Discrepancy bounds for β -adic Halton sequences

J. M. Thuswaldner

Department of Mathematics and Information Technology
University of Leoben
Austria

CIRM Marseille, September 2018

Van der Corput and Halton sequences

- $q \in \mathbb{N}$, $q \ge 2$ (base).
- *q*-ary expansion: $n \in \mathbb{N}$,

$$n = \sum_{j=0}^{\infty} \varepsilon_j(n) q^j$$
 $(\varepsilon_j(n) \in \{0, \ldots, q-1\}).$

Van der Corput sequence (1935):

$$v_q(n) = \sum_{j=0}^{\infty} \varepsilon_j(n) q^{-j-1} \in [0,1) \qquad (n \ge 0).$$

• Halton sequence (1960): $s \ge 2$, $q = (q_1, ..., q_s)$, $q_i \ge 2$,

$$h_{\mathbf{g}}(n) = (v_{\alpha_1}(n), \dots, v_{\alpha_s}(n)) \in [0, 1)^s \qquad (n \ge 0).$$

Discrepancy

Definition

- $s \in \mathbb{N}$, $A \subset [0,1)^s$
- 1_A is the characteristic function of A
- $(\mathbf{y}_n)_{n>0}$ a sequence in $[0,1)^s$

The (star) discrepancy is given by

$$D_N((\mathbf{y}_n)_{n\geq 0}) = \sup_{0<\omega_1,\ldots,\omega_s\leq 1} \left| \frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}_{[0,\omega_1)\times\cdots\times[0,\omega_s)}(\mathbf{y}_n) - \omega_1\cdots\omega_s \right|.$$

- $D_N((\mathbf{y}_n)_{n>0}) \to 0$ for $N \to \infty \iff (\mathbf{y}_n)_{n>0}$ is equidistributed
- $D_N((v_a(n))_{n\geq 0}) \ll \log N/N$
- $D_N((h_{\boldsymbol{a}}(n))_{n\geq 0}) \ll (\log N)^s/N$

Van der Corput and Halton

• $m \ge 2$: m-bonacci sequence

$$F_k^{(m)} = 2^k,$$
 $0 \le k \le m-1,$ $F_k^{(m)} = \sum_{j=1}^m F_{k-j}^{(m)},$ $k \ge m.$

- Dominant root: $\beta = \varphi_m$ called *m*-bonacci number.
- $n \in \mathbb{N}$: the greedy expansion is given by

$$n=\sum_{j=0}^{\infty}\varepsilon_{j}(n)F_{j}^{(m)},$$

 $\dots \varepsilon_1(n)\varepsilon_0(n) \in \{0,1\}^{\mathbb{N}}$ with no block of m consecutive 1s.

β -adic versions

Definition

• β -adic van der Corput sequence

$$V_{\beta}(n) = \sum_{j\geq 0} \varepsilon_j(n) \beta^{-j-1}.$$

β-adic Halton sequence

$$H_{\beta}(n) = (V_{\beta_1}(n), \ldots, V_{\beta_s}(n)) \qquad (\beta = (\beta_1, \ldots, \beta_s)).$$

In our case $\beta = \varphi_m$ and $\beta_i = \varphi_{m_i}$.

- Ninomiya (1998): $D_N((V_\beta(n))_{n>0}) \ll \log N/N$ (general β).
- Hofer, Iacò, and Tichy (2015): $H_{\beta}(n)$ is equidistributed.
- Drmota (2015): Discrepancy results for "hybrid" Halton.

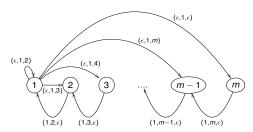
Substitutions associated with $(F_k^{(m)})$

$$\sigma_m(i) = \begin{cases} 1(i+1) & \text{for } i < m, \\ 1 & \text{for } i = m, \end{cases}$$

 $B_m = B_{\sigma_m}$ incidence matrix: $(B_m)_{ij} = |\sigma(j)|_i$.

$$F_k^{(m)} = |\sigma_m^k(1)| \qquad (k \ge 0).$$

Prefix-suffix graph:



Rauzy fractals

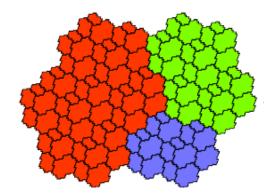
$$\mathcal{R}_m(i) = \bigcup_{\substack{j = (p,i,s) \\ j}} B_{\sigma}R(j)_m + \pi_{\sigma}I(p) \qquad (1 \leq i \leq m).$$

$$S_k^{(m)} = S_k = \left\{ B_\sigma^k \mathcal{R}_m(i_k) + \pi_c \mathbf{I} \left(\sigma_m^{k-1}(p_{k-1}) \dots \sigma_m(p_1) p_0 \right) : i_0 \xrightarrow{p_0} \dots \xrightarrow{p_{k-1}} i_k \in G_{\sigma_m} \right\}.$$

