ≤ t ≤ T .

|∇xHD(t , x , y)|
HD(t , x , y)

≤ C

{ 1
d(x) , if

√
t ≥ d(x),

1√
t

(
1 + |x−y|√

t

)
, if
√

t ≤ d(x)

holds for all 0 ≤ t ≤ T . Interchange x and y:

∂β1 HD(t , y , x) = ∂β2 HD(t , x , y) =
∞∑
j=1

e−tλj∂βy wj (y)wj (x).
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Additional bounds; translation invariance effect

|∇x∇xHD(x , y , t)| ≤ Ct−1− d
2 e−

|x−y|2

K̃t

holds for t ≤ cd(x)2 and 0 < t ≤ T .

Important additional bounds we
need are

|(∇x +∇y )HD(x , y , t)| ≤ Ct−
d+1

2 e−
d(x)2

K̃t

and
|∇x (∇x +∇y )HD(x , y , t)| ≤ Ct−

d+2
2 e−

d(x)2

K̃t

valid for t ≤ cd(x)2. nonsingular at x = y ! These bounds reflect
the fact that translation invariance is remembered in the solution of
the heat equation with Dirichlet boundary data for short time, away
from the boundary. They are essential in the proof of bounds for
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The convex damping inequality

Proposition
(C, Ignatova) Let Ω be a bounded domain with smooth boundary, let
0 < s < 2. There exists a constant C depending on the domain and
on s such that for every Φ, a C2 convex function satisfying Φ(0) = 0,
and every f ∈ C∞0 (Ω)

Φ′(f )Λs
Df − Λs

D(Φ(f )) ≥ C
d(x)s (f (x)Φ′(f (x))− Φ(f (x)))

holds pointwise in Ω.
This generalizes the Córdoba-Córdoba inequality from Rd

(d(x) =∞). Example

D(f ) = f ΛDf − 1
2

ΛDf 2 ≥ C
d(x)

f 2(x)

Dramatically different from Rd !
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This generalizes the Córdoba-Córdoba inequality from Rd

(d(x) =∞).

Example

D(f ) = f ΛDf − 1
2

ΛDf 2 ≥ C
d(x)

f 2(x)

Dramatically different from Rd !



The convex damping inequality

Proposition
(C, Ignatova) Let Ω be a bounded domain with smooth boundary, let
0 < s < 2. There exists a constant C depending on the domain and
on s such that for every Φ, a C2 convex function satisfying Φ(0) = 0,
and every f ∈ C∞0 (Ω)

Φ′(f )Λs
Df − Λs

D(Φ(f )) ≥ C
d(x)s (f (x)Φ′(f (x))− Φ(f (x)))

holds pointwise in Ω.
This generalizes the Córdoba-Córdoba inequality from Rd

(d(x) =∞). Example

D(f ) = f ΛDf − 1
2

ΛDf 2 ≥ C
d(x)

f 2(x)

Dramatically different from Rd !



The convex damping inequality

Proposition
(C, Ignatova) Let Ω be a bounded domain with smooth boundary, let
0 < s < 2. There exists a constant C depending on the domain and
on s such that for every Φ, a C2 convex function satisfying Φ(0) = 0,
and every f ∈ C∞0 (Ω)

Φ′(f )Λs
Df − Λs

D(Φ(f )) ≥ C
d(x)s (f (x)Φ′(f (x))− Φ(f (x)))

holds pointwise in Ω.
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The nonlinear bound for derivatives

Theorem
(C, I) Let f ∈ L∞(Ω) ∩ D(Λs

D), 0 ≤ s < 2. Assume that f = ∂q with
q ∈ L∞(Ω) and ∂ a first order derivative. Then there exist constants c,
C depending on Ω and s such that

f Λs
Df − 1

2
Λs

Df 2 ≥ c‖q‖−s
L∞ |fd |

2+s

holds pointwise in Ω, with

|fd (x)| =

{
|f (x)| if |f (x)| ≥ C‖q‖L∞(Ω)

1
d(x) ,

0 if |f (x)| ≤ C‖q‖L∞(Ω)
1

d(x) ,

Proof: nontrivial, uses precise bounds on the heat kernel and

f Λs
Df − 1

2
Λs

Df 2 ≥ cs

2

ˆ ∞
0

t−1− s
2 dt
ˆ

Ω

HD(t , x , y)(f (x)− f (y))2dy
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Good cutoff

Lemma
(C,I) Let Ω be a bounded domain with C2 boundary. For ` > 0 small
enough (depending on Ω) there exist cutoff functions χ` = χ with the
properties: 0 ≤ χ ≤ 1, χ(y) = 0 if d(y) ≤ `

4 , χ(y) = 1 for d(y) ≥ `
2 ,

|∇kχ| ≤ C`−k with C independent of ` and
ˆ

Ω

(1− χ(y))

|x − y |d+j dy ≤ C
1

d(x)j

and ˆ
Ω

|∇χ(y)| 1
|x − y |d

≤ C
1

d(x)

hold for j ≥ 0 and d(x) ≥ `. We will refer to such χ as a “good cutoff”.

