The Farey graph, continued fractions and SL_2 -tilings

lan Short

Thursday 4 October 2018

Work in preparation with Peter Jørgensen (Newcastle)

0 0 0 0 0 $1 \quad 1 \quad 1 \quad 1 \quad 1$ b 2 1 $2 \quad 1 \quad 2 \quad \cdots$. . . ad1 1 1 1 1 c0 0 0 0 0

Theorem (Coxeter) Every infinite strip of positive integers bordered by 0s that satisfies the unimodular rule ad - bc = 1 is periodic.

Theorem (Coxeter) Every infinite strip of positive integers bordered by 0s that satisfies the unimodular rule ad - bc = 1 is periodic.

Definition An infinite strip of integers of this type is called a *positive integer frieze*.

Theorem (Coxeter) Every infinite strip of positive integers bordered by 0s that satisfies the unimodular rule ad - bc = 1 is periodic.

Definition An infinite strip of integers of this type is called a *positive integer frieze*.

Theorem (Coxeter) Every positive integer frieze is invariant under a glide reflection.

Integer friezes

Integer friezes

Coxeter's question

Coxeter's question

Theorem Each positive integer frieze is specified by a finite sequence of positive integers.

Coxeter's question

Theorem Each positive integer frieze is specified by a finite sequence of positive integers.

Question (Coxeter) Characterise positive integer friezes!

Conway's insight

 $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$. . . $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ width = 7period = 7

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

Conway's insight

 $\mathbf{2}$ 1 1 1 1 1 1 1 width = 7period = 7

Theorem (Conway & Coxeter) There is a one-to-one correspondence between positive integer friezes of period n and triangulated n-gons.

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

Counting friezes

Theorem There are $C_n = \frac{1}{n+1} \binom{2n}{n}$ positive integer friezes of width n. a. Triangulations of a convex (n + 2)-gon into n triangles by n - 1 diagonals that do not intersect in their interiors: **b.** Binary parenthesizations of a string of n + 1 letters: $(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$ mmm. Positive integer sequences $a_1, a_2, \ldots, a_{n+2}$ for which there exists an integer array (necessarily with n + 1 rows) $1 \ 1 \ 1 \ \cdots \ 1 \ 1 \ 1 \ \cdots \ 1 \ 1$ (6.54) r_1 r_2 r_3 \cdots r_{n+2} r_1 1 1 1 1 such that any four neighboring entries in the configuration s_{u}^{r} satisfy st =ru + 1 (an example of such an array for $(a_1, \ldots, a_8) = (1, 3, 2, 1, 5, 1, 2, 3)$

R.P. Stanley, Enumerative Combinatorics, vol. 2, 1999

$\mathsf{SL}_2\text{-tilings}$

SL_2 -tilings

SL_2 -tilings

$\mathsf{SL}_2\text{-tilings}$

Definition

on
$$\mathsf{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

SL_2 -tilings

Definition
$$SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

Definition An SL₂-*tiling* is an infinite array of integers such that any two-by-two submatrix satisfies ad - bc = 1.

SL_2 -tilings

Definition
$$\mathsf{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

Definition An SL₂-*tiling* is an infinite array of integers such that any two-by-two submatrix satisfies ad - bc = 1.

Classification of *tame* SL₂-tilings (Bergeron, Reutenauer)

F. Bergeron & C. Reutenauer, SL_k-tilings of the plane, 2010
C. Bessenrodt, P. Jørgensen & T. Holm, All SL₂-tilings come from infinite triangulations, 2017
K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Classification of tame SL₂-tilings (Bergeron, Reutenauer)

Classification of *positive integer* SL₂-tilings (Bessenrodt, Holm, Jørgensen)

F. Bergeron & C. Reutenauer, SL_k -tilings of the plane, 2010

C. Bessenrodt, P. Jørgensen & T. Holm, All SL₂-tilings come from infinite triangulations, 2017

K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Classification of *tame* SL₂-tilings (Bergeron, Reutenauer)

Classification of *positive integer* SL₂-tilings (Bessenrodt, Holm, Jørgensen)

Classification of infinite friezes (Baur, Parsons, Tschabold)

F. Bergeron & C. Reutenauer, SL_k-tilings of the plane, 2010
C. Bessenrodt, P. Jørgensen & T. Holm, All SL₂-tilings come from infinite triangulations, 2017
K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Classification of *tame* SL₂-tilings (Bergeron, Reutenauer)

Classification of *positive integer* SL₂-tilings (Bessenrodt, Holm, Jørgensen)

Classification of *infinite friezes* (Baur, Parsons, Tschabold)

F. Bergeron & C. Reutenauer, SL_k-tilings of the plane, 2010
C. Bessenrodt, P. Jørgensen & T. Holm, All SL₂-tilings come from infinite triangulations, 2017
K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

The Farey graph

Farey graph

Farey graph

Definition The Farey graph is the graph with vertices $\mathbb{Q} \cup \{\infty\}$, and with an edge (represented by a hyperbolic line) from a/b to c/d if and only if |ad - bc| = 1.

