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Context – Sum of Digits

It is generally conjectured that the base a and base b expansions of
integers are statistically independent (provided a and b are multiplicatively
independent).
Also, it is natural to expect a phenomenon of dependancy for an infinity of
exceptional integers.

For a ≥ 2 and n =
∑

i≥0 εi ai denote

sa(n) =
∑
i≥0

εi

the sum of digits in base a of the integer n.
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Comparing the sum of digits in two different bases

Stewart (1980) (improving on Senge & Strauss (1970)) : If log a/ log b is
irrational then

sa(n) + sb(n) > log log n
log log log n + C − 1,

for all n > 25 and some effectively computable C = C(a, b).

Example :

n = 23452345417987
= (101010101010001101100101101111100000100000011)2

= (10002001000121021102220100101)3

et s3(n) = s2(n) = 21.

Question : Are there infinitely many n such that s3(n) = s2(n) ?
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s3(n)/s2(n) for n ≤ 106
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sb versus sa

For almost all n, we have

sb(n) ∼ b − 1
2 log b log n, sa(n) ∼ a − 1

2 log a log n.

Let
τ0 = τ0(a, b) := (b − 1) log a

(a − 1) log b .

If τ = τ0 then sb(n) ∼ τsa(n) evidently holds on a subset of N of density one.

For s3(n) ∼ τ0s2(n) we have τ0 = (log 4)/ log 3 ≈ 1.26186 for a subset of
density one.

Thomas Stoll



Introduction and Main result
Tool I : Binomial recentering

Tool II : Exponential sums and discrepancy

Motivation

Theorem (Deshouillers, Habsieger, Landreau, Laishram (2017))
We have

#{n ≤ x : |s3(n)− s2(n)| 6 0.14572 log n} � x0.970359.

Note that (1/ log 3− 1/ log 4) = 0.188 . . .

Question : Are there infinitely many n such that s3(n) ∼ s2(n) ?

Question : Are there infinitely many n such that sa(n) ∼ sb(n) ?
Remark : In the case where ak = b` with k, ` some positive integers, the
problem is trivial since it is sufficient to consider those n with digits 0 and 1 in
base ak for which we have sa(n) = sb(n).

Question : What about the accumulation points of {sb(n)/sa(n)}n ?

Thomas Stoll
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Main result

Theorem (R. de la Bretèche, TS, G. Tenenbaum (2018+))
Let τ > 0, a, b > 2 mult. indep., and c < c0(a, b; τ). There are � x c positive
integers n 6 x such that

sb(n) ∼ τsa(n).

More precisely, if γ is an irrationality exponent of (log a)/ log b, then

sb(n) = τsa(n)
{

1 + O
(

1
(log n)σ/γ

)}
(1)

for all σ ∈]0,Λ/(6M3 log M)[ for M = max(a, b) and some explicit
Λ = Λ(τ0; τ).

Moreover, for all τ 6= τ0, there is an exponent d0(τ) = d0(a, b; τ) < 1 such that
(2) is realized by � xd0(τ)+o(1) positive integers n 6 x.

For s3(n) ∼ s2(n) we have c0 ≈ 0.94996 and d0 ≈ 0.993702.

Thomas Stoll



Introduction and Main result
Tool I : Binomial recentering

Tool II : Exponential sums and discrepancy

Main result
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Irrationality exponent

Irrationality exponent : The proof only needs that ϑ := (log a)/ log b has a
finite irrationality exponent. This is always the case (Baker, 1972) if the
quotient is irrational, i.e. there exists γ > 2 such that∣∣∣ϑ− r

q

∣∣∣� 1
qγ

(
q > 1, (r , q) = 1

)
.

Wu et Wang (2014) have shown that γ = 5.117 is admissible for
ϑ := (log 2)/ log 3 (sharpening a result of Salikhov (2007)).
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Binomial recentering

Let Mk be the set of integers m 6 Nk := bk − 1 such that its base b expansion
only contains the digits 0 and b − 1. For % ∈]0, 1[ we define a probability
measure on Mk via

P(m) = rk (m) := %sb (m)/(b−1)(1− %)k−sb (m)/(b−1),

such that ∑
m∈Mk

P(m) =
∑

06j6k

(
k
j

)
%j (1− %)k−j = 1.

