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Why SL2(Z)?

I Rich connections: arithmetic, elliptic curves and modular forms

I Explicit group structure: PSL2(Z) ≈ Z2 ∗ Z3

I Topology: braids and MCG, PSL2(Z) ≈ B3/Z

I Hyperbolic geometry: discrete version of PSL2(R)

Corresponding tessellation of H2 is known as Farey tesselation.
Farey ”addition” (mediant): a

b
∗ c

d
= a+c

b+d
.
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Figure: Dual tree for Farey tessellation and Farey tree
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Markov spectrum of real numbers

Markov constant of a real number α is the minimal possible c such that

|α− p

q
| < c

q2

holds for infinitely many p, q:

µ(α) = lim inf
N→∞

([aN+1, aN+2, . . .] + [0; aN , aN−1, . . . , a1])−1.

The set of all possible values of µ(α), α ∈ R is the Markov (Lagrange)
spectrum.

α µ(α)
1+
√

5
2

1√
5

=0.4472135. . .

1 +
√

2 1√
8

=0.3535533. . .
9+
√

221
10

5√
221

=0.3363363. . .
23+
√

1517
26

13√
1517

=0.3337725. . .
5+
√

7565
58

29√
7565

=0.3334214. . .

Table: The top five most irrational numbers and their Markov constants
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Markov triples and Markov Theorem

Markov numbers are parts of the Markov triples, which are the positive
integer solutions of the Markov equation

x2 + y 2 + z2 = 3xyz .

Markov: All Markov triples can be obtained from (1, 1, 1) by the Markov
involution

σ : (x , y , z)→ (x , y , 3xy − z)

and permutations:

(1, 1, 1)→ (1, 1, 2)→ (1, 2, 1)→ (1, 2, 5)→ (1, 5, 2)→ (1, 5, 13)→ ...

Unicity Conjecture (Frobenius, 1913) Every Markov number appears as
maximal only in one Markov triple.

Markov (1880): Markov spectrum above 1/3 is discrete and consists of

µ =
m√

9m2 − 4
,

where m is one of the Markov numbers:

m = 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, ...

The most irrational number corresponding to triple (x , y , z) is

α =
b

x
+

y

xz
− 3

2
+

√
9z2 − 4

2z
, by − ax = z .
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Growth of the Markov numbers

Zagier, 1982:

mn ≈
1

3
eC
√

n

with some constant C .

However, we have a natural action of PSL2(Z) ≈ Z2 ∗ Z3 generated by Markov
involution and cyclic permutation, so Markov triples can be shown on the tree:
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Figure: Vieta involution and Markov tree

Question. What is the growth along a path on the Markov tree?
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Markov, Euclid and Farey trees
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Figure: Markov, Euclid and Farey trees with the “golden” path



Lyapunov exponents of Markov dynamics

Paths γ = γ(x) on Farey (and thus on Markov) tree can be labelled by
x ∈ RP1 using continued fraction expansion

x = c0 +
1

c1 +
1

c2 +
. . .

:= [c0, c1, c2, . . .] .

Define the Lyapunov exponent Λ(x) as

Λ(x) = lim sup
n→∞

ln(lnmn(x))

n
,

where mn(x) is n-th Markov number along the path γ(x).

It can be shown that

Λ(x) = lim sup
n→∞

ln cn(x)

n
,

where cn(x) is the corresponding number on the Euclid tree.
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Lyapunov spectrum of Markov tree

K. Spalding, AV (2017):

I Λ(x) is defined for all x ∈ RP1 and is GL2(Z)-invariant:

Λ

(
ax + b

cx + d

)
= Λ(x), x ∈ RP1,

(
a b
c d

)
∈ GL2(Z)

I Λ(x) = 0 almost everywhere (but Hausdorff dimension of its support is 1
(Michael Magee))

I Lyapunov spectrum SpecΛ := {Λ(x), x ∈ RP1} of Markov tree is

SpecΛ = [0, lnϕ],

where ϕ = 1+
√

5
2

is the golden ratio.

I The restriction of Λ on the Markov-Hurwitz set X of the most irrational
numbers is monotonically increasing from Λ(

√
2) = 1

2
ln(1 +

√
2) to

Λ(ϕ) = lnϕ and in the Farey parametrization is convex.

Proof is based on results from hyperbolic geometry by Fricke and Klein,
Gorshkov, Cohn, V. Fock.
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Crucial link: geodesics on punctured torus

Klein, Poincare: Uniformization Theorem
Every conformal class of surface metrics has complete constant curvature
representative.

Let T 2
∗ be the punctured ”equianharmonic” torus with hyperbolic metric

Crucial observation (Gorshkov, 1953, Cohn, 1955):

Markov numbers m are related to the lengths l of simple geodesics on T 2
∗

by the formula

m =
2

3
cosh

l

2
.

