Emergence of exponentially weighted L^p-norms and Sobolev regularity for the Boltzmann equation

Ricardo Alonso PUC/Rio

Non standard diffusions in fluids, kinetic equations and probability *CIRM 2018*

In this talk we consider:

- Homogeneous equation without cutoff with full range of angular singularity.
- The case of Maxwell and hard potentials (the later is singular in velocity growth).
- L^p theory (including the case $p=\infty$) with exponential weights based in the L¹ and L² theories.
- Sobolev regularity with exponential weights.

The Boltzmann model

 $\partial_t f(t,v) = Q(f,f)(t,v), \qquad (t,v) \in (0,\infty) \times \mathbb{R}^d$

The collision operator

Maxwell and Hard $\gamma \ge 0$

$$Q(g,f)(v) := \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \left(g(v'_*) f(v') - g(v_*) f(v) \right) |u|^{\gamma} b(\hat{u} \cdot \sigma) \mathrm{d}\sigma \mathrm{d}v_*$$

The fractional diffusion: 0<s<1

$$\sin^{d-2}\theta b(\cos\theta) \approx b_0/\theta^{1+2s}$$
, when $\theta \approx 0$

Coercivity estimate: Importance of conservation laws and entropy

L^p estimate for the Heat equation

$$\partial_t \|f\|_p^p + \frac{4}{p'} \|\nabla f^{p/2}\|_2^2 = 0, \qquad p > 1.$$

Needs integration by parts and explicit estimation of the Dirichlet product

 $\langle \nabla f, \nabla f^{p-1} \rangle_{L^2}$

For the collision operator

In the space

$$\mathcal{U}(D_0, E_0) = \left\{ g \text{ measurable} : g \ge 0 , \int_{\mathbb{R}^d} g \, \mathrm{d}v \ge D_0 , \int_{\mathbb{R}^d} g \, (1 + |v|^2 + \ln g) \, \mathrm{d}v \le E_0 \right\}$$

we have that

$$-\left(Q(g,f)\,,\,f\right)_{L^2} \ge c_0 \|\langle v \rangle^{\gamma/2} f\|_{H^s}^2 - C \|\langle v \rangle^{\gamma/2} f\|_{H^{(-\gamma/2)^+}}^2$$

based on the fact that

$$\begin{aligned} \mathcal{C}_{\gamma}(g, f) &= \iiint_{\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{S}^{2}} b(.) |v - v_{*}|^{\gamma} g_{*}(f' - f)^{2} dv dv_{*} d\sigma, \\ &\geq c_{0}' \| \langle v \rangle^{\gamma/2} f \|_{H^{s}}^{2} - C' \| f \|_{L^{2}_{\gamma/2}}^{2} \end{aligned}$$

Important lemma for the Dirichlet product

Lemma 1. For any $\theta \ge 0$ (3) $\theta^{2/p'} - 1 \le \frac{1}{p'}(\theta^2 - 1) - \frac{1}{\max\{p, p'\}}(\theta - 1)^2, \quad p \in (1, \infty].$ In particular, in the limit $p \to 1$ it follows that $2\log \theta \le (\theta^2 - 1) - (\theta - 1)^2.$

Note that equality is achieved in estimate (3) for the case p = 2.

Simple argument...

$$\begin{split} F(v)\Big(F(v')^{p-1} - F(v)^{p-1}\Big) &= F(v)^p \left(\Big(\frac{F(v')^{p/2}}{F(v)^{p/2}}\Big)^{2/p'} - 1\Big) \\ &\leq F(v)^p \left(\frac{1}{p'}\Big(\frac{F(v')^p}{F(v)^p} - 1\Big) - \frac{1}{\max\{p,p'\}}\Big(\frac{F(v')^{p/2}}{F(v)^{p/2}} - 1\Big)^2\right) \\ &= \frac{1}{p'}\Big(F(v')^p - F(v)^p\Big) - \frac{1}{\max\{p,p'\}}\Big(F(v')^{p/2} - F(v)^{p/2}\Big)^2 \end{split}$$