We have

V(sb) =
∑

m∈Mk

rk (m)
{

sb(m)− %(b − 1)k}2 = %(1− %)k(b − 1)2,

such that

P
(
|sb − %(b − 1)k| > T

√
k
)
6
%(1− %)(b − 1)2

T 2 (T > 1).
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We show that the base a expansion of the elements ofMk are simply normal up
to an exceptional set Ek with probability tending to 0 as k →∞. This implies

sa(m) ∼ a − 1
2 log a log Nk (m ∈Mk \ Ek , k →∞).

This will imply (choosing appropriately ρ = ρ(a, b; τ))

P(sb ∼ τsa) = 1 + o(1), (k →∞).
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Exponential sums

Let e(u) := e2πiu and set

σh(m, n) := 1
n
∑

16ν6n

e
(hm

aν
)

(m ∈Mk , n > 1, h ∈ Z)

and
∆n(m) := 1

H + 1 +
∑

16h6H

|σh(m, n)|
h

Erdős-Turán inequality : For I ⊂ [0, 1] we have∣∣∣∣∣∣∣∣
1
n

∑
16ν6n
{m/aν}∈I

1− |I|

∣∣∣∣∣∣∣∣� ∆n(m) (m ∈Mk , n > 1).
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We choose n := blog Nk/ log ac and therefore have

sa(m) = 1
2 (a − 1)n + O

(
n∆n(m)

)
= a − 1

2 log a log Nk + O
(
n∆n(m)

)
.

It remains to show that ∆n(m)→ 0 for k →∞ for almost all m ∈Mk .
For H > 1,

E(∆n) 6 1
H + 1 +

∑
16h6H

1
hE
(
|σh(m, n)|

)
6

1
H +

∑
16h6H

1
h Mh(n),

where
Mh(n)2 = 1

n2

∑
µ,ν6n

e−8%(1−%)Sh(µ,ν)

where
Sh(µ, ν) =

∑
06j6k

∥∥∥h(b − 1)bj
( 1

aν −
1
aµ
)∥∥∥2

.
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We observe that

Sh(µ, ν) > S∗h (µ, ν) :=
∑

L<j6κ+L

‖bjα‖2, L = blog h/ log bc

where
α(h, µ, ν) := (b − 1)b{

log h
log b }−{ν

log a
log b }

(
1− 1/aµ−ν

)
.

Then (assuming b ≥ 3), we have

S∗h (µ, ν) ≥ 1
b2 #{digits = 1 in α with index in [L + 1, L + κ]}.

A combinatorial inspection of the intervals of reals β ∈ [0, (b − 1)b] then shows
that

S∗h (µ, ν) ≥ κ

2b3

with the possible exception of {ν log a
log b } lying in a subset of [0, 1] of small

measure. The number of exceptional integer ν can be bounded with the
discrepancy of ({ν log a

log b })1≤ν≤n.
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This finally gives

Mh(n)2 � e−4%(1−%)κ/b3
+ 1√

n
+ e−κ/15b + hbκe−κ/15bDn,

where Dn is the discrepancy of {νϑ}n
ν=1 with ϑ = log a/ log b.

Now,
Dn �

1
q + q

n
(
n > 1, |ϑ− r/q| 6 2/q2)

and with the Dirichlet approximation theorem, we get Dn � n−1/γ where γ is
an irrationality exponent of ϑ. It remains to choose κ accordingly to conclude.
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Main result

Theorem (R. de la Bretèche, TS, G. Tenenbaum (2018+))
Let τ > 0, a, b > 2, and c < c0(a, b; τ). There are � x c positive
integers n 6 x such that
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Moreover, for all τ 6= τ0, there is an exponent d0(τ) = d0(a, b; τ) < 1 such that
(2) is realized by � xd0(τ)+o(1) positive integers n 6 x.

Thank you !
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