Action of mapping class group SL2(Z) is generated by cyclic permutations and
Markov involutions.
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Explanation: Teichmüller space of one-punctured tori

Let A,B be the generators of the corresponding Fuchsian subgroup Γ of
SL2(R).

Fricke: for any A,B ∈ SL2(R) and C = AB we have

(tr A)2 + (tr B)2 + (tr C)2 = tr A tr B tr C + tr (ABA−1B−1) + 2.

Puncture condition: tr (ABA−1B−1) = −2.

X = tr A, Y = tr B, Z = tr C satisfy the real Markov equation

X 2 + Y 2 + Z 2 = XYZ , X ,Y ,Z ∈ R,

which defines the Teichmüller space of one-punctured tori (Fricke and Klein,
Keen et al).

Markov orbit corresponds to the punctured equianharmonic torus T 2
∗ .
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Quantum version of Euclid tree: Cohn tree

H. Cohn (1955): replace a + b = c by AB = C :
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1 1
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) 

… … 

. . . . . . 
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2 3
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(
7 11
5 8

) 
(
18 29
13 21

) (
41 65
29 46

) 

 

1 2 

5 
29 13 

… … 

. . . . . . 

Figure: Cohn and Markov trees related by trace map: A→ 1
3
tr A

Key fact: Cohn matrices A and B generate the Fuchsian group Γ = SL2(Z)′

giving explicit uniformization of T 2
∗ as the quotient H2/Γ.
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Fock’s theorem

Let m( p
q

) be the Markov number corresponding to p
q

on Farey tree and define
the function

ψ(
p

q
) =

1

q
cosh−1

(
3

2
m(

p

q
)

)
.
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… … 
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…
 

V. Fock (1997): The function ψ can be extended to a continuous convex
function of all real x ∈ [0, 1].

Sorrentino, AV (2017): relation with the theory of Federer-Gromov’s stable
norm.
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Markov-Hurwitz and Minkowski trees

Let x
(

p
q

)
be the ”most irrational” number corresponding to m = m

(
p
q

)
.

Key observation:

Λ(x(
p

q
)) =

1

2
ψ(

p

q
).

 

… … 

. . . . . . 

[12] [22] 

[22,12] 
[22,14] [24,12] 
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Figure: Markov-Hurwitz and Minkowski trees related by Minkowski ?-function

The corresponding matrix on Farey tree is precisely the matrix from Cohn tree!

Spalding, AV (2017): generalisation to modified Markov equation

x2 + y 2 + z2 = xyz + 4− 4a6, a ∈ N.
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Conway’s topograph

Conway (1997): ”topographic” way to ”vizualise” the values of a binary
quadratic form

Q(x , y) = ax2 + hxy + by 2, (x , y) ∈ Z2

by taking values of Q on the lax vectors of superbases e1 + e2 + e3 = 0:

Q(±e1) = a,Q(±e2) = b,Q(±e3) = c = a + h + b.

One can construct the topograph of Q using Arithmetic progression rule:

Q(u + v) + Q(u− v) = 2(Q(u) + Q(v)), u, v ∈ R2.

 

 

 

    
  

  

𝑐 

𝑏 

𝑎 

𝑐 ′ 

  

𝑐 + 𝑐′ = 2(𝑎 + 𝑏) 

 

ℎ 

𝑎 + 𝑏 + ℎ 

𝑏 𝑎 

4𝑎 + 𝑏 + 2ℎ 𝑎 + 4𝑏 + 2ℎ 

2𝑎 + ℎ 2𝑏 + ℎ 

Figure: Arithmetic progression rule and Conway’s Climbing Lemma.
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Euclidean example
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Figure: Topograph of Q = x2 + y2 and Farey tree with marked ”golden” path.



Conway river

For indefinite binary quadratic form Q(x , y) the situation is more interesting:
positive and negative values of Q are separated by the path on the topograph
called Conway river. For integer form Q the Conway river is periodic.
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Figure: Conway river for the quadratic form Q = x2 − 2xy − 5y2.



Growth of values of quadratic forms

Define

ΛQ(ξ) = lim sup
n→∞

ln |Qn(ξ)|
n

, |Qn(ξ)| = max(|an(ξ)|, |bn(ξ)|, |cn(ξ)|).

Let α± be the two real roots of the quadratic equation Q(α, 1) = 0.

Spalding, AV (2017): For an indefinite form Q not representing zero

ΛQ(ξ) = 2Λ(ξ), ξ 6= α±

with ΛQ(α±) = 0 6= 2Λ(α±).

In other words, the only exceptional paths are those following Conway river:
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Some open questions and references

I Further study of Λ(x), in particular generalisations of Markov-Hurwitz sets
(cf. Karpenkov, Van-Son, 2018)

I Values of cubic forms and 3-dimensional generalisations (after Thurston)
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