The elements of S_k overlap only on their boundaries,

$$\mathcal{R}_m = \bigcup_{S \in S_k} S \simeq \text{fundamental domain of } \mathcal{L}_m.$$

The tribonacci Rauzy fractal and its subdivisions



The main result

Theorem (T. 2017)

Let m_1, \ldots, m_s be pairwise distinct integers greater than or equal to 2 and set $\beta = (\varphi_{m_1}, \ldots, \varphi_{m_s})$. If

$$\{1, \varphi_{m_1}, \ldots, \varphi_{m_1}^{m_1-1}, \ldots, \varphi_{m_s}, \ldots, \varphi_{m_s}^{m_s-1}\}$$

is linearly independent over \mathbb{Q} then the discrepancy of the β -adic Halton sequence $H_{\beta}(n)$ satisfies

$$D_N((H_\beta(n))_{n\geq 0}) \ll N^{\frac{\max\{d_j-(m_j-1):1\leq i\leq s\}}{(m_1-1)+\dots+(m_s-1)}+\varepsilon}$$

for each $\varepsilon > 0$. Here $d_i = \dim_B(\partial \mathcal{R}_{m_i})$, which is strictly smaller than $m_i - 1$, denotes the box counting dimension of the boundary of the Rauzy fractal \mathcal{R}_{m_i} , $1 \le i \le s$.

Van der Corput and rotations on the Rauzy fractal

- $n = \sum_{j\geq 0} \varepsilon_j(n) F_j^{(m)}$
- Choose $k \in \mathbb{N}$ arbitrary.
- $0 \le r < m$: $\varepsilon_{k-r-1}(n) = 0$, $\varepsilon_{k-r}(n) = \cdots = \varepsilon_{k-1}(n) = 1$.
- For $\mu_k = \sum_{j=0}^{k-1} \varepsilon_{k-1-j}(n) \varphi_m^j$ we have that

$$V_{\varphi_m}(n) \in \left[\frac{\mu_k}{\varphi_m^k}, \frac{\mu_k + \varphi_m^r - \sum_{i=0}^{r-1} \varphi_m^i}{\varphi_m^k}\right).$$

 \bullet For $\nu_k = \sum_{j=0}^{k-1} \varepsilon_j(n) F_j^{(m)}$ we have that

$$n\pi_c(\mathbf{e}_1) \in \nu_k \pi_c(\mathbf{e}_1) + B_m^k \bigcup_{i=1}^{m-r} \mathcal{R}_m(i) \pmod{\mathcal{L}_m}.$$

The measures of the occurring sets agree, i.e., we have

$$\left| \left\lceil \frac{\mu_k}{\varphi_m^k}, \frac{\mu_k + \varphi_m^r - \sum_{i=0}^{r-1} \varphi_m^i}{\varphi_m^k} \right) \right| = \lambda_{\mathbf{V}} \left(\nu_k \pi_c(\mathbf{e}_1) + B_m^k \bigcup_{i=1}^{m-r} \mathcal{R}_m(i) \right).$$

The discrepancy of β -adic van der Corput

Lemma

Fix $m \ge 2$, let $N \in \mathbb{N}$ be given, and choose L in a way that $F_{L-1}^{(m)} \le N-1 < F_L^{(m)}$. Then

$$D_N((V_{\varphi_m}(n))_{n\geq 0})\ll \frac{1}{\varphi_m^L}+\sum_{1\leq k\leq L}\delta_k,$$

where

$$\delta_k = \sup_{S \in \mathcal{S}_k} \left| \frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}_S \Big(n \pi_c(\mathbf{e}_1) + \alpha_k \bmod \mathcal{L}_m \Big) - \lambda_{\mathbf{v}}(S) \right|$$

with $\alpha_k = \alpha_k(N)$ chosen in a certain way.

