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Quasi-random graphs and pseudo-random binary sequences

In 1997 C. Mauduit and Sárközy proposed a new, constructive and
quantitative approach to study pseudo-randomness of binary sequences.
In particular, we introduced measures of pseudo-randomness of binary
sequences

(1) EN = (e1, e2, . . . , eN) ∈ {−1,+1}N.

The most important of them is:

DEFINITION 1. If k ∈ N, N ∈ N, then the correlation of order k of the
sequence EN of form (1) is defined as

Ck(EN) = max
D,M

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 . . . en+dk

∣

∣

∣

∣

where D = (d1, d2, . . . , dk) with 0 < d1 < d2 < . . . < dk ≤ N − M − dk .

Cassaigne, Mauduit and Sárközy showed that if N → ∞, then for a
truly random binary sequence EN of type (1) the value of Ck(EN) is
around N1/2.
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Thus if Ck(EN) is “not much greater than N1/2”, say,
Ck(EN) < N1/2+o(1), then this is considered as a strong PR
(= pseudorandom) property of EN .

Since that more than 200 papers have been written along these lines
by different authors, and in these papers many constructions have been
presented for large families of binary sequences with strong
pseudorandom properties.

Recently, Borbély and Sárközy realized that these results can be also
utilized for constructing graphs with strong PR properties. In my talk I
will speak on our first results (the paper is submitted to the journal
Combinatorica).
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The importance of giving explicit constructions for graphs with strong
pseudorandom properties is explained, e.g., in [B. Bollobás, Random
Graphs, Chapter XIII], [N. Alon and J. H. Spencer, The Probabilistic
Method, Chapter 9], [F, R, K. Chung, R. L. Graham and R. M. Wilson,
Quasi-random graphs, Proc. Natl. Acad. Sci. USA 85 (1988), 969–970],
[A. Thomason, Pseudo-random graphs, Annals Discrete Math. 33
(1987), 307–331]. Indeed, an explicit construction “may shed more light
on the corresponding problem” [Alon–Spencer], explicit constructions “are
more illuminating than existence proofs” [Bollobás], “often happens that
a random looking structure is useful for a certain algorithmic procedure”
[Alon–Spencer].

In spite of this, in the most related papers and monographs only a few
explicit constructions are mentioned (mostly the Payley graph and also a
few further constructions using linear algebra).
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The intensive study of PR graphs started in 1987–89 in two papers of
Chang, Graham and Wilson (who introduced the notion of quasi-random
graphs) and two papers of Thomason (who introduced the notion of
“(p, α)-jumbled graph”, and they also presented a few more constructions.

In our paper(s) with Borbély our goal is to propose methods for
constructing explicitly given pseudo-random graphs and to present large
families of them. In particular, in our first paper we focused on the
“quasi-randomness” approach of Chang, Graham and Wilson since it is
simpler and more transparent than Thomason’s approach (which we will
study in the sequels).
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We will need the following definitions, notations and facts.

DEFINITION 2. The adjacency matrix of the (undirected) graph Gn on
the n vertices V = {v1, v2, . . . , vn} is defined as the n × n matrix
A(Gn) =

[

a(i , j)
]n

i,j=1
where

a(i , j) =

{

1 if the vertices vi , vj are joined,

0 if the vertices vi , vj are not joined.

The adjacency matrix has the following properties:
(i) every element of it is 0 or 1,
(ii) the elements in the main diagonal are 0,
(iii) it is symmetric: a(i , j) = a(j , i).
Every (undirected) graph uniquely determines its adjacency matrix

and vice versa: every square matrix with these properties uniquely
determines the graph whose adjacency matrix it is.
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In their papers Chang, Graham and Wilson studied graphs Gn with n
vertices and edge density 1/2 (i.e., roughly speaking, two vertices are
joined with probability 1/2). They “. . . introduce a large equivalence class
of graph properties, all of which are shared by so-called random graphs.
Unlike random graphs, however, it is often relatively easy to verify that a
particular family of graph possesses some property in this class.”

They list 7 such properties of graphs Gn with n → ∞. Here we will
use only the sixth property P6 which says:

P6: writing

s(i , j) =
∣

∣

∣

{

x ∈ {1, 2, . . . , n} : a(i , x) = a(j , x)
}

∣

∣

∣ for i , j ∈ {1, 2, . . . , n}

we have
∑

i,j∈{1,2,...,n}

∣

∣

∣s(i , j)−
n

2

∣

∣

∣ = o(n3).

(For almost every pair i , j the number of vertices vx such that they are
joined either to both vi , vj or to none of them is about n

2
as expected.)
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Chung et al. proved:

THEOREM A. These 7 properties are equivalent.

Based on this theorem they define the notion of quasi-random graph
in the following way:

DEFINITION 3. Graphs having any (and therefore, all) of the above
properties will be called quasi-random.