Farey addition

Farey addition

Farey's observation The Farey sequence of level n,

 $\frac{0}{1}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{1}{1}$

(for n = 6), has the property that term k is the Farey sum of term k - 1 and term k + 1.

Automorphism group $\cong C_2 * C_3$

Definition The modular group is the group

$$\Gamma = \left\{ z \longmapsto \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{Z}, ad-bc = 1 \right\},\$$

which is generated by -1/(1+z) and -1/z.

Definition The modular group is the group

$$\Gamma = \left\{ z \longmapsto \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{Z}, ad-bc = 1 \right\},\$$

which is generated by -1/(1+z) and -1/z. Observe that $\Gamma \cong \mathsf{PSL}_2(\mathbb{Z})$.

Definition The modular group is the group

$$\Gamma = \left\{ z \longmapsto \frac{az+b}{cz+d} \, : \, a,b,c,d \in \mathbb{Z}, \, ad-bc = 1 \right\},$$

which is generated by -1/(1+z) and -1/z. Observe that $\Gamma \cong \mathsf{PSL}_2(\mathbb{Z})$.

Key property The modular group is the group of automorphisms of the Farey graph.

Integer continued fractions

 $\frac{31}{13}$

$$\frac{31}{13} = 2 + \frac{5}{13}$$

$$\frac{31}{13} = 2 + \frac{5}{13} = 2 + \frac{1}{\frac{13}{5}}$$

$$\begin{array}{rcl} \frac{31}{13} & = & 2+\frac{5}{13} \\ & = & 2+\frac{1}{\frac{13}{5}} \\ & = & 2+\frac{1}{2+\frac{3}{5}} \end{array}$$

$$\begin{array}{rcl} \frac{31}{13} & = & 2+\frac{5}{13} \\ & = & 2+\frac{1}{\frac{13}{5}} \\ & = & 2+\frac{1}{2+\frac{1}{\frac{5}{3}}} \end{array}$$

$$\begin{array}{rcl} \frac{31}{13} & = & 2 + \frac{5}{13} \\ & = & 2 + \frac{1}{\frac{13}{5}} \\ & = & 2 + \frac{1}{2 + \frac{1}{\frac{5}{3}}} \\ & = & 2 + \frac{1}{2 + \frac{1}{\frac{5}{3}}} \\ & = & 2 + \frac{1}{2 + \frac{1}{1 + \frac{2}{3}}} \end{array}$$

$$\begin{array}{rcl} \frac{31}{13} & = & 2 + \frac{5}{13} \\ & = & 2 + \frac{1}{\frac{13}{5}} \\ & = & 2 + \frac{1}{\frac{1}{2} + \frac{1}{\frac{5}{3}}} \\ & = & 2 + \frac{1}{2 + \frac{1}{\frac{5}{3}}} \\ & = & 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{3}{2}}}} \end{array}$$

 $\frac{31}{13}$

$$\frac{31}{13} = 2 + \frac{1}{\frac{13}{5}}$$

$$\frac{31}{13} = 2 + \frac{1}{\frac{13}{5}} = 2 + \frac{1}{3 - \frac{2}{5}}$$

$$\frac{31}{13} = 2 + \frac{1}{\frac{13}{5}} \\ = 2 + \frac{1}{3 + \frac{1}{-\frac{5}{2}}}$$

$$\frac{31}{13} = 2 + \frac{1}{\frac{13}{5}}$$

$$= 2 + \frac{1}{3 + \frac{1}{-\frac{5}{2}}}$$

$$= 2 + \frac{1}{3 + \frac{1}{-\frac{5}{2}}}$$

$$= 2 + \frac{1}{3 + \frac{1}{-3 + \frac{1}{2}}}$$

Another expansion

Another expansion

Question How many integer continued fraction expansions of 31/13 are there?
Approximants

Approximants

Calculating approximants

$$\begin{pmatrix} A_n & A_{n-1} \\ B_n & B_{n-1} \end{pmatrix} = \begin{pmatrix} b_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_n & 1 \\ 1 & 0 \end{pmatrix}$$

Approximants

Calculating approximants

$$\begin{pmatrix} A_n & A_{n-1} \\ B_n & B_{n-1} \end{pmatrix} = \begin{pmatrix} b_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_n & 1 \\ 1 & 0 \end{pmatrix}$$
$$|A_n B_{n-1} - A_{n-1} B_n| = 1$$

