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Background

Given a bounded smooth set E ⊆ Rd , we can define its s-fractional
perimeter to be

Ps(E ) := [1E ]Ẇ s,1 = s(1− s)

∫
Rd

∫
Rd

|1E (X )− 1E (Y )|
|X − Y |d+s

dXdY

= s(1− s)

∫
Rd

∫
Rd

1E (X )1CE (Y )

|X − Y |d+s
dXdY .

(1)

for 0 < s < 1. The s-fractional perimeter interpolates between our
notions of perimeter and Lebesgue measure, with

Ps(E ) ≤ C |E |1−sP(E )s . (2)
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Background

If E locally minimizes the s-fractional perimeter in some domain Ω,
then we call E an s-minimal surface. It then solves the
Euler-Lagrange equation

Hs(X ,E ) = s(1−s)P.V .

∫
Rd

1CE (Y )− 1E (Y )

|X − Y |d+s
dY = 0, X ∈ ∂E∩Ω.

(3)
where Hs is the s-fractional mean curvature. As s → 1, Ps ,Hs

converge to classical perimeter and mean curvature.
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Background

Given a smooth set E0 ⊆ Rd , we can define its s-fractional mean
curvature flow by

∂tX (t) = −Hs(X (t),Et)ν(X (t)), X (t) ∈ ∂Et . (4)

In the case that ∂Et = graph(u(t, ·) : Rd−1 → R), then u solves

∂tu(t, x)

s(1− s)
√

1 + |∇u|2
=

∫
Rd−1

u(x + h)− u(x)

|h|d+s
F

(
u(x + h)− u(x)

|h|

)
dh,

(5)

where F (L) = 1
L

L∫
−L

1
(1+z2)(d+s)/2 dz . Thus

F (||∇xu||L∞) ≤ F

(
u(t, x + h)− u(t, x)

|h|

)
≤ 2, (6)

so this is a nonlinear parabolic equation of order 1 + s, with the
ellipticity constant depending on the Lipschitz constant of u.
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Background

In the nongraphical case, fractional mean curvature flow is not
defined for all time. For convex sets, Et → ∅ in finite time.

Ex: E0 = B(0,R), ⇒ Et = B(0, (R1+s − cd ,st)
1

1+s ). (7)

In the nonconvex case, smooth initial data can develop singularities
in finite time, after which the classical equation for the flow no
longer makes sense. But we can define weak, viscosity solutions via
the levelset method which will exist for all time.
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Viscosity Solutions

Let (E−0 , Γ0,E
+
0 ) be a triple such that E±0 are open sets, Γ0 is

closed, and all are mutually disjoint with E−0 ∪ Γ0 ∪ E+
0 = Rd . Let

U0 : Rd → R be a globally Lipschitz function with

E−0 = {U0 < 0}, Γ0 = {U0 = 0},E+
0 = {U0 > 0}. (8)

By (Imbert, 2009), there exists a unique viscosity solution
U : [0,∞)× Rd → R to the equation

∂tU(t,X ) = −Hs(X , {U(t, ·) ≥ U(t,X )})|∇XU(t,X )|, (9)

with U(0,X ) = U0(X ).
If we define the triple (E−t , Γt ,E

+
t ) by

E−t = {U(t, ·) < 0}, Γt = {U(t, ·) = 0},E+
t = {U(t, ·) > 0}, (10)

then the triple (E−t , Γt ,E
+
t ) is unique and independent of the choice

of U0. This is the viscosity solution.

Stephen Cameron



Viscosity Solutions

Let (E−0 , Γ0,E
+
0 ) be a triple such that E±0 are open sets, Γ0 is

closed, and all are mutually disjoint with E−0 ∪ Γ0 ∪ E+
0 = Rd . Let

U0 : Rd → R be a globally Lipschitz function with

E−0 = {U0 < 0}, Γ0 = {U0 = 0},E+
0 = {U0 > 0}. (8)

By (Imbert, 2009), there exists a unique viscosity solution
U : [0,∞)× Rd → R to the equation

∂tU(t,X ) = −Hs(X , {U(t, ·) ≥ U(t,X )})|∇XU(t,X )|, (9)

with U(0,X ) = U0(X ).

If we define the triple (E−t , Γt ,E
+
t ) by

E−t = {U(t, ·) < 0}, Γt = {U(t, ·) = 0},E+
t = {U(t, ·) > 0}, (10)

then the triple (E−t , Γt ,E
+
t ) is unique and independent of the choice

of U0. This is the viscosity solution.

