On exponential sums and equations over
multiplicative subgroups in finite field.

lurii Shteinikov, joint work with B. Murphy, M. Rudnev
and |. Shkredov

Steklov Mathematical Institute

Marseille, UDT 2018

On exponential
sums and
equations over
multiplicative
subgroups in
finite field.

B. )
Rudnev and I.
Shkredov




Beginning

1. p large prime number.

2. Zq :=7/qZ - residue ring modulo g, Z — the set of
invertible elements of Zg,

3. eg(x) 1= e2™¥/a.
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Some definitions

1.

Let G C (Z/pZ)* be some multiplicative subgroup of
the field Z/pZ.

Exponential sums over subgroup G are the following
quantities S(a, G)

(a,G) = Zexp{QW/—

geiG

. Gauss sums Sp(a, p) are defined as follows

n

Sn(a, p) = Z exp{27ria; }.

0<x<p-1

| am planning to speak about upper bounds for
|S(a, G)|, and connected with them other quantities.
The firs question is to obtain some kind of nontrivial
estimates of the type |S(a, G)| = o(|G]).
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In general case we always have

1S(a, G)| < /p.
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calculated explicitly

Syp(a) =it%

In general case we always have

1S(a, G)| < /p.

So there is a question how to estimate |S(a, G)| where

1G] < p.
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For integer m > 1 let T,,(G) denotes the number of

solutions of the following equation

X+ A Xm=y1+ ...+ Ym

(mod p), xi,y; € G.
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For integer m > 1 let T,,(G) denotes the number of
solutions of the following equation

X1+ ...+ Xm=y1+ ... +ym (mod p),x,yj€G.

Estimates for |S(a, G)| can be obtained using the following
Theorem.

Theorem

For any integers m,| > 1 we have the following inequality :

1

15(2, 6)| < (PTi(G) Tm( G))7im |G 1.
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Estimates for Ty

D.R. Heath-Brown and S.V. Konyagin proved the following
result, based on the method of S.A. Stepanov, the case
m = 2; and S.V. Konyagin established for arbitrary m.

Theorem

For any m there is C(m), such that for any p, G, and
t = |G| < p*® when m =2 and t = |G| < p*/? when
m > 2, there is the following estimate

Tm(G) < C(m)2™ 2t amt,
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Estimates for Ty

D.R. Heath-Brown and S.V. Konyagin proved the following
result, based on the method of S.A. Stepanov, the case
m = 2; and S.V. Konyagin established for arbitrary m.

Theorem

For any m there is C(m), such that for any p, G, and
t = |G| < p*® when m =2 and t = |G| < p*/? when
m > 2, there is the following estimate

Tm(G) < C(m)2™ 2t amt,

It allowed to obtain

Theorem
There is a function C(g) > 0, such that if |G| > p*/**¢, then

S(a,6)l = 0(/G|p~“)).
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Further progress

Yu.V. Malykhin obtained estimates for T, and |S(a, G)
the case G C (Z/p?Z)* and proposed an approach for
getting such estimates in Z/p*Z.

,in
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Further progress

Yu.V. Malykhin obtained estimates for T, and |S(a, G)
the case G C (Z/p?Z)* and proposed an approach for
getting such estimates in Z/p*Z.

J. Bourgain and S.V. Konyagin using combinatorial
arguments deduced the followin.

,in

Theorem
There exists a function C(g) > 0, such that if |G| > p®, then

S(a, 6) = 0(/G|p~<)).
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FU rther progress On exponential

sums and
equations over
multiplicative

subgroups in

finite field.
Yu.V. Malykhin obtained estimates for T, and |S(a, G)|, in ur
the case G C (Z/p?Z)* and proposed an approach for B Murphy, M.
getting such estimates in Z/p*Z. Shkredov

J. Bourgain and S.V. Konyagin using combinatorial
arguments deduced the followin.

Theorem
There exists a function C(g) > 0, such that if |G| > p®, then

S(a, 6) = 0(/G|p~<)).

