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The fractional heat equation

The fractional heat equation reads for s ∈ (0, 1):{
∂tρ = −

(
−∆

)s
ρ (t, x) ∈ R+ × Rd

ρ(0, x) = ρin(x) x ∈ Rd

Underlying stochastic process: 2s-stable symmetric Lévy process.
The fractional Laplacian can be defined as a singular integral

(
−∆

)s
ρ(x) = cd ,sP.V .

∫
Rd

ρ(x)− ρ(y)
|x − y |d+2s dy .
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The kinetic model
f (t, ·, ·) is the probability density of a cloud of particles, we consider for its
evolution a linear kinetic model

∂t f + v · ∇x f = L(f )

where L is a linear collision operator. We will consider either the fractional
Fokker-Planck operator:

L(f ) := ∇v · (vf )−
(
−∆v

)s f

whose velocity equilibrium distribution F is a heavy tailed distribution

F (v) ∼
|v |≫1

1

|v |d+2s .

Or the Linear Relaxation operator with the same velocity equilibrium:

L(f ) = ρf F − f with ρf =

∫
Rd

f dv
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Outline of the moment method in Rd

1) Anomalous rescaling: using the Knudsen number ε{
ε2s∂t f ε + εv · ∇x f ε = L(fε)
f ε(0, x , v) = fin(x , v)

2) A priori estimate: control the quadratic entropy of f ε to show

f ε ⇀
ε→0

ρ(t, x)F (v) weakly in L∞([0,T ); L2
F−1(v)(R

d × Rd)).

Note that ρ is actually the limit of the macroscopic densities

ρε :=

∫
Rd

fε dv ⇀
ε→0

ρ(t, x) weakly in L∞([0,T ); L2(Rd)).
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Outline of the moment method in Rd

3) Auxiliary problem: fε is a distributional solution of the kinetic model,
i.e. for all ϕ ∈ D([0,+∞)× Rd × Rd):∫∫∫

fε
(
ε2s∂tϕ+ εv · ∇xϕ− L∗ϕ

)
dµ+ ε2s

∫∫
finϕdx dv = 0

From ψ ∈ D([0,T )×Rd) construct a test function ϕε as a solution to:
for fractional Fokker-Planck:{

εv · ∇xϕε − v · ∇vϕε = 0

ϕε(t, x , v = 0) = ψ(t, x)

and for Linear Relaxation

ϕε − εv · ∇xϕ
ε = ψ
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Outline of the moment method in Rd

4) Take the limit in the weak formulation of the kinetic equation.∫∫∫
fε
(
ε2s∂tϕε + εv · ∇xϕε − L∗ϕε

)
dt dx dv

+ ε2s
∫∫

fin(x , v)ϕε(0, x , v)dx dv = 0

becomes, in the limit as ε goes to 0:∫∫
ρ
(
∂tψ −

(
−∆

)s
ψ
)
dt dx +

∫
ρinψ(0, x)dx = 0

which is the variational formulation of the fractional heat equation.
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Kinetic equation on a bounded domain
Consider Ω a smooth bounded domain and define the oriented set
Σ± :=

{
(x , v) ∈ ∂Ω× Rd : ±v · n(x) > 0

}
. Boundary conditions for

kinetic equations take the form of a balance between the trace of f over
Σ+ and Σ−:

▶ Absorption (or zero inflow) boundary condition

γ−f (t, x , v) = 0

▶ Specular reflection boundary condition

γ−f (t, x , v) = γ+f
(

t, x , v − 2
(
v · n(x)

)
n(x)

)
▶ Diffusive boundary condition (s > 1/2)

γ−f (t, x , v) = c0F (v)
∫

w ·n(x)>0
γ+f (t, x ,w)|w · n(x)|dw
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Absorption boundary condition

If we consider the absorption boundary condition γ−f (t, x , v) = 0, we need
to add the associated boundary condition to the auxiliary problem which
becomes, in the fractional Fokker-Planck case:

εv · ∇xϕε − v · ∇vϕε = 0 in R+Ω× Rd

ϕε(t, x , v = 0) = ψ(t, x) in R+ × Ω

γ+ϕε(t, x , v) = 0 on R+ × Σ+.