Cancellation lemma

Coercivity estimate

Energy estimate for emergence of L^p norms

Proposition 1. Take $g \in \mathcal{U}(D_0, E_0)$, F sufficiently smooth, $\gamma \in [0, 1]$, $s \in (0, 1)$, and $p \in (1, \infty)$. Then,

$$\int_{\mathbb{R}^d} Q(g,F)(v) F^{p-1}(v) dv \le -\frac{c_g}{\max\{p,p'\}} \|\langle \cdot \rangle^{\gamma/2} F^{p/2} \|_{H^s}^2 + \frac{C_g}{p'} \|\langle \cdot \rangle^{\gamma/2} F^{p/2} \|_2^2,$$

where the constants c_g and C_g depend on D_0 , E_0 , d, γ , and s.

Which leads to

$$||f(t)||_p \le C_p ||\langle \cdot \rangle^2 f_0||_1 \left(\frac{1}{t^{\frac{d}{2sp'}}} + 1\right), \quad p \in (1,\infty)$$

Special case - L∞ case: A De Giorgi argument

 $F_K(v) := F(v) - K$ and $F_K^+(v) := F_K(v) \mathbf{1}_{\{F_K \ge 0\}}$

Compute

$$\begin{split} F(v) \Big(F_K(v') \mathbf{1}_{\{F'_K \ge 0\}} - F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big) \\ &= F_K(v) \Big(F_K(v') \mathbf{1}_{\{F'_K \ge 0\}} - F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big) + K \Big(F_K(v') \mathbf{1}_{\{F'_K \ge 0\}} - F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big) \\ &= F_K(v) \Big(\mathbf{1}_{\{F_K \ge 0\}} + \mathbf{1}_{\{F_K < 0\}} \Big) \Big(F_K(v') \mathbf{1}_{\{F'_K \ge 0\}} - F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big) \\ &+ K \Big(F_K(v') \mathbf{1}_{\{F'_K \ge 0\}} - F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big) \,. \end{split}$$

Note that

$$F_K(v)1_{\{F_K<0\}}\left(F_K(v')1_{\{F'_K\ge0\}}-F_K(v)1_{\{F_K\ge0\}}\right)=F_K(v)1_{\{F_K<0\}}F_K(v')1_{\{F'_K\ge0\}}\le0$$

Then,

$$\begin{split} F(v) \Big(F_K(v') \mathbf{1}_{\{F'_K \ge 0\}} - F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big) \\ & \leq F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big(F_K(v') \mathbf{1}_{\{F'_K \ge 0\}} - F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big) \\ & \quad + K \Big(F_K(v') \mathbf{1}_{\{F'_K \ge 0\}} - F_K(v) \mathbf{1}_{\{F_K \ge 0\}} \Big) \\ & = \frac{1}{2} \Big(F_K^+(v')^2 - F_K^+(v)^2 \Big) - \frac{1}{2} \Big(F_K^+(v') - F_K^+(v) \Big)^2 + K \Big(F_K^+(v') - F_K^+(v) \Big) \\ & \mathbf{L}^2 \text{ remainder} \qquad \mathbf{Coercive part} \qquad \mathbf{L}^1 \text{ remainder} \end{split}$$

This leads to

Proposition 2. Take $g \in \mathcal{U}(D_0, E_0)$, F sufficiently smooth, $\gamma \in [0, 1]$, and $s \in (0, 1)$. Then,

$$\int_{\mathbb{R}^d} Q(g,F)(v) F_K^+(v) dv \le -c_g \|\langle \cdot \rangle^{\gamma/2} F_K^+\|_{H^s}^2 + C_g \|\langle \cdot \rangle^{\gamma/2} F_K^+\|_2^2 + C_g K \|\langle \cdot \rangle^{\gamma} F_K^+\|_1,$$

where the constants c_g and C_g depend on D_0 , E_0 , d, γ , and s.