J. Bourgain obtained estimates of such type for arbitrary
composite q.




futher progress

Theorem
(I. Shkredov) If t = |G| < |/p then we have

T2(G) = O(t3~<(log £)©),

where C(a)) > 0 and C' is some absolute, t = p®.
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futher progress

Theorem

(I. Shkredov) If t = |G| < |/p then we have
T2(G) = O(t~“((log 1) "),

where C(a)) > 0 and C' is some absolute, t = p®.

Theorem

(lu.Sh., 2015) If t = |G| < \/p then we have

T5(G) = O(t*3s(log 1)),

where C— is some absolute constant.
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futher progress

Theorem

(I. Shkredov) If t = |G| < |/p then we have
T2(G) = O(t3~C(log 1)<"),

where C(a)) > 0 and C' is some absolute, t = p®.

Theorem

(lu.Sh., 2015) If t = |G| < \/p then we have

T3(G) = O(t*1 (log t)©),
where C— is some absolute constant.

Theorem
(B. Murphy, M. Rudnev, I. Shkredov, lu. Sh., arxiv.org)
Ift =|G| < \/p then we have

T3(G) = O(t* log t).
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Elements of the proof

Denote r3(a) = |{(x1,x2,x3) € G :

X] — X2 — X3 :a}\.
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Denote r3(a) = [{(x1,x2.33) € G* : x1 — 2 — 33 = a}|.
B

. Murphy, M.
Rudnev and I.

T3(G) = Z r32(a). Shkredov

a




Elements of the proof O g
equations over
multiplicative

Denote r3(a) = |{(x1, %2, x3) € G>: x1 — xo0 — x3 = a}|.

Rudnef and I.
T3(G) = Z r32(a). Shkredov
a
Consider the map (u, v, w,z) € G* — (uv, uz,wv). This is
a surjective homomorphism of groups, kernel of which
consists of |G| elements.
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Denote r3(a) = |{(x1, %2, x3) € G>: x1 — xo0 — x3 = a}|.

T3(G) = Z r32(a)' ) Shkredov i

a

Consider the map (u, v, w,z) € G* — (uv, uz,wv). This is
a surjective homomorphism of groups, kernel of which
consists of |G| elements.

1
r3(a) = Gl > rG-wyG-z(a+wz),

where
rG-wyc-=() ={(g1,8) € G*: (g1 — w)(g — 2) = I}].
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T3(G) = |G|2 Z Z MG-w)G-z)(a+ wz))2. i T
B.

Using the Cauchy-Schwartz inequality we reduce previous
expression to

Z Z rngw)(sz)(a + wz).
zZ,w a

This is a number of solutions of equation

(1 —w)(vi —z) = (12 — w)(v2 — z2).




Elements of the proof

1
T3(G) = GP Z(Z nG-wyG-z)(a+ wz))?.

Using the Cauchy-Schwartz inequality we reduce previous
expression to

Z Z rngw)(sz)(a + wz).
zZ,w a

This is a number of solutions of equation
(1 —w)(vi —z) = (12 — w)(v2 — z2).

Points (u1, v2), (w, z), (u2, v1) lie on the same line.
We are counting the number of collinear triples.
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1
T3(G) = GP Z(Z nG-wyG-z)(a+ wz))?.

Rudnev and I.

Using the Cauchy-Schwartz inequality we reduce previous Shkredov
expression to

Z Z rngw)(sz)(a + wz).
zZ,w a

This is a number of solutions of equation
(1 —w)(vi —z) = (12 — w)(v2 — z2).

Points (u1, v2), (w, z), (u2, v1) lie on the same line.

We are counting the number of collinear triples.

With the result of S.V. Konyagin (or D.A. Mitkin) based on
Stepanov’s method this quantity can be estimated.
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Thank you for your attention




