# The sum of digits in two different bases

Thomas Stoll

(IECL, Université de Lorraine)

Joint work with R. de la Bretèche and G. Tenenbaum

Work supported by the ANR-FWF project "MuDeRa".





Introduction and Main result Tool I : Binomial recentering Tool II : Exponential sums and discrepancy







## Context - Sum of Digits

- It is generally conjectured that the base *a* and base *b* expansions of integers are statistically independent (provided *a* and *b* are multiplicatively independent).
- Also, it is natural to expect a phenomenon of dependancy for an infinity of exceptional integers.

For  $a \ge 2$  and  $n = \sum_{i \ge 0} \varepsilon_i a^i$  denote

$$s_a(n) = \sum_{i\geq 0} \varepsilon_i$$

the sum of digits in base *a* of the integer *n*.

# Comparing the sum of digits in two different bases

**Stewart (1980)** (improving on Senge & Strauss (1970)) : If  $\log a / \log b$  is irrational then

$$s_a(n) + s_b(n) > rac{\log \log n}{\log \log \log n + C} - 1,$$

for all n > 25 and some effectively computable C = C(a, b).

#### Comparing the sum of digits in two different bases

**Stewart (1980)** (improving on Senge & Strauss (1970)) : If  $\log a / \log b$  is irrational then

$$s_a(n) + s_b(n) > rac{\log \log n}{\log \log \log n + C} - 1,$$

for all n > 25 and some effectively computable C = C(a, b).

#### Example :

et  $s_3(n) = s_2(n) = 21$ .

# Comparing the sum of digits in two different bases

**Stewart (1980)** (improving on Senge & Strauss (1970)) : If  $\log a / \log b$  is irrational then

$$s_a(n) + s_b(n) > rac{\log \log n}{\log \log \log n + C} - 1,$$

for all n > 25 and some effectively computable C = C(a, b).

#### Example :

et  $s_3(n) = s_2(n) = 21$ .

**Question** : Are there infinitely many *n* such that  $s_3(n) = s_2(n)$ ?

Introduction and Main result

Tool I : Binomial recentering Tool II : Exponential sums and discrepancy

# $s_3(n)/s_2(n)$ for $n \leq 10^6$



#### sb versus sa

For almost all *n*, we have

$$s_b(n) \sim rac{b-1}{2\log b}\log n, \qquad s_a(n) \sim rac{a-1}{2\log a}\log n.$$

Let

$$au_0= au_0(a,b):=rac{(b-1)\log a}{(a-1)\log b}.$$

If  $\tau = \tau_0$  then  $s_b(n) \sim \tau s_a(n)$  evidently holds on a subset of  $\mathbb{N}$  of density one.

For  $s_3(n) \sim \tau_0 s_2(n)$  we have  $\tau_0 = (\log 4) / \log 3 \approx 1.26186$  for a subset of density one.

# Motivation

#### Theorem (Deshouillers, Habsieger, Landreau, Laishram (2017))

We have

$$\#\{n \le x : |s_3(n) - s_2(n)| \le 0.14572 \log n\} \gg x^{0.970359}$$

Note that  $(1/\log 3 - 1/\log 4) = 0.188...$ 

# Motivation

Theorem (Deshouillers, Habsieger, Landreau, Laishram (2017))

We have

$$\#\{n \le x : |s_3(n) - s_2(n)| \le 0.14572 \log n\} \gg x^{0.970359}$$

Note that  $(1/\log 3 - 1/\log 4) = 0.188...$ 

**Question :** Are there infinitely many *n* such that  $s_3(n) \sim s_2(n)$ ?

# Motivation

Theorem (Deshouillers, Habsieger, Landreau, Laishram (2017))

We have

 $\#\{n \le x : |s_3(n) - s_2(n)| \le 0.14572 \log n\} \gg x^{0.970359}.$ 

Note that  $(1/\log 3 - 1/\log 4) = 0.188...$ 

**Question :** Are there infinitely many *n* such that  $s_3(n) \sim s_2(n)$ ?

**Question :** Are there infinitely many *n* such that  $s_a(n) \sim s_b(n)$ ?

**Remark** : In the case where  $a^k = b^\ell$  with  $k, \ell$  some positive integers, the problem is trivial since it is sufficient to consider those n with digits 0 and 1 in base  $a^k$  for which we have  $s_a(n) = s_b(n)$ .