Stephen Cameron



Viscosity Solutions

Let (E−0 , Γ0,E
+
0 ) be a triple such that E±0 are open sets, Γ0 is

closed, and all are mutually disjoint with E−0 ∪ Γ0 ∪ E+
0 = Rd . Let

U0 : Rd → R be a globally Lipschitz function with

E−0 = {U0 < 0}, Γ0 = {U0 = 0},E+
0 = {U0 > 0}. (8)

By (Imbert, 2009), there exists a unique viscosity solution
U : [0,∞)× Rd → R to the equation

∂tU(t,X ) = −Hs(X , {U(t, ·) ≥ U(t,X )})|∇XU(t,X )|, (9)

with U(0,X ) = U0(X ).
If we define the triple (E−t , Γt ,E

+
t ) by

E−t = {U(t, ·) < 0}, Γt = {U(t, ·) = 0},E+
t = {U(t, ·) > 0}, (10)

then the triple (E−t , Γt ,E
+
t ) is unique and independent of the choice

of U0. This is the viscosity solution.
Stephen Cameron



Viscosity Solutions

If t → Et is a smooth flow, then (Et , ∂Et ,Rd \ Et) is the unique
viscosity solution to the initial data (E0, ∂E0,Rd \ E0).

But if the flow develops singularities, then it’s possible the for the
viscosity solution to fatten. I.e., Γt can have a nonempty interior, in
which case Γt 6= ∂E±t .

Fattening represents the lack of uniqueness of the smooth flow
t → Et , and a sensitivity to the way that we perturb our initial data.
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Previous results for elliptic case

I (Caffarelli, Roquejoffre, Savin 2010) Generalizes classical results
to nonlocal case. Density estimate, monotonicity formula,
improvement of flatness, etc. Set of singular points has
codimension at least 2 for any s ∈ (0, 1).

I (Caffarelli, Valdinoci 2013) Set of singular points has
codimension at least 8 for s sufficiently close to 1.

I (Figalli, Valdinoci 2017) Nonlocal minimal surfaces are smooth
whenever they are locally Lipschitz, and Bernstein’s theorem
holds.

I (Cinti, Serra, Valdinoci 2018) BV estimate for stable nonlocal
minimal surfaces, with quantitative flatness results for
dimensions 2,3.

I (Davila, del Pino, Wei 2018) There exist stable s-minimal
cones in R7 for small s.
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Previous results for parabolic case

I (Imbert 2009/ Chambolle, Morini, Ponsiglione 2015) There
exist unique, viscosity solutions for all time obeying the
comparison principle.

I (Cinti, Sinestrari, Valdinoci 2018) There exists simply
connected curves in the plane which can develop singularities in
contrast to Grayson’s theorem for local mean curvature flow.

I (Cesaroni, Dipierro, Novaga, Valdinoci 2018) Smooth strictly
star-convex sets have unique flows but they can fatten if the
initial data has a Lipschitz singularity. Number of examples of
fattening/nonfattening behavior.
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Our problem

From the elliptic case, we know that “flat implies smooth.” So we
should expect that a version of that is true in the parabolic case,

Claim
Let (E−0 , Γ0,E

+
0 ) be a triple with {xd ≤ 0} ⊆ E−0 , {xd ≤ 1} ⊆ E+

0 ,
and (E−t , Γt ,E

+
t ) be the viscosity solution. Then after flowing under

s-fractional mean curvature flow for some finite, universal time Td ,s ,
∂E±t will be 1-Lipschitz graphs.

This is preliminary work, but we’ll sketch the case when the flow
t → Et is smooth. The proof of the claim for the viscosity solutions
should be posted on the arXiv in the next month.

Stephen Cameron



Our problem

From the elliptic case, we know that “flat implies smooth.” So we
should expect that a version of that is true in the parabolic case,

Claim
Let (E−0 , Γ0,E

+
0 ) be a triple with {xd ≤ 0} ⊆ E−0 , {xd ≤ 1} ⊆ E+

0 ,
and (E−t , Γt ,E

+
t ) be the viscosity solution. Then after flowing under

s-fractional mean curvature flow for some finite, universal time Td ,s ,
∂E±t will be 1-Lipschitz graphs.

This is preliminary work, but we’ll sketch the case when the flow
t → Et is smooth. The proof of the claim for the viscosity solutions
should be posted on the arXiv in the next month.

Stephen Cameron



Our problem

From the elliptic case, we know that “flat implies smooth.” So we
should expect that a version of that is true in the parabolic case,

Claim
Let (E−0 , Γ0,E

+
0 ) be a triple with {xd ≤ 0} ⊆ E−0 , {xd ≤ 1} ⊆ E+

0 ,
and (E−t , Γt ,E

+
t ) be the viscosity solution. Then after flowing under

s-fractional mean curvature flow for some finite, universal time Td ,s ,
∂E±t will be 1-Lipschitz graphs.