Approximants

$$\frac{A_n}{B_n} = b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \frac{1}{b_4 + \dots + \frac{1}{b_n}}}}$$

Calculating approximants

$$\begin{pmatrix} A_n & A_{n-1} \\ B_n & B_{n-1} \end{pmatrix} = \begin{pmatrix} b_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_n & 1 \\ 1 & 0 \end{pmatrix}$$
$$|A_n B_{n-1} - A_{n-1} B_n| = 1$$

Crucial observation The approximants A_{n-1}/B_{n-1} and A_n/B_n are adjacent in the Farey graph.

$$\frac{3}{4} = \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{4} = \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{A_1}{B_1} = 0,$$

$$\frac{3}{4} = \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{A_1}{B_1} = 0, \quad \frac{A_2}{B_2} = \frac{1}{1} = 1,$$

$$\frac{3}{4} = \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{A_1}{B_1} = 0, \quad \frac{A_2}{B_2} = \frac{1}{1} = 1, \quad \frac{A_3}{B_3} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}$$

$$\frac{3}{4} = \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{A_1}{B_1} = 0, \quad \frac{A_2}{B_2} = \frac{1}{1} = 1, \quad \frac{A_3}{B_3} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}, \quad \frac{A_4}{B_4} = \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}} = \frac{3}{4}$$

$$\frac{3}{4} = \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{4} = \frac{1}{1 + \frac{1}{3}}$$

$$\frac{3}{4} = 1 + \frac{1}{-4}$$

Theorem There is a one-to-one correspondence between integer continued fractions and paths starting from ∞ in the Farey graph.

Navigating the Farey graph

Biinfinite continued fractions

$$[\dots, 1, 1, 3, -2, 2, -1, 6, -2, 1, -3, 2, \dots]$$

Classifying integer tilings using the Farey graph

Conway's insight

 $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$. . . $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ width = 7period = 7

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

Conway's insight

 $\mathbf{2}$ 1 1 1 1 1 1 1 width = 7period = 7

Theorem (Conway & Coxeter) There is a one-to-one correspondence between positive integer friezes of period n and triangulated n-gons.

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

Triangulated polygons in the Farey graph

Key observation Any triangulated polygon can be embedded in the Farey graph in essentially one way.

S. Morier-Genoud, V. Ovsienko & S. Tabachnikov, SL₂(\mathbb{Z})-tilings of the torus, Coxeter–Conway friezes and Farey triangulations, 2015

Triangulated polygons in the Farey graph

Key observation Any triangulated polygon can be embedded in the Farey graph in essentially one way.

S. Morier-Genoud, V. Ovsienko & S. Tabachnikov, SL₂(\mathbb{Z})-tilings of the torus, Coxeter–Conway friezes and Farey triangulations, 2015

Proving the Conway-Coxeter theorem

Theorem (Conway & Coxeter) There is a one-to-one correspondence between positive integer friezes and triangulated polygons.

Definition Recall that an SL₂-*tiling* is an infinite array of integers such that any two-by-two submatrix satisfies ad - bc = 1.

Definition Recall that an SL₂-*tiling* is an infinite array of integers such that any two-by-two submatrix satisfies ad - bc = 1.

Definition An SL₂-tiling is *tame* if the determinant of each three-by-three submatrix is 0.

Definition Recall that an SL₂-*tiling* is an infinite array of integers such that any two-by-two submatrix satisfies ad - bc = 1.

			:						:			
	5	9	4	7	17		-13	-8	-3	-4	-5	
	1	2	1	2	5		-8	-5	-2	-3	-4	
•••	2	5	3	7	18		 -3	-2	-1	-2	-3	
	1	3	2	5	13		-4	-3	-2	-5	-8	
	3	10	7	18	47		-5	-4	-3	-8	-13	
			:						:			

.

Definition An SL₂-tiling is *tame* if the determinant of each three-by-three submatrix is 0.

Theorem Positive integer SL₂-tilings are tame.

${\sf Tame}\ {\sf SL}_2{\sf -tilings}$

Theorem An SL₂-tiling is tame if and only if there are integers k_i , $i \in \mathbb{Z}$, such that

$$\operatorname{row}_{i+1} + \operatorname{row}_{i-1} = k_i \operatorname{row}_i, \text{ for } i \in \mathbb{Z}.$$

Theorem An SL₂-tiling is tame if and only if there are integers k_i , $i \in \mathbb{Z}$, such that

$$\operatorname{row}_{i+1} + \operatorname{row}_{i-1} = k_i \operatorname{row}_i, \text{ for } i \in \mathbb{Z}.$$

Comments on tame tilings

- This row recurrence relation resembles the continued fractions recurrence relation.
- Tame tilings can have zeros and negative integers.
- Tame tilings have rigidity.
- More general tilings unknown.