Theorem (Deshouillers, Habsieger, Landreau, Laishram (2017))

We have

 $\#\{n \le x : |s_3(n) - s_2(n)| \le 0.14572 \log n\} \gg x^{0.970359}.$ 

Note that  $(1/\log 3 - 1/\log 4) = 0.188...$ 

**Question :** Are there infinitely many *n* such that  $s_3(n) \sim s_2(n)$ ?

**Question :** Are there infinitely many *n* such that  $s_a(n) \sim s_b(n)$ ?

**Remark** : In the case where  $a^k = b^\ell$  with  $k, \ell$  some positive integers, the problem is trivial since it is sufficient to consider those n with digits 0 and 1 in base  $a^k$  for which we have  $s_a(n) = s_b(n)$ .

**Question :** What about the accumulation points of  $\{s_b(n)/s_a(n)\}_n$ ?

# Main result

#### Theorem (R. de la Bretèche, TS, G. Tenenbaum (2018+))

Let  $\tau > 0$ ,  $a, b \ge 2$  mult. indep., and  $c < c_0(a, b; \tau)$ . There are  $\gg x^c$  positive integers  $n \le x$  such that

$$s_b(n) \sim \tau s_a(n).$$

More precisely, if  $\gamma$  is an irrationality exponent of  $(\log a)/\log b$ , then

$$s_b(n) = \tau s_a(n) \left\{ 1 + O\left(\frac{1}{(\log n)^{\sigma/\gamma}}\right) \right\}$$
(1)

for all  $\sigma \in ]0, \Lambda/(6M^3 \log M)[$  for  $M = \max(a, b)$  and some explicit  $\Lambda = \Lambda(\tau_0; \tau)$ .

Moreover, for all  $\tau \neq \tau_0$ , there is an exponent  $d_0(\tau) = d_0(a, b; \tau) < 1$  such that (2) is realized by  $\ll x^{d_0(\tau)+o(1)}$  positive integers  $n \leq x$ .

### Main result

#### Theorem (R. de la Bretèche, TS, G. Tenenbaum (2018+))

Let  $\tau > 0$ ,  $a, b \ge 2$  mult. indep., and  $c < c_0(a, b; \tau)$ . There are  $\gg x^c$  positive integers  $n \le x$  such that

$$s_b(n) \sim \tau s_a(n).$$

More precisely, if  $\gamma$  is an irrationality exponent of  $(\log a)/\log b$ , then

$$s_b(n) = \tau s_a(n) \left\{ 1 + O\left(\frac{1}{(\log n)^{\sigma/\gamma}}\right) \right\}$$
(1)

for all  $\sigma \in ]0, \Lambda/(6M^3 \log M)[$  for  $M = \max(a, b)$  and some explicit  $\Lambda = \Lambda(\tau_0; \tau)$ .

Moreover, for all  $\tau \neq \tau_0$ , there is an exponent  $d_0(\tau) = d_0(a, b; \tau) < 1$  such that (2) is realized by  $\ll x^{d_0(\tau)+o(1)}$  positive integers  $n \leq x$ .

For  $s_3(n) \sim s_2(n)$  we have  $c_0 \approx 0.94996$  and  $d_0 \approx 0.993702$ .

**Irrationality exponent :** The proof only needs that  $\vartheta := (\log a)/\log b$  has a finite irrationality exponent. This is always the case (Baker, 1972) if the quotient is irrational, i.e. there exists  $\gamma \ge 2$  such that

$$\left|artheta-rac{r}{q}
ight|\ggrac{1}{q^{\gamma}}\qquadig(q\geqslant1,\,(r,q)=1ig).$$

Wu et Wang (2014) have shown that  $\gamma = 5.117$  is admissible for  $\vartheta := (\log 2) / \log 3$  (sharpening a result of Salikhov (2007)).