This is preliminary work, but we’ll sketch the case when the flow
t → Et is smooth. The proof of the claim for the viscosity solutions
should be posted on the arXiv in the next month.

Stephen Cameron



Why this is interesting

The proof is inherently nonlocal in nature, so distinct from any
previous proof in local mean curvature theory.
In fact, the claim is false for typical mean curvature, as the set

E0 = {xd ≤ 0} ∪ {1/2 ≤ xd ≤ 1},

is fixed under mean curvature flow.

This is a reflection of the fact that ∂E0 is a union of disjoint planes,
so the obstruction to regularity is multiplicity. But multiplicity is not
a possibility for fractional mean curvature flow because of its
nonlocal nature, and direct calculation shows that E0 → {xd ≤ 1/2}
in finite time for any s ∈ (0, 1).
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Inspiration

Our proof is inspired by Kiselev’s proof of eventual Holder
regulariztion for supercritical Burger’s equation.
For any α ∈ [0, 1], we define the α-Burger’s equation to be

∂tu(t, x) + u(t, x)∂xu(t, x) + (−∆)αu(t, x) = 0. (11)

For any α ≥ 1/2 (subcritical-critical case) its known that smooth
initial data has a smooth solution, but for 0 ≤ α < 1/2 smooth
initial data can become discontinuous in finite time.
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Inspiration

However, consider

∂tu(t, x) + u(t, x)∂xu(t, x) + (−∆)αu(t, x)− ε∆u(t, x) = 0,

α ∈ (0, 1/2), ε > 0.
(12)

Kiselev showed in 2011 that solutions becomes Holder continuous in
finite time with an estimate independent of ε. For the proof, he
showed that the equation propagated a family of moduli of
continuity

ω(t, r) ≈ δ(t) + Crβ,

where δ(0) > 2||u0||L∞ and δ(Tα,β) = 0. Thus the moduli of
continuity gives no new information at time t = 0, but forces the
solution to become β-Holder continuous at time t = Tα,β.
Since these moduli don’t converge to 0, its possible to apply these
more general moduli to boundaries of sets which can fold over
themselves. But then at time t = T , satisfying the modulus forces
the boundary to be graphical.
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Moduli of continuity for sets

Fix a smooth set E0 ⊆ Rd with

{xd ≤ 0} ⊆ E0 ⊆ {xd ≤ 1}.

Then by the comparison principle, the same is true for Et for all
times t.
Define the upper and lower boundaries of Et by

u(t, x) = sup{z |(x , z) ∈ ∂Et}, u(t, x) = inf{z |(x , z) ∈ ∂Et}.
(13)

If ω : [0,∞)→ [0,∞), then we say that Et has modulus ω if

u(t, x)− u(t, y) ≤ ω(|x − y |), ∀x , y ∈ Rd−1. (14)

Equivalently, Et ⊆ Et + (h, ω(|h|)) for all h ∈ Rd−1.
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Moduli of continuity for sets

If E0 has modulus of continuity ω, then by comparison principle

E0 ⊆ E0 + (h, ω(|h|)) ⇒ Et ⊆ Et + (h, ω(|h|)).

Thus Et has modulus of continuity ω as well for all time t.

Rather than just propagation, we want to show an improvement in
our modulus. We want a time dependent family

ω(t, r) : [0,∞)× [0,∞)→ [0,∞),

such that

1. ω(0, r) > 1,

2. ω(t, ·) is C 1,1, with ω(t, 0) > 0, 0 ≤ ∂rω(t, r) ≤ 1, and
∂rω(t, 0) = 0 for all t ∈ [0,T ),

3. ω(T , ·) is 1-Lipschitz with ω(T , 0) = 0,

Then proving Et has modulus ω(t, ·) for all t ∈ [0,T ] would prove
the claim.
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Breakthrough Argument

Assume that we have a smooth flow t → Et , and that
{xd ≤ 0} ⊆ E0 ⊆ {xd ≤ 1} with

lim
|x |→∞

u(0, x) = lim
|x |→∞

u(0, x) = 1/2. (15)

By comparison principle this will be true for Et for all t. Let ω(t, r)
be a time dependent family of moduli of continuity satisfying out
assumptions. Then E0 has modulus ω(0, ·), and by continuity it will
have modulus ω(t, ·) for small t.