Level set energy estimate

 $\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|f_K^+\|_2^2 + c_0\|\langle\cdot\rangle^{\gamma/2}f_K^+\|_{H^s}^2 \le C_0\|\langle\cdot\rangle^{\gamma/2}f_K^+\|_2^2 + C_0\,K\,\|\langle\cdot\rangle^{\gamma}f_K^+\|_1$

Energy functional

$$W_k := \frac{1}{2} \sup_{t \in [t_k, T]} \|f_k(t)\|_2^2 + c_0 \int_{t_k}^T \|\langle \cdot \rangle^{\gamma/2} f_k(s)\|_{H^s}^2 \mathrm{d}s \,, \qquad T > t_* > 0 \,.$$

Sobolev embedding and the key observation

$$1_{\{f \ge K_k\}} \le \left(\frac{2^k}{K} f_{k-1}\right)^{\alpha}, \qquad \forall \, \alpha \ge 0\,.$$

gives that

$$\frac{1}{2}W_k \le 2^{\frac{2s}{d}} \frac{2^{\frac{d+4s}{d}k}}{c_0 K^{\frac{4s}{d}}} \Big(\frac{1}{t_*} + 2C_0\Big) W_{k-1}^{\frac{d+2s}{d}}$$

This proves the theorem

Theorem 2 (Generation/propagation of L^{∞} -norm). Let $\gamma \in [0,1]$ and $s \in (0,1)$, and assume $f_0 \in \mathcal{U}(D_0, E_0)$. Then, (22) $\|f(t)\|_{\infty} \leq C \|\langle \cdot \rangle^2 f_0\|_1 \left(\frac{1}{t^{\frac{d}{2s}}} + 1\right), \quad t > 0,$ where C depends on D_0 , E_0 , d, γ and s. Furthermore, if additionally $f_0 \in L^{\infty}(\mathbb{R}^d)$, then, (23) $\sup_{t \geq 0} \|f(t)\|_{\infty} \leq \max \left\{2\|f_0\|_{\infty}, C\|\langle \cdot \rangle^2 f_0\|_1\right\},$ where C depends also on $\|f_0\|_2$.

We work now with polynomial and exponential weights

$$w(v) = \langle v \rangle^k \text{ or } w(v) = e^{r \min\{t,1\} \langle v \rangle^{\gamma}}$$

$$w(v) = e^{r\langle v \rangle^{\alpha}}$$
, with $\alpha \in (0, 1]$

Adding weights to previous estimates

$$F(v) = f(v) w(v), G(v) = g(v) w(v)$$

Compute

$$\begin{split} f(v) \Big(F(v')^{p-1} w(v') - F(v)^{p-1} w(v) \Big) \\ &= F(v) \Big(F(v')^{p-1} - F(v)^{p-1} \Big) + f(v) F(v')^{p-1} \Big(w(v') - w(v) \Big) \\ &= F(v) \Big(F(v')^{p-1} - F(v)^{p-1} \Big) + f(v) \Big(F(v')^{p-1} - F(v)^{p-1} \Big) \Big(w(v') - w(v) \Big) \\ &+ f(v) F(v)^{p-1} \Big(w(v') - w(v) \Big) \,. \end{split}$$

The first is the leading term, already computed. Second and third terms are remainder terms. The estimation of these terms rely in several classical inequalities such as the cancellation lemma and

$$\begin{aligned} \left|\varphi(v') - \varphi(v)\right| &\leq \sqrt{2} \sup_{|x| \leq \sqrt{|v|^2 + |v_*|^2}} \left|\partial\varphi(x)\right| \times |u|\sin(\theta), \\ \left|\int_{\mathbb{S}^{d-2}} \varphi(v') - \varphi(v)dw\right| &\leq \left|\mathbb{S}^{d-2}\right| \sup_{|x| \leq \sqrt{|v|^2 + |v_*|^2}} \left|\partial^2\varphi(x)\right| \times |u|^2\sin^2(\theta). \end{aligned}$$