#### **Binomial recentering**

Let  $\mathcal{M}_k$  be the set of integers  $m \leq N_k := b^k - 1$  such that its base b expansion only contains the digits 0 and b - 1. For  $\varrho \in ]0, 1[$  we define a probability measure on  $\mathcal{M}_k$  via

$$\mathbb{P}(m) = r_k(m) := \varrho^{s_b(m)/(b-1)} (1-\varrho)^{k-s_b(m)/(b-1)},$$

such that

$$\sum_{m\in\mathcal{M}_k}\mathbb{P}(m)=\sum_{0\leqslant j\leqslant k}\binom{k}{j}\varrho^j(1-\varrho)^{k-j}=1.$$

We have

$$\mathbb{V}(s_b) = \sum_{m \in \mathcal{M}_k} r_k(m) \{ s_b(m) - \varrho(b-1)k \}^2 = \varrho(1-\varrho)k(b-1)^2,$$

such that

$$\mathbb{P}\Big(|s_b-arrho(b-1)k|>T\sqrt{k}\Big)\leqslant rac{arrho(1-arrho)(b-1)^2}{T^2} \qquad (T\geqslant 1).$$

We show that the base *a* expansion of the elements of  $\mathcal{M}_k$  are simply normal up to an exceptional set  $\mathcal{E}_k$  with probability tending to 0 as  $k \to \infty$ . This implies

$$s_a(m) \sim rac{a-1}{2\log a} \log N_k \qquad (m \in \mathcal{M}_k \setminus \mathcal{E}_k, \ k o \infty).$$

This will imply (choosing appropriately  $\rho = \rho(a, b; \tau)$ )

$$\mathbb{P}(s_b \sim au s_a) = 1 + o(1), \qquad (k o \infty).$$

Introduction and Main result Tool I : Binomial recentering Tool II : Exponential sums and discrepancy

# Exponential sums

Let 
$$e(u) := e^{2\pi i u}$$
 and set

$$\sigma_h(m,n) := \frac{1}{n} \sum_{1 \leqslant \nu \leqslant n} \mathsf{e}\Big(\frac{hm}{a^{\nu}}\Big) \qquad (m \in \mathcal{M}_k, \ n \geqslant 1, h \in \mathbb{Z})$$

and

$$\Delta_n(m) := \frac{1}{H+1} + \sum_{1 \leqslant h \leqslant H} \frac{|\sigma_h(m,n)|}{h}$$

Erdős-Turán inequality : For  $I \subset [0,1]$  we have

$$\left|\frac{1}{n}\sum_{\substack{1\leqslant\nu\leqslant n\\\{m/a^{\nu}\}\in I}}1-|I|\right|\ll\Delta_n(m)\qquad(m\in\mathcal{M}_k,\ n\geqslant 1).$$

We choose  $n := \lfloor \log N_k / \log a \rfloor$  and therefore have

$$s_a(m) = \frac{1}{2}(a-1)n + O(n\Delta_n(m)) = \frac{a-1}{2\log a}\log N_k + O(n\Delta_n(m)).$$

It remains to show that  $\Delta_n(m) \to 0$  for  $k \to \infty$  for almost all  $m \in \mathcal{M}_k$ . For  $H \geqslant 1$ ,

$$\mathbb{E}(\Delta_n) \leqslant rac{1}{H+1} + \sum_{1\leqslant h \leqslant H} rac{1}{h} \mathbb{E}ig( |\sigma_h(m,n)| ig) \leqslant rac{1}{H} + \sum_{1\leqslant h \leqslant H} rac{1}{h} M_h(n),$$

where

$$M_h(n)^2 = \frac{1}{n^2} \sum_{\mu,\nu \leqslant n} e^{-8\varrho(1-\varrho)S_h(\mu,\nu)}$$

where

$$\mathcal{S}_h(\mu,
u) = \sum_{0\leqslant j\leqslant k} \left\|h(b-1)b^j\left(rac{1}{a^
u}-rac{1}{a^\mu}
ight)
ight\|^2.$$