Suppose Et loses this modulus after time t∗ ∈ (0,T ). Then
necessarily

u(t∗, x)− u(t∗, y) ≤ ω(t∗, |x − y |), ∀x , y ∈ Rd−1 (16)

If the inequality was strict for all x , y , then decay assumption on
∂Et and ω(t∗, 0) > 0 ⇒

u(t∗ + ε, x)− u(t∗ + ε, y) < ω(t∗ + ε, |x − y |), (17)

for some ε > 0 sufficiently small.
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Breakthrough Argument

Thus if Et loses modulus ω(t, ·) after time t∗, ⇒ ∃x , y ∈ Rd−1 s.t.

u(t∗, x)− u(t∗, y) = ω(t∗, |x − y |). (18)

Thus we just need to find a modulus ω s.t. this ⇒

d

dt
(u(t, x)− u(t, y))

∣∣∣∣
t=t∗

< ∂tω(t∗, |x − y |), (19)

contradicting the fact that Et had modulus ω(t, ·) for time t < t∗.
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Modulus estimates

Fix time at t = t∗. Assume that{
u(x)− u(y) ≤ ω(|x − y |),
u(ξ/2)− u(−ξ/2) = ω(|ξ|), (20)

for some modulus ω and ξ ∈ Rd−1. What can we say?

u is touched from above by ω at ξ/2 and u from below by −ω at
−ξ/2, so ⇒

∇u(ξ/2) = ∇u(−ξ/2) = ω′(|ξ|)ξ̂. (21)

Note that as ω′(0) = 0 by assumption, the statement is still true
when ξ = 0.
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Modulus estimates

The normal vector to ∂E at the point (ξ/2, u(ξ/2)) is

(−ω′(|ξ|)ξ̂, 1)√
1 + ω′(|ξ|)2

. Thus

∂tu(ξ/2) = s(1− s)
√

1 + ω′(|ξ|)2

∫
Rd−1

∫
R

1±E ( ξ2 + h, u( ξ2 ) + z)

(|h|2 + z2)(d+s)/2
dhdz

(22)
where 1±E = 1E − 1CE .

Stephen Cameron



Modulus estimates

∂t(u(ξ/2)− u(−ξ/2))

s(1− s)
√

1 + ω′(|ξ|)2
=∫

Rd−1

∫
R

1±E ( ξ2 + h, u( ξ2 ) + z)− 1±E (−ξ2 + h, u(−ξ2 ) + z)

(|h|2 + z2)(d+s)/2
dhdz

(23)

Because E has the modulus ω and u(ξ/2)− u(ξ/2) = ω(|ξ|), you
get immediately that

1±E (
ξ

2
+ h, u(

ξ

2
) + z)− 1±E (

−ξ
2

+ h, u(
−ξ
2

) + z) ≤ 0, (24)

for all (h, z) ∈ Rd−1 × R. Now we just need to quantify how often
it is negative in terms of ω.
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Modulus estimate

After some mostly straightforward bounds and rearranging integrals,
get

∂t(u(ξ/2)− u(−ξ/2))

s(1− s)
√

1 + ω′(|ξ|)2
≤ −

∫
Rd−1

(u(h)− u(h)) min{K (h ± ξ

2
)}dh

−
∫

Rd−1

(ω(|ξ|)− u(
ξ

2
+ h) + u(

−ξ
2

+ h))K (h)dh,

(25)

where

K (h) =
1

(|h|2 + ω(|h|)2)(d+s)/2
. (26)
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Modulus estimate

Rearranging terms some and using that E has modulus ω, can get
estimate purely in terms of ω

.

|ξ|/2∫
0

ω(|ξ|+ 2η) + ω(|ξ| − 2η)− 2ω(|ξ|)
(η2 + ω(0)2)(2+s)/2

dη

+

∞∫
|ξ|/2

ω(2η + |ξ|)− ω(2η − |ξ|)− 2ω(|ξ|)
(η2 + ω(0)2)(2+s)/2

dη.

(27)

With estimates out of the way, our goal is now to actually choose
our family of moduli ω(t, r) so that

1. ω(0, r) > 1,
2. ω(t, ·) is C 1,1, with ω(t, 0) > 0, 0 ≤ ∂rω(t, r) ≤ 1, and
∂rω(t, 0) = 0 for all t ∈ [0,T ),

3. ω(T , ·) is 1-Lipschitz with ω(T , 0) = 0,
4. (27)(t, |ξ|) < ∂tω(t, |ξ|) for all t ∈ (0,T )

Stephen Cameron



Modulus estimate

Rearranging terms some and using that E has modulus ω, can get
estimate purely in terms of ω

.

|ξ|/2∫
0

ω(|ξ|+ 2η) + ω(|ξ| − 2η)− 2ω(|ξ|)
(η2 + ω(0)2)(2+s)/2

dη

+

∞∫
|ξ|/2

ω(2η + |ξ|)− ω(2η − |ξ|)− 2ω(|ξ|)
(η2 + ω(0)2)(2+s)/2

dη.

