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Theorem (Coxeter) Every infinite strip of positive integers bordered
by 0s that satisfies the unimodular rule ad− bc = 1 is periodic.

Definition An infinite strip of integers of this type is called a positive
integer frieze.

Theorem (Coxeter) Every positive integer frieze is invariant under a
glide reflection.
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Theorem Each positive integer frieze is specified by a finite sequence of
positive integers.

Question (Coxeter) Characterise positive integer friezes!
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Counting friezes

Theorem There are Cn =
1

n+ 1

(
2n

n

)
positive integer friezes of

width n.

...

R.P. Stanley, Enumerative Combinatorics, vol. 2, 1999
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Definition SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}

Definition An SL2-tiling is an infinite array of integers such that any
two-by-two submatrix satisfies ad− bc = 1.
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A selection of results on SL2-tilings

Classification of tame SL2-tilings (Bergeron, Reutenauer)

Classification of positive integer SL2-tilings (Bessenrodt, Holm, Jørgensen)

Classification of infinite friezes (Baur, Parsons, Tschabold)
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· · · And much more!

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010
C. Bessenrodt, P. Jørgensen & T. Holm, All SL2-tilings come from infinite
triangulations, 2017
K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016
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with an edge (represented by a hyperbolic line) from a/b to c/d if and
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(for n = 6), has the property that term k is the Farey sum of term k − 1 and
term k + 1.
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Modular group

Definition The modular group is the group

Γ =

{
z 7−→ az + b

cz + d
: a, b, c, d ∈ Z, ad− bc = 1

}
,

which is generated by −1/(1 + z) and −1/z.

Observe that Γ ∼= PSL2(Z).

Key property The modular group is the group of automorphisms of the
Farey graph.
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Crucial observation The approximants An−1/Bn−1 and An/Bn are
adjacent in the Farey graph.
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and paths starting from ∞ in the Farey graph.
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Navigating the Farey graph



Biinfinite continued fractions

[. . . , 1, 1, 3,−2, 2,−1, 6,−2, 1,−3, 2, . . .]



Classifying integer tilings using
the Farey graph



Conway’s insight

· · ·

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4 1 2 2 3 1
1 3 5 2 1 7 3 1 3 5 2 1

2 1 7 3 1 3 5 2 1 7 3 1
1 2 4 1 2 2 3 1 2 4 1 2

1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0

· · ·

width = 7
period = 7

Theorem (Conway & Coxeter) There is a one-to-one correspondence
between positive integer friezes of period n and triangulated n-gons.

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973
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Triangulated polygons in the Farey graph

Key observation Any triangulated polygon can be embedded in the Farey
graph in essentially one way.

S. Morier-Genoud, V. Ovsienko & S. Tabachnikov, SL2(Z)-tilings of the torus,
Coxeter–Conway friezes and Farey triangulations, 2015
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Proving the Conway–Coxeter theorem

Theorem (Conway & Coxeter) There is a one-to-one correspondence
between positive integer friezes and triangulated polygons.

0 1 1 1 1 0

0 1 2 3 1 0

0 1 2 1 1 0

0 1 1 2 1 0

0 1 3 2 1 0

0 1 1 1 1 0



Tame SL2-tilings

Definition Recall that an SL2-tiling is an infinite array of integers such
that any two-by-two submatrix satisfies ad− bc = 1.

· · ·

...

5 9 4 7 17

1 2 1 2 5

2 5 3 7 18

1 3 2 5 13

3 10 7 18 47

...

· · · · · ·

...

−13 −8 −3 −4 −5
−8 −5 −2 −3 −4
−3 −2 −1 −2 −3
−4 −3 −2 −5 −8
−5 −4 −3 −8 −13

...

· · ·

Definition An SL2-tiling is tame if the determinant of each
three-by-three submatrix is 0.

Theorem Positive integer SL2-tilings are tame.
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Tame SL2-tilings

Theorem An SL2-tiling is tame if and only if there are integers ki,
i ∈ Z, such that

rowi+1 + rowi−1 = ki rowi, for i ∈ Z.

Comments on tame tilings

• This row recurrence relation resembles the continued fractions
recurrence relation.

• Tame tilings can have zeros and negative integers.

• Tame tilings have rigidity.

• More general tilings unknown.
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Classification of tame SL2-tilings

Theorem There is a one-to-one correspondence between tame
SL2-tilings and pairs of biinfinite paths in the Farey graph.

Remark Really we consider tame SL2-tilings modulo ±, and we
consider pairs of biinfinite paths in the Farey graph modulo the action of
the modular group.

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010
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Classification of positive integer SL2-tilings

Theorem There is a one-to-one correspondence between positive
integer SL2-tilings and pairs of monotonic biinfinite paths in the Farey
graph that do not intersect.

C. Bessenrodt, P. Jørgensen & T. Holm, All SL2-tilings come from infinite
triangulations, 2017



Classification of infinite friezes

Theorem There is a one-to-one correspondence between infinite friezes
and biinfinite paths in the Farey graph.

Corollary There is a one-to-one correspondence between positive
integer infinite friezes and monotonic biinfinite paths in the Farey graph.

K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016
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Classification of tame friezes

Theorem There is a one-to-one correspondence between tame integer
friezes of period n and closed paths in the Farey graph of length n.

· · ·

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 1 −1 1 1 3 1 1

2 0 −2 −2 0 2 2 0

−1 −1 −3 −1 −1 1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0

· · ·



The Farey graph modulo n



Farey graph modulo n

Definition Let Zn = {0, 1, 2, . . . , n}.
The Farey graph modulo n is the graph with vertices

{(a, b) : a, b ∈ Zn, gcd(a, b, n) = 1}/ ∼,

where (a, b) ∼ (a′, b′) if (a′, b′) ≡ −(a, b) (mod n), and such that vertices
(a, b) and (c, d) are joined by an edge if and only if ad− bc ≡ ±1 (mod n).

I. Ivrissimtzis & D. Singerman, Regular maps and principal congruence
subgroups of Hecke groups, 2005
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Ivrissimtzis and Singerman’s regular maps

· · ·

0 0 0 0 0
1 1 1 1 1

2 4 2 4 2
1 1 1 1 1

0 0 0 0 0

· · ·

Definition The vertices of the form (a, 0) are said to be a set of poles,
as is any image of this set under Γ(n). There are φ(n)/2 vertices in a set
of poles.

Theorem There is a one-to-one correspondence between tame integer
friezes modulo n and paths on the Farey graph modulo n from one vertex
in a set of poles to another.
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