Classification of tame SL $_2$ -tilings

Theorem There is a one-to-one correspondence between tame SL_2 -tilings and pairs of biinfinite paths in the Farey graph.

F. Bergeron & C. Reutenauer, SL_k -tilings of the plane, 2010

Classification of tame SL₂-tilings

Theorem There is a one-to-one correspondence between tame SL_2 -tilings and pairs of biinfinite paths in the Farey graph.

Remark Really we consider tame SL₂-tilings modulo \pm , and we consider pairs of biinfinite paths in the Farey graph modulo the action of the modular group.

F. Bergeron & C. Reutenauer, SL_k -tilings of the plane, 2010

Classification of tame SL₂-tilings

Theorem There is a one-to-one correspondence between tame SL_2 -tilings and pairs of biinfinite paths in the Farey graph.

Remark Really we consider tame SL₂-tilings modulo \pm , and we consider pairs of biinfinite paths in the Farey graph modulo the action of the modular group.

F. Bergeron & C. Reutenauer, SL_k -tilings of the plane, 2010

Classification of positive integer SL $_2\text{-tilings}$

Theorem There is a one-to-one correspondence between positive integer SL_2 -tilings and pairs of monotonic biinfinite paths in the Farey graph that do not intersect.

C. Bessenrodt, P. Jørgensen & T. Holm, All SL_2 -tilings come from infinite triangulations, 2017

Classification of infinite friezes

Theorem There is a one-to-one correspondence between infinite friezes and biinfinite paths in the Farey graph.

K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Theorem There is a one-to-one correspondence between infinite friezes and biinfinite paths in the Farey graph.

Corollary There is a one-to-one correspondence between positive integer infinite friezes and monotonic biinfinite paths in the Farey graph.

K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Classification of tame friezes

Theorem There is a one-to-one correspondence between tame integer friezes of period n and closed paths in the Farey graph of length n.

The Farey graph modulo n

Farey graph modulo n

Definition Let $\mathbb{Z}_n = \{0, 1, 2, ..., n\}$. The Farey graph modulo n is the graph with vertices

$$\{(a,b): a,b\in \mathbb{Z}_n, \gcd(a,b,n)=1\}/\sim,$$

where $(a,b) \sim (a',b')$ if $(a',b') \equiv -(a,b) \pmod{n}$, and such that vertices (a,b) and (c,d) are joined by an edge if and only if $ad - bc \equiv \pm 1 \pmod{n}$.

I. Ivrissimtzis & D. Singerman, *Regular maps and principal congruence subgroups of Hecke groups*, 2005
Farey graph modulo n

Definition Let $\mathbb{Z}_n = \{0, 1, 2, ..., n\}$. The Farey graph modulo n is the graph with vertices

$$\{(a,b): a,b\in \mathbb{Z}_n, \gcd(a,b,n)=1\}/\sim,$$

where $(a,b) \sim (a',b')$ if $(a',b') \equiv -(a,b) \pmod{n}$, and such that vertices (a,b) and (c,d) are joined by an edge if and only if $ad - bc \equiv \pm 1 \pmod{n}$.

I. Ivrissimtzis & D. Singerman, *Regular maps and principal congruence subgroups of Hecke groups*, 2005

Definition The vertices of the form (a, 0) are said to be a set of *poles*, as is any image of this set under $\Gamma(n)$. There are $\phi(n)/2$ vertices in a set of poles.

Definition The vertices of the form (a, 0) are said to be a set of *poles*, as is any image of this set under $\Gamma(n)$. There are $\phi(n)/2$ vertices in a set of poles.

Theorem There is a one-to-one correspondence between tame integer friezes modulo n and paths on the Farey graph modulo n from one vertex in a set of poles to another.

References

- H.S.M. Coxeter, Frieze patterns, 1971
- J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973
- R.P. Stanley, Enumerative Combinatorics, vol. 2, 1999
- F. Bergeron & C. Reutenauer, SL_k-tilings of the plane, 2010
- C. Bessenrodt, P. Jørgensen & T. Holm, All SL₂-tilings come from infinite triangulations, 2017
- K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016
- J. Farey, Philosophical Magazine, 1816
- S. Morier-Genoud, V. Ovsienko & S. Tabachnikov, $SL_2(\mathbb{Z})$ -tilings of the torus, Coxeter-Conway friezes and Farey triangulations, 2015
- I. Ivrissimtzis & D. Singerman, *Regular maps and principal congruence subgroups of Hecke groups*, 2005