The final estimate is given by

Lemma 2. Assume that $g \in \mathcal{U}(D_0, E_0), \gamma \in [0, 1]$, and set F(v) = f(v) w(v) and G(v) = g(v) w(v), for polynomial or exponential weight w. Then, for any $\delta > 0$ $\int_{\mathbb{R}^d} Q(g, f)(v)F(v)^{p-1}w(v)dv \leq -\left(\frac{c_0}{\max\{p, p'\}} - \delta \|\langle \cdot \rangle^{2\gamma}G\|_1\right) \|\langle \cdot \rangle^{\gamma/2}F^{p/2}\|_{H^s}^2$ (29) $+\left(\frac{C_0}{p'} + (C+\delta)\|\langle \cdot \rangle^{3\gamma}G\|_1\right) \|\langle \cdot \rangle^{3\gamma/p}F\|_p^p + \frac{C}{\delta}\|\langle \cdot \rangle^{4\gamma+2s}G\|_1\|\langle \cdot \rangle^{\frac{3\gamma+2s}{p}}F\|_p^p.$ The constants C_0 and c_0 depend on D_0 , E_0 , d, γ , s. The constant C depends also on the corresponding weight parameter $k \geq 0$ or r > 0.

Generation of moments and Lemma 2 lead to the estimate

$$\|\langle \cdot \rangle^k f(t)\|_p \le C\left(\frac{1}{t^{\frac{ck}{s\gamma}}} + 1\right), \qquad k \ge 0,$$
$$\|e^{r\min\{t,1\}\langle \cdot \rangle^{\gamma}} f(t)\|_p \le C\left(\frac{1}{t^{\frac{c}{s\gamma}}} + 1\right), \qquad p \in (1,\infty), \quad r \in (0,r_0).$$

- Rates include emergence of moments and regularity.
- Constants depend only mass, energy and entropy

The L∞ case with exponential weights

Notation

$$F_K(v) = (f(v)w(v) - K)$$
$$F_K^+ = F_K(v)1_{\{F_K \ge 0\}}$$
$$F(v) := f(v)w(v)$$

Compute

$$f(v)\Big(F_K^+(v')w(v') - F_K^+(v)w(v)\Big) \le F_K^+(v)\Big(F_K^+(v') - F_K^+(v)\Big) + K\Big(F_K^+(v') - F_K^+(v)\Big) + f(v)F_K^+(v')\big(w(v') - w(v)\big)$$

Only one extra term

Again, one is lead to

Proposition 3. Take $\gamma \in [0,1]$ and $s \in (0,1)$, and assume $f \in \mathcal{U}(D_0, E_0)$ is sufficiently smooth and decaying. Consider also, for any $K \ge 0$, the level function $F_K^+ = (fw - K) \mathbf{1}_{\{fw-K\ge 0\}}$. Then, $\int_{\mathbb{R}^d} Q(f,f)(v) F_K^+(v) w(v) dv \le -\frac{c_0}{2} \|\langle \cdot \rangle^{\gamma/2} F_K^+\|_{H^s}^2 + \frac{C}{(1-s)} \|\langle \cdot \rangle^{4\gamma+2s} F\|_1^2 (\|\langle \cdot \rangle^{(3\gamma+2s)/2} F_K^+\|_2^2 + K \|\langle \cdot \rangle^{\gamma} F_K^+\|_1 + K^2 \|\langle \cdot \rangle^{3\gamma+2s} \mathbf{1}_{\{F_K^+\ge 0\}} \|_1)$ where the constant c_0 depends on D_0 , E_0 , d, γ , and s. The constant C depends also on the corresponding weight parameter $k \ge 0$ or r > 0.