We observe that

$$S_h(\mu,
u) \geqslant S_h^*(\mu,
u) := \sum_{L < j \leqslant \kappa + L} \|b^j lpha\|^2, \qquad L = \lfloor \log h / \log b 
floor$$

where

$$\alpha(h,\mu,\nu) := (b-1)b^{\left\{\frac{\log h}{\log b}\right\} - \left\{\nu \frac{\log a}{\log b}\right\}} \left(1 - 1/a^{\mu-\nu}\right).$$

Then (assuming  $b \geq 3$ ), we have

$$S^*_{\hbar}(\mu, 
u) \geq rac{1}{b^2} \#\{ ext{digits} = 1 ext{ in } lpha ext{ with index in } [L+1, L+\kappa] \}.$$

A combinatorial inspection of the intervals of reals  $\beta \in [0, (b-1)b]$  then shows that

$$S_h^*(\mu,
u) \geq rac{\kappa}{2b^3}$$

with the possible exception of  $\{\nu \frac{\log a}{\log b}\}$  lying in a subset of [0, 1] of small measure. The number of exceptional integer  $\nu$  can be bounded with the discrepancy of  $(\{\nu \frac{\log a}{\log b}\})_{1 \le \nu \le n}$ .

This finally gives

$$M_h(n)^2 \ll \mathrm{e}^{-4\varrho(1-\varrho)\kappa/b^3} + \frac{1}{\sqrt{n}} + \mathrm{e}^{-\kappa/15b} + hb^{\kappa}\mathrm{e}^{-\kappa/15b}D_n,$$

where  $D_n$  is the discrepancy of  $\{\nu\vartheta\}_{\nu=1}^n$  with  $\vartheta = \log a / \log b$ .

Now,

$$D_n \ll rac{1}{q} + rac{q}{n}$$
  $\left(n \ge 1, |\vartheta - r/q| \le 2/q^2\right)$ 

and with the Dirichlet approximation theorem, we get  $D_n \ll n^{-1/\gamma}$  where  $\gamma$  is an irrationality exponent of  $\vartheta$ . It remains to choose  $\kappa$  accordingly to conclude.

# Main result

Theorem (R. de la Bretèche, TS, G. Tenenbaum (2018+))

Let  $\tau > 0$ ,  $a, b \ge 2$ , and  $c < c_0(a, b; \tau)$ . There are  $\gg x^c$  positive integers  $n \le x$  such that

 $s_b(n) \sim \tau s_a(n).$ 

More precisely, if  $\gamma$  is an irrationality exponent of  $(\log a)/\log b$ , then

$$s_b(n) = \tau s_a(n) \left\{ 1 + O\left(\frac{1}{(\log n)^{\sigma/\gamma}}\right) \right\}$$
(2)

for all  $\sigma \in ]0, \Lambda/(6M^3 \log M)[$  for  $M = \max(a, b)$  and some explicit  $\Lambda = \Lambda(\tau_0; \tau)$ .

Moreover, for all  $\tau \neq \tau_0$ , there is an exponent  $d_0(\tau) = d_0(a, b; \tau) < 1$  such that (2) is realized by  $\ll x^{d_0(\tau)+o(1)}$  positive integers  $n \leq x$ .

## Main result

Theorem (R. de la Bretèche, TS, G. Tenenbaum (2018+))

Let  $\tau > 0$ ,  $a, b \ge 2$ , and  $c < c_0(a, b; \tau)$ . There are  $\gg x^c$  positive integers  $n \le x$  such that

 $s_b(n) \sim \tau s_a(n).$ 

More precisely, if  $\gamma$  is an irrationality exponent of  $(\log a)/\log b$ , then

$$s_b(n) = \tau s_a(n) \left\{ 1 + O\left(\frac{1}{(\log n)^{\sigma/\gamma}}\right) \right\}$$
(2)

for all  $\sigma \in ]0, \Lambda/(6M^3 \log M)[$  for  $M = \max(a, b)$  and some explicit  $\Lambda = \Lambda(\tau_0; \tau)$ .

Moreover, for all  $\tau \neq \tau_0$ , there is an exponent  $d_0(\tau) = d_0(a, b; \tau) < 1$  such that (2) is realized by  $\ll x^{d_0(\tau)+o(1)}$  positive integers  $n \leq x$ .

Thank you !