(27)

With estimates out of the way, our goal is now to actually choose
our family of moduli ω(t, r) so that

1. ω(0, r) > 1,
2. ω(t, ·) is C 1,1, with ω(t, 0) > 0, 0 ≤ ∂rω(t, r) ≤ 1, and
∂rω(t, 0) = 0 for all t ∈ [0,T ),

3. ω(T , ·) is 1-Lipschitz with ω(T , 0) = 0,
4. (27)(t, |ξ|) < ∂tω(t, |ξ|) for all t ∈ (0,T )

Stephen Cameron



Our choice of modulus

Now we need to find a choice of ω(t, r). First guess might be
ω(t, r) = δ(t) + r . But, generally you need to have some strict
concavity in r in order to get estimates with this method.

Second guess might be ω(t, r) = δ(t) + r − r1+s

21+s , where exponent
1 + s was chosen for scaling reasons. But we need the modulus
ω(t, ·) to be C 1,1 in Rd−1

Cutting it off for small r and replace with a parabola, our final
choice ends up being

ω(t, r) = δ(t) +


1, 2 ≤ r

r − r1+s

21+s , cδ2 ≤ r ≤ 2,
A(δ)r2 + B(δ), 0 ≤ r ≤ cδ2

(28)

where c << 1 and A(δ),B(δ) are chosen so that ω(t, ·) is C 1.
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Our choice of modulus

With this choice for ω(t, r), its straightforward to show that

|ξ|/2∫
0

ω(t, |ξ|+ 2η) + ω(t, |ξ| − 2η)− 2ω(t, |ξ|)
(η2 + ω(t, 0)2)(2+s)/2

dη

+

∞∫
|ξ|/2

ω(t, 2η + |ξ|)− ω(t, 2η − |ξ|)− 2ω(t, |ξ|)
(η2 + ω(t, 0)2)(2+s)/2

dη . −1.

(29)

Taking δ(t) = 1− t
T for T sufficiently large, we then have that

d

dt
(u(t, x)− u(t, y))

∣∣∣∣
t=t∗

< ∂tω(t∗, |x − y |), (30)

completing the proof.
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Extending the proof to viscosity solutions

Let (E−0 , Γ0,E
+
0 ) be such that {xd ≤ 0} ⊆ E−0 , {xd ≤ 1} ⊆ E+

0 and
(E−t , Γt ,E

+
t ) be the viscosity solution.

If we knew a priori that Ld(Γt) = 0 for all times t, then we can
tweak the previous argument to work for a viscosity solution. The
indicator functions 1E−t ∪Γt

(X ), and 1E−t
(X ) are respectively

viscosity sub and super solutions to

∂tU(t,X ) = −Hs(X , {U(t, ·) ≥ U(t,X )})|∇XU(t,X )|. (31)

The difference 1E−t ∪Γt
(X )− 1E−t

(Y ) will then be a subsolution to

∂tF (t,X ,Y ) = −Hs(X , {F (t, ·,Y ) ≥ F (t,X ,Y )})|∇XF |
+ Hs(Y , {F (t,X , ·) > F (t,X ,Y )})|∇Y F |.

(32)

The test function Ω(t,X ,Y ) = ω(t, |x − y |) + (1− xd)+ + (yd)+

then encodes whether the sets E±t have modulus ω(t, ·). All our
previous calculations go through at crossing points, so long as
Ld(Γt) = 0.
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Unfortunately Γt can fatten, so we can’t guarantee it won’t have
positive measure. So we adjust. Let U0 : Rd → R be a Lipschitz
function such that

E−0 = {U0 < 0}, Γ0 = {U0 = 0},E+
0 = {U0 > 0}. (33)

and let U : [0,∞)× Rd → R to the unique viscosity solution with
initial data U0.

For any value γ ∈ R, let

Γγt = {U(t, ·) = γ}. (34)

In particular, Γ0
t = Γt . Then for all but countably many γ,

Ld+1(U−1(γ)) = 0 ⇒ Ld(Γγt ) = 0 for a.e. t. (35)

Extend the smooth argument to work for any such γ, getting that
ΓγT is a 1-Lipschitz graph for almost any γ.
Taking 0 > γ−n → 0 and 0 < γ+

n → 0, you then get that

Γγ
±
n

T → ∂E±T , (36)

so they are 1-Lipschitz graphs as well.
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Thank you
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