A similar argument to that of the L∞ - norm leads to

$$w(v) = \langle v \rangle^k \text{ or } w(v) = e^{r \min\{t,1\} \langle v \rangle^{\gamma}}$$
$$\|w f(t)\|_{\infty} \le C \left(\frac{1}{t^c} + 1\right), \qquad t > 0,$$

Emergence of exponentially weighted regularity: commutator

Theorem 5. For $\gamma \in [0,1]$, $s \in (0,1)$, and $w(v) = \langle v \rangle^k$ or $w(v) = e^{r \langle v \rangle^{\gamma}}$, with $k \ge 0$, $r \in (0, \frac{1}{2})$, the following estimate holds

$$(1+(-\Delta))^{\frac{s}{2}}Q(g,f) = Q(g,(1+(-\Delta))^{\frac{s}{2}}f) + \mathcal{R}(g,f).$$

The remainder satisfies the estimate

$$\|w \mathcal{R}(g, f)\|_{2} \leq C \|\sin^{2} \theta \, b\|_{1} \Big(\|\langle \cdot \rangle^{a} \, w \, g\|_{1} + \|w \, g\|_{2} \Big) \|\langle \cdot \rangle^{a} \, w \, f\|_{H^{s}} \,,$$

with $a = \max\{2\gamma, \gamma - 1 + 2s\}$. The constant C depends, in addition to d, s, and γ , on the corresponding weight parameter k or r as well.

This is an pointwise remainder result

Bobylev's formula

$$\begin{split} \mathcal{F}\Big\{(1+(-\Delta))^{\frac{s}{2}}Q(g,f)(v)\Big\}(\xi) &= \langle\xi\rangle^{s}\mathcal{F}\Big\{Q(g,f)(v)\Big\}(\xi) \\ &= \int_{\mathbb{S}^{d-1}}\Big(\langle\xi^{+}\rangle^{s}\mathcal{F}\big\{g(v_{*})f(v)|u|^{\gamma}\big\}(\xi^{-},\xi^{+}) - \langle\xi\rangle^{s}\mathcal{F}\big\{g(v_{*})f(v)|u|^{\gamma}\big\}(0,\xi)\Big)b(\hat{\xi}\cdot\sigma)\mathrm{d}\sigma \\ &+ \int_{\mathbb{S}^{d-1}}\Big(\langle\xi\rangle^{s} - \langle\xi^{+}\rangle^{s}\Big)\mathcal{F}\big\{g(v_{*})f(v)|u|^{\gamma}\big\}(\xi^{-},\xi^{+})b(\hat{\xi}\cdot\sigma)\mathrm{d}\sigma =: \widehat{\mathcal{J}(g,f)}(\xi) + \widehat{\mathcal{I}(g,f)}(\xi) \,. \end{split}$$

For the second term, it have been proven that

$$\|w\mathcal{I}(g,f)\|_{2} \leq C\|\sin^{2}\theta b\|_{L^{1}(\mathbb{S}^{d-1})} \Big(\|\langle\cdot\rangle^{\gamma}G\|_{1} + \|G\|_{2}\Big)\|\langle\cdot\rangle^{\gamma}F\|_{H^{s}}.$$

Note that
$$-\left(\left(1+|\xi^{+}|^{2}\right)^{\frac{s}{2}}-\left(a(\hat{\xi}\cdot\sigma)+|\xi^{+}|^{2}\right)^{\frac{s}{2}}\right) = -\frac{s}{2}\int_{0}^{1}\frac{1-a(\hat{\xi}\cdot\sigma)}{\left((1-\theta)a(\hat{\xi}\cdot\sigma)+\theta+|\xi^{+}|^{2}\right)^{\frac{2-s}{2}}}\mathrm{d}\theta$$

$$\begin{split} \widehat{\mathcal{I}_{1}^{+}(f,g)}(\xi) &= -\frac{s}{2} \int_{0}^{1} \int_{\mathbb{S}^{d-1}} \left\langle \frac{\xi^{+}}{\sqrt{\ell(\theta,\hat{\xi}\cdot\sigma)}} \right\rangle^{-(2-s)} \widehat{F}(\xi^{+},\xi^{-}) \frac{\left(1-a(\hat{\xi}\cdot\sigma)\right)b_{s}(\hat{\xi}\cdot\sigma)}{\ell(\theta,\hat{\xi}\cdot\sigma)^{\frac{2-s}{2}}} \mathrm{d}\sigma \mathrm{d}\theta \\ \mathcal{I}_{1}^{+}(f,g)(v) &= -\frac{s}{2} \int_{0}^{1} \int_{\mathbb{R}^{d}} \int_{\mathbb{S}^{d-1}} \varphi\left(\ell(\theta,\hat{u}\cdot\sigma)^{\frac{1}{2}}\cdot\right) * \left(f(\cdot)\tau_{v_{*}'}|\cdot|^{\gamma}\right)(v') g(v'_{*}) \\ &\times \ell(\theta,\hat{u}\cdot\sigma)^{\frac{d+s-2}{2}} \left(1-a(\hat{u}\cdot\sigma)\right)b_{s}(\hat{u}\cdot\sigma)\mathrm{d}\sigma\mathrm{d}v_{*}\mathrm{d}\theta \,. \end{split}$$