Useful because of the Gaussian bounds on the heat kernel. Makes
work in Ω look like work in half-space, where χ` = χ1( xd

` ), without
changing coordinates.
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Nonlinear bound, finite differences

Theorem
(C,I) Let Ω be a bounded domain with smooth boundary. Let
χ ∈ C∞0 (Ω) be a good cutoff with scale ` > 0 and let

f (x) = χ(x)(δhq(x)) = χ(x)(q(x + h)− q(x))

with q ∈ L∞(Ω) ∩ H1
0 (Ω). Then

D(f )(x) = (f ΛDf )(x)− 1
2

(ΛDf 2)(x) ≥ γ1|h|−1 |fd (x)|3

‖q‖L∞
+ γ1

f 2(x)

d(x)

holds a.e. pointwise in Ω when |h| ≤ `
16 , and d(x) ≥ ` with

|fd (x)| = |f (x)|, if |f (x)| ≥ M‖q‖L∞(Ω)
|h|

d(x)
.



Commutator

Let χ be a good cutoff.

Lemma
(C,I) There exists a constant Γ0 such that the commutator

Ch(θ) = χδhΛDθ − ΛD(χδhθ)

obeys

|Ch(θ)(x)| ≤ Γ0
|h|

d(x)2 ‖θ‖L∞(Ω)

for d(x) ≥ `, |h| ≤ `
16 .



Finite difference of Riesz transform

Lemma
(C,I) Let χ be a good cutoff, and let u be defined by

u = R⊥D θ.

Then

|δhu(x)| ≤ C
(√

ρD(f )(x) + ‖θ‖L∞

(
|h|

d(x)
+
|h|
ρ

)
+ |δhθ(x)|

)
holds for d(x) ≥ `, ρ ≤ cd(x), f = χδhθ and with C a constant

depending on Ω.

This gives a bound on |h|−1|δhu(x)| which costs D(f ).
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Idea of proof of Hölder bound

Good cutoff, and equation for δhθ imply:

1
2

Lχ (δhθ)2 + D(f ) + (δhθ)Ch(θ) = 0

with
Lχg = ∂tg + u · ∇xg + δhu · ∇hg + ΛD(χ2g).

and
D(f ) ≥ γ1|h|−1‖θ‖−1

L∞ |(δhθ)d |3 + γ1(d(x))−1|δhθ|2

Multiply by |h|−2α with ε = α‖θ0‖L∞ small. Obtain:

Lχ

(
δhθ(x)2

|h|2α

)
+

γ1

4d(x)

(
δhθ(x)2

|h|2α
− Γ1`

−2α‖θ‖2
L∞

)
≤ 0.
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Inviscid global weak solutions, bounded domains

Theorem
(C, Q.H. Nguyen.) Let θ0 ∈ L2(Ω). There exists a weak solution of
inviscid SQG

∂tθ + R⊥D θ · ∇θ = 0

with ψ = Λ−1
D θ ∈ C([0,∞),H1−ε

0 (Ω)) for any 0 < ε < 1. The
Hamiltonian ˆ

Ω

θ(t)Λ−1
D θ(t)dx

is conserved in time, and the L2(Ω) norm of θ(t) is nonincreasing in
time.

Theorem
(C, Ignatova, Nguyen) Let T > 0 and let θk (x , t), 0 ≤ t ≤ T be a
sequence of solutions of critical SQG with “viscosities” νk → 0 and
initial data uniformly bounded in L2(Ω). Then the limit of any weakly
L2 convergent subsequence is a weak solution of inviscid SQG.
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Elements of Proof
Weak continuity from commutator structure (adapted for bounded
domains): φ test function, ψ = Λ−1

D θ:
´

Ω
(R⊥D θ · ∇θ)φdx

= − 1
2

´
Ω
ψ[ΛD,∇⊥]ψ · ∇φdx + 1

2

´
Ω
∇⊥ψ · [ΛD,∇φ]ψdx

Together with commutator estimates

Theorem
(Ignatova, C) Let χ ∈ B(Ω) with B(Ω) = W 2,∞(Ω) ∩W 1,∞(Ω) if d ≥ 3,
and B(Ω) = W 2,p(Ω) with p > 2 if d = 2. There exists a constant
C = C(d ,p,Ω) such that

‖Λ
1
2
D[ΛD, χ]ψ‖L2(Ω) ≤ C‖χ‖B(Ω)‖Λ

1
2
Dψ‖L2(Ω).

Theorem
(Ignatova, Nguyen, C.) For 1 ≤ p ≤ ∞, 0 < s < 2, there exists C such
that for all x ∈ Ω

|[Λs
D,∇]ψ(x)| ≤ Cd(x)−1−s− d

p ‖ψ‖Lp(Ω)
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Conclusions and Outlook

I Global interior regularity a priori bounds for critical SQG

I Inviscid limit: Any L2 weak limit of decent regularizations of SQG
converge to weak solutions of SQG.

I Construction of global interior Lipschitz solutions: good
approximations

uτ (x , t) = ∇⊥
ˆ ∞
τ

s−
1
2 es∆θ(x , t)ds, τ > 0.

In preparation.
I Uniqueness ?
I Uniform gradient bounds up to the boundary?
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