The discrepancy of β -adic Halton

Lemma

Fix $m_1, \ldots, m_s \ge 2$, let $N \in \mathbb{N}$ be given, and choose L_1, \ldots, L_s in a way that $F_{L_j-1}^{(m_j)} \le N-1 < F_{L_j}^{(m_j)}$. Then for $\beta = (\beta_1, \ldots, \beta_s) = (\varphi_{m_1}, \ldots, \varphi_{m_s})$

$$D_N((H_\beta(n))_{n\geq 0}) \ll \sum_{i=1}^s \frac{1}{\beta_i^{L_i}} + \sum_{1\leq k_1\leq L_1} \cdots \sum_{1\leq k_s\leq L_s} \delta_{k_1,\dots,k_s},$$

where

$$\begin{split} &\delta_{k_1,\dots,k_s} = \sup_{S_1 \in \mathcal{S}_{k_1}^{(m_1)},\dots,S_s \in \mathcal{S}_{k_s}^{(m_s)}} \\ &\left| \frac{1}{N} \sum_{n=0}^{N-1} \prod_{i=1}^s \mathbf{1}_{S_i} \left(n \pi_{c,m_i}(\mathbf{e}_1) + \alpha_{k_i} \bmod \mathcal{L}_{m_i} \right) - \prod_{i=1}^s \lambda_{\mathbf{v}_{m_i}}(S_i) \right|. \end{split}$$

Here $\alpha_{k_i} = \alpha_{k_i}(N)$ is chosen in a certain way.

Discrepancy of algebraic rotations

Lemma

Let $\gamma=(\gamma_1,\ldots,\gamma_s)\in\mathbb{R}s$ with algebraic numbers γ_1,\ldots,γ_s and assume that $\{1,\gamma_1,\ldots,\gamma_s\}$ is linearly independent over \mathbb{Q} . Then for each $\varepsilon>0$ we have

$$D_N((n\gamma \text{ mod } [0,1)^s)_{n\geq 0}) \ll N^{\varepsilon-1}.$$

Proof.

Using a classical result by Wolfgang Schmidt (1970) we see that a vector $(\gamma_1, \ldots, \gamma_s)$ of real algebraic numbers for which $\{1, \gamma_1, \ldots, \gamma_s\}$ is linearly independent over $\mathbb Q$ is of finite type 1. Type 1 implies the stated discrepancy bound; see the book by Kuipers and Niederreiter (1974).

The main result again

Theorem (T. 2017)

Let m_1, \ldots, m_s be pairwise distinct integers greater than or equal to 2 and set $\beta = (\varphi_{m_1}, \ldots, \varphi_{m_s})$. If

$$\{1, \varphi_{m_1}, \ldots, \varphi_{m_1}^{m_1-1}, \ldots, \varphi_{m_s}, \ldots, \varphi_{m_s}^{m_s-1}\}$$

is linearly independent over \mathbb{Q} then the discrepancy of the β -adic Halton sequence $H_{\beta}(n)$ satisfies

$$D_N((H_{\beta}(n))_{n \geq 0}) \ll N^{\frac{\max\{d_j - (m_j - 1): 1 \leq i \leq s\}}{(m_1 - 1) + \dots + (m_S - 1)} + \varepsilon}$$

for each $\varepsilon > 0$. Here $d_i = \dim_B(\partial \mathcal{R}_{m_i})$, which is strictly smaller than $m_i - 1$, denotes the box counting dimension of the boundary of the Rauzy fractal \mathcal{R}_{m_i} , $1 \le i \le s$.

The easiest example

Example

Consider the golden mean φ_2 and the dominant root φ_3 of the *tribonacci polynomial* X^3-X^2-X-1 . The Rauzy fractal \mathcal{R}_2 is an interval, hence, $\dim_B\partial\mathcal{R}_2=0$. For \mathcal{R}_3 we know from Ito and Kimura (1991) that $\dim_B\partial\mathcal{R}_3=1.09336\ldots$ Since $\mathbb{Q}(\varphi_2,\varphi_3)$ has degree 6 over \mathbb{Q} the linear independence assumption in the main theorem is satisfied and we obtain (choosing $\varepsilon>0$ occurring in the theorem sufficiently small)

$$D_N((H_{(\varphi_2,\varphi_3)}(n))_{n\geq 0}) \ll N^{-0.30221}$$

Future projects

- Generalize to $G_{n+d} = a(G_{n+d-1} + \cdots + G_n)$ with $a \ge 2$
 - Characteristic roots are no longer units.
 - Rauzy fractals live in open subrings of adèle rings (p-adic factors).
 - p-adic version of approximation theorems (Schlickewei) needed.
- More general recurrences
 - Language is no longer symmetric; see Ninomiya.
 - Extensions to Dumont-Thomas Numeration.
- Bounded remainder sets; see Steiner (2006) for van der Corput.
- Improvement of discrepancy estimates.