Complete cancelation

Fractional differentiation product

$$\begin{aligned} \langle \xi^+ \rangle^s \mathcal{F} \Big\{ g(v_*) f(v) | u|^\gamma \Big\} (\xi^-, \xi^+) &= \mathcal{F} \Big\{ g(v_*) \big(1 + (-\Delta) \big)^{\frac{s}{2}} \big(f(\cdot) \tau_{v_*} | \cdot |^\gamma \big) (v) \Big\} (\xi^-, \xi^+) \\ &= \mathcal{F} \Big\{ g(v_*) \big(1 + (-\Delta) \big)^{\frac{s}{2}} f(v) | u|^\gamma \big) + \mathcal{R}_{v_*} f(v) \Big\} (\xi^-, \xi^+) \,. \end{aligned}$$

Leads to

$$\begin{split} \widehat{\mathcal{J}(g,f)}(\xi) &= \int_{\mathbb{S}^{d-1}} \left(\mathcal{F}\left\{g(v_*)\left(1+(-\Delta)\right)^{\frac{s}{2}}f(v) \left|u\right|^{\gamma}\right)(v)\right\}(\xi^-,\xi^+) \\ &\quad - \mathcal{F}\left\{g(v_*)\left(1+(-\Delta)\right)^{\frac{s}{2}}f(v) \left|u\right|^{\gamma}\right)(v)\right\}(0,\xi)\right)b(\hat{\xi}\cdot\sigma)\mathrm{d}\sigma \\ &\quad + \int_{\mathbb{S}^{d-1}} \left(\mathcal{F}\left\{\mathcal{R}_{v_*}f(v)\right\}(\xi^-,\xi^+) - \mathcal{F}\left\{R_{v_*}f(v)\right\}(0,\xi)\right)b(\hat{\xi}\cdot\sigma)\mathrm{d}\sigma \\ &\quad =: \widehat{\mathcal{J}_1(g,f)}(\xi) + \widehat{\mathcal{J}_2(g,f)}(\xi) \,. \end{split}$$

Explicit remainder

We already computed

$$\mathcal{R}_{v_*}f(v) = s \int_{\mathbb{R}^d} \tau_x f(v) \,\Phi(u, x) \,\frac{|\nabla \mathcal{B}(x)|}{|x|} \,\mathrm{d}x \,, \quad \text{where} \quad \Phi(u, x) = x \cdot \int_0^1 \tau_{\theta x} \Big(|u|^{\gamma - 2}u\Big) \,\mathrm{d}\theta \,,$$
$$\mathcal{B} \,:= \,\mathcal{F}^{-1}\{\langle \cdot \rangle^{s - 2}\}$$

Leading to $\mathcal{J}_2(g,f)(v) = s \int_{\mathbb{R}^d} \frac{|\nabla \mathcal{B}(x)|}{|x|} Q_{\Phi(u,x)}(g,\tau_x f)(v) \, \mathrm{d}x \, .$

After some painful calculations and a classical result

Lemma 3. For
$$\gamma \in (0,1]$$
 and $s \in (0,1)$ it follows that

$$\int_{\mathbb{R}^d} \mathcal{J}_2(g,f)(v)h(v)dv \leq C\Big(\|\langle\cdot\rangle^a g\|_1 + \|g\|_2\Big)\|\langle\cdot\rangle^a f\|_{H^s}\|h\|_{H^s}, \quad a = (\gamma - 1 + 2s)^+,$$
for some constant C depending only on d , s , and γ . In fact, for hard spheres $\gamma = 1$ the L^2 -norm of g can be omitted.