If Ω is convex and ψ ∈ D([0,+∞)× Ω) we see that a solution to this
auxiliary problem is

ϕε(t, x , v) = ψ(t, x + εv).
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Anomalous diffusion limit, non-local Dirichlet condition

If we consider the absorption boundary condition γ−f (t, x , v) = 0 then we
get:

Theorem (C.(18))
Let Ω be convex domain. The limit ρ of f ε is the unique weak solution to

∂tρ+
(
−∆

)s
ρ = 0 in (0,T )× Ω,

ρ(0, x) = ρin(x) in Ω,

ρ(t, x) = 0 in (0,T )×
(
Rd \ Ω

)
.

other reference: Aceves-Sanchez, Schmeiser (17): Linear Boltzmann case
in a non-convex domain.
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Specular reflection boundary condition

With specular reflections, the auxiliary problem becomes, in the fractional
Fokker-Planck case:

εv · ∇xϕε − v · ∇vϕε = 0 in R+Ω× Rd

ϕε(t, x , v = 0) = ψ(t, x) in R+ × Ω

γ+ϕε(t, x , v) = γ−ϕε(t, x ,Rxv) on R+ × Σ+.

This problem is intimately linked with the free transport equation:
∂t f + v · ∇x f = 0 in R+Ω× Rd

γ+f (t, x , v) = γ−f (t, x ,Rxv) on R+ × Σ+.

f (t = 0, x , v) = fin(x , v) in Ω× Rd
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Flow of free transport

Let Ω be a convex domain and define η : Ω× Rd 7→ Ω̄ the associated flow
of free transport in the sense that for x ∈ Ω and v ∈ Rd : η(x , v) is the end
point of the trajectory of free transport starts at x , is specularly reflected
upon hitting the boundary, and stops at "time 1", when the length of the
trajectory is |v |.
Then, we can construct of solution to the auxiliary problem as

ϕε(t, x .v) = ψ
(
t, η(x , εv)

)
.

Note that is the trajectory never hits the boundary, then η(x , εv) = x + εv
and we recover the solution of the auxiliary problem in the whole space.
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Anomalous diffusion limit, specular reflection condition

Theorem (C. (18), fVFP case)
If Ω is a half-space or a ball in Rd then the limit ρ of f ε is the unique weak
solution to {

∂tρ+ (−∆)s
SRρ = 0 in (0,T )× Ω

ρ(0, x) = ρin(x)

where

(−∆)s
SRψ(x) := cd ,sP.V .

∫
Rd

ψ(x)− ψ
(
η(x ,w)

)
|w |d+2s dw

with η the flow of the free transport equation with specular reflection.
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Diffusive boundary condition
With the diffusive boundary condition, the auxiliary problem becomes, in
the linear relaxation case:

ϕε − εv · ∇xϕ
ε = ψ(t, x)

γ+ϕε(t, x , v) = c0
∫

w ·n(x)<0
γ−ϕε(t, x ,w)F (w)|w · n(x)|dw

In the whole space, the transport part of this problem can be solved by
inverting the operator Id − εv · ∇x :

ϕε(t, x , v) =
∫ +∞

0
e−zψ(t, x + εzv)dz .

Combined with the diffusive boundary, this leads to the following condition
on ψ on the boundary: for x ∈ ∂Ω:∫

w ·n<0

∫ +∞

0
e−zF (w)

[
ψ(x + εzw)− ψ(x)

]
|w · n|dz dw = 0
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A non-local gradient of order 2s − 1

In order to write the limit problem for the diffusive boundary condition we
define the non-local gradient D2s−1, with s > 1/2, as

D2s−1[u](x) := C
∫
Ω
(y − x) · ∇u(y) y − x

|y − x |d+2s dy

where the constant C depends on F and ν.
Note that if d = 1 and Ω = R then

D2s−1u(x) = C
∫
R

u′(y)
|x − y |d−2(1−s) dy = C̃(−∆)−(1−s)u′(x).
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Anomalous diffusion limit, diffusive boundary condition
If we consider the diffusive boundary condition
γ−f (t, x , v) = c0F (v)

∫
w ·n(x)>0 γ+f (t, x ,w)|w · n(x)|dw with s > 1/2

then we get:

Theorem (C., Mellet, Puel (18), Linear Boltzmann case)
If Ω is a half-space then the limit ρ of f ε is a distributional solution to

∂tρ− divD2s−1[ρ] = 0 in (0,+∞)× Ω,

D2s−1[ρ] · n(x) = 0 on (0,+∞)× ∂Ω,

ρ(0, x) = ρin(x) in Ω.

Note that the diffusion operator L := divD2s−1 can be written as

L[ρ](x) = cF ,νP.V .
∫
Ω
∇ρ(y) · y − x

|y − x |d+2s dy .
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Thank you for your attention !
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