Adding weights

$$\int_{\mathbb{R}^d} |\nabla \mathcal{B}(x)| \langle x \rangle^{k'} w(x) \mathrm{d}x < \infty, \qquad k' \in \mathbb{R}, \quad r \in \left(0, \frac{1}{2}\right),$$

Leads to

Corollary 2. For
$$\gamma \in (0, 1]$$
 and $s \in (0, 1)$ it follows that

$$\int_{\mathbb{R}^d} \mathcal{J}_2(g, f)(v) w(v) h(v) dv$$

$$\leq C \Big(\|\langle \cdot \rangle^a w g\|_1 + \|w g\|_2 \Big) \|\langle \cdot \rangle^a w f\|_{H^s} \|h\|_{H^s}, \quad a = \max\{2\gamma, \gamma - 1 + 2s\},$$

for some constant C depending only on d, s, and γ . It also depends on the corresponding weight parameter $k \geq 0$ or $r \in (0, \frac{1}{2})$. For hard spheres, the case $\gamma = 1$, the L²-norm of g can be omitted.

Generation and propagation of smoothness

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \|w\,f\|_{H^s}^2 &= \int_{\mathbb{R}^d} w \big(1 + (-\Delta)\big)^{\frac{s}{2}} f\,w \big(1 + (-\Delta)\big)^{\frac{s}{2}} Q(f,f) \mathrm{d}v + \int_{\mathbb{R}^d} w (\partial_t w) \Big| \big(1 + (-\Delta)\big)^{\frac{s}{2}} f \Big|^2 \mathrm{d}v \\ &= \int_{\mathbb{R}^d} w \big(1 + (-\Delta)\big)^{\frac{s}{2}} f\,w\,Q \big(f, \big(1 + (-\Delta)\big)^{\frac{s}{2}} f\big) \mathrm{d}v \\ &+ \int_{\mathbb{R}^d} w \big(1 + (-\Delta)\big)^{\frac{s}{2}} f\,w\,\mathcal{R}(f,f) \mathrm{d}v + \int_{\mathbb{R}^d} w\,(\partial_t w)\,\Big| \big(1 + (-\Delta)\big)^{\frac{s}{2}} f \Big|^2 \mathrm{d}v \end{split}$$

Leads to

$$\frac{\mathrm{d}}{\mathrm{d}t} \|F\|_2^2 + \frac{c_0}{8} \|\langle \cdot \rangle^{\frac{\gamma}{2}} F\|_{H^s}^2 \le C \left(t^{-6a'/\gamma} + 1 \right).$$

Then,

Proposition 4. Let $\gamma \in (0,1]$ and $s \in (0,1)$, $r \in \left(0,\min\{r_0,\frac{1}{2}\}\right)$. Assume that $f_0 \in \mathcal{U}(D_0, E_0)$. Then, it follows that

$$\|e^{r\min\{t,1\}\langle v\rangle^{\gamma}} \left(1+(-\Delta)\right)^{\frac{s}{2}} f\|_{2}^{2} \le C\left(\frac{1}{t^{c}}+1\right), \quad t>0.$$

The constant C depends on D_0 , E_0 , d, s, and γ , whereas the constant c > 0 depends only on d, s, γ and r.

Sobolev smoothness

Theorem 6 (Appearance and propagation of exponentially weighted higher regularity). Let $\gamma \in (0,1]$ and $s \in (0,1)$, $k \in \mathbb{N}$, and $r \in (0,\min\{r_0,\frac{1}{2}\})$. Assume that $f_0 \in \mathcal{U}(D_0, E_0)$. Then, it follows that

$$||e^{r \min\{t,1\}\langle v \rangle^{\gamma}} \partial^k f||_2^2 \le C_k \left(\frac{1}{t^{c_k}} + 1\right), \quad t > 0.$$

The constant C_k depends on D_0 , E_0 , d, s, and γ , whereas the constant $c_k > 0$ depends only on k, d, s, and γ . Furthermore, in the range $\gamma \in [0,1]$, if $e^{r_0 \langle v \rangle^{\alpha}} f_0 \in L^1$ and $e^{r \langle v \rangle^{\alpha}} \partial^k f_0 \in L^2$, with $\alpha \in (0,1]$, then

$$\sup_{t\geq 0} \|e^{r\min\{t,1\}\langle v\rangle^{\alpha}} \partial^k f(t)\|_2 \leq \max\left\{\|e^{r\langle v\rangle^{\alpha}} \partial^k f_0\|_2, C'_k\right\}.$$

The constant C'_k depends additionally on the L^1 -exponential norm of f_0 .

One key step: using Prop. 4

$$\int_{\mathbb{R}^d} Q(\partial^k f, f) w w \partial^k f \, \mathrm{d}v \le C_{d,s,\gamma} \Big(\|\langle \cdot \rangle^a w \partial^k f\|_1 + \|w \partial^k f\|_2 \Big) \|\langle \cdot \rangle^a w f\|_{H^s} \|w \partial^k f\|_{H^s} \\ \le C_{d,s,\gamma} \big(t^{-c} + 1 \big) \|\langle \cdot \rangle^{a+d} w \partial^k f\|_2 \|w \partial^k f\|_{H^s} \,.$$

Interpolation weight - regularity

$$\|\langle \cdot \rangle^{a+d} \, w \, \partial^k f\|_2 \le C_s \|\langle \cdot \rangle^{n_s(a+d)} \, w \, \partial^{k-1} f\|_2^{1/n_s} \|w \, \partial^k f\|_{H^s}^{\theta_s}$$
$$n_s > 0 \text{ and } \theta_s \in (0,1)$$

Leads to

$$\frac{\mathrm{d}}{\mathrm{d}t} \|w\,\partial^k f\|_2^2 + c_0 \|w\,\partial^k f\|_{H^s}^2 \le C_{d,s,\gamma} \left(t^{-\frac{2c'_k}{1-\theta_s}} + 1\right),$$

Some references

Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B. Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal. 152 (2000), 327-355

Alexandre, R., Morimoto, Y., Ukai, S., Xu, C-J., Yang, T., Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff, Kyoto Journal of Mathematics, 52(3), 433-463 (2012).

Alexandre, R., Morimoto, Y., Ukai, S., Xu, C-J., Yang, T., The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions, Arch. Rational Mech. Anal., 202(2), 599-661 (2011).

Alonso, R., Gamba, I. M., Tasković, M. Exponentially-tailed regularity and decay rate to equilibrium for the Boltzmann equation, https://arxiv.org/abs/1711.06596v1, 2017.

Carlen, E., Carvalho, M., Lu, X., On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials, J Stat Phys 135, 681-736 (2009).

Chen, Y., He, L., Smoothing estimates for Boltzmann equation with full-range interactions: Spatially homogeneous case, Arch. Rational Mech. Anal. doi: 10.1007/s00205-010-0393-8

Desvillettes, L., Wennberg, B., Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Part. Diff. Equ. 29-1-2, 133-155 (2004).

Gressman, P., Strain, R., Global classical solutions of the Boltzmann equation without angular cut-off, Journal of the American Mathematical Society, 24 (3), 771-847 (2011).

Hérau, F., Tonon, D., Tristani, I., Cauchy theory and exponential stability for inhomogeneous Boltzmann equation for hard potentials without cut-off, arXiv:1710.01098.

Silvestre, L., A new regularization mechanism for the Boltzmann equation without cut-off, Comm. in Math. Phys. 348 (1), 69-100 (2016).

Tasković, M., Alonso, R., Gamba, I. M., Pavlović, N., On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff, SIAM J. Math. Anal. 50 (1), 834-869.