Our goal was to construct quasi-random graphs starting out from PR
binary sequences. The simplest way to define a graph is to define its
adjacency matrix. But this would mean that we want to make “random
type” two-dimensional structures (matrices) from one-dimensional ones
(sequences) which may seem a wrong approach. However, taking a look
at the Payley graph (which is the most important example for
quasi-random graph) may put us on the right track. The definition of the
Payley graph is: we take a prime q of form 4k + 1, and then the
adjacency matrix [a(i , j)]qi,j=1

of it is defined by

a(i , j) =

{

1 if
(

j−i
q

)

= +1,

0 otherwise

(where
(

...
q

)

is the Legendre symbol).

8 / 20



E.g., for q = 13 this matrix is

















0 1 0 1 1 0 0 0 0 1 1 0 1
1 0 1 0 1 1 0 0 0 0 1 1 0
0 1 0 1 0 1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 1 0 0 0 0 1
· · · · · · · · · · · · ·
1 0 1 1 0 0 0 0 1 1 0 1 0

















Observe:

(i) in the first row we have 1 if and only if the column index j is such
that j − 1 is a quadratic residue,

(ii) we get every row from the preceding one by shifting it to the right
by one position cyclically.
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About (i): the first row is closely related to the mod 13 Legendre
symbol sequence which is a binary sequence with strong PR properties:













0,
(

1
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)

,

(

2

13

)
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)
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)
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(
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13

)
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)
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(

7

13

)

,

(

8

13

)

,

(

9

13

)

,

(

10

13

)

,

(

11

13

)

,

(

12

13

)

q q q q q q q q q q q q

0, +1 −1 +1 +1 −1 −1 −1 −1 +1 +1 −1 +1

↓ ↓ ↓ ↓ ↓ ↓

0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1













(=first

row of the

matrix)

So that replacing the −1’s in the Legendre symbol sequence by 0’s we
get the first row.

About (ii): it is a so-called “circulant matrix”:
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DEFINITION 4. A circulant matrix is a square matrix whose each row
vector can be obtained from the preceding vector by rotating it one
element to the right, i.e., a matrix Z of the form

(2) Z =













z0 z1 z2 . . . zn−2 zn−1

zn−1 z0 z1 . . . zn−3 zn−2

zn−2 zn−1 z0 . . . zn−4 zn−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
z1 z2 z3 . . . zn−1 z0













.

Such a circulant matrix is uniquely determined by its first row

(3) Zn =
(

z0, z1, z2, . . . , zn−2, zn−1

)

.

Thus we will say

DEFINITION 5. The circulant matrix Z in (2) is generated by the
sequence Zn in (3), and the matrix generated by the sequence Zn is
denoted by Z = Z (Zn).
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Based on these observations we proposed the following steps for
constructing a quasi-random graph:

(i) take a family of binary sequences
EN = (e0, e1, . . . , eN−1) ∈ {−1,+1}N with strong PR properties (in
particular, with small C2(EN));

(ii) transform them into binary sequences
FN = (f0, f1, . . . , fN−1) ∈ {0, 1}N;

(iii) adjust these sequences so that f0 = 0 should hold;
(iv) keep a subfamily of these sequences consisting of symmetric

sequences, i.e., sequences such that extending them in both directions
periodically modulo N : (. . . , f−2, f−1, f0, f1, f2, . . .) we have fi = f−i for all
i ∈ Z;

(v) show that it follows from the PR properties considered (more
precisely, from the small C2 of them) that for all the binary sequences
belonging to the subfamily described in (iv) are such that the circulant
matrices generated by them are the adjacency matrices of graphs
possessing property P6 defined earlier, thus by the theorem of Chung,
Graham and Wilson these graphs are quasi-random.
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Indeed, we have proved the following theorem which shows that this
method works:

THEOREM 1. Assume that n ∈ Z, n → ∞,

(4) Fn = (f0, f1, . . . , fn−1) ∈ {−1,+1}n

is such that (i) f0 = −1, (ii) Fn is symmetric, (iii) C2(Fn) = o(n).
Define the mapping ϕ : {−1,+1} → {0, 1} by

ϕ(e) =
1 + e

2
(for e ∈ {−1,+1}),

and then define the bijection Φ : {−1,+1}n ↔ {0, 1}n by

Φ(En) = Φ
(

(e0, e1, . . . , en−1)
)

=
(

ϕ(e0), ϕ(e1), . . . , ϕ(en−1)
)

(for En = (e0, e1, . . . , en−1) ∈ {−1,+1}n). Transform the −1,+1
sequence Fn in (4) into a bit sequence by using the transformation Φ,
i.e., write

F ′
n = (f ′

0
, f ′

1
, . . . , f ′

n−1
) = Φ(Fn) =

(

ϕ(f0), ϕ(f1), . . . , ϕ(fn−1)
)

,
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and consider the circulant matrix Z (F ′
n). Then this matrix is a bit matrix,

its elements in the main diagonal are 0, and it is symmetric. Thus there
is a uniquely determined graph Gn(F

′
n) whose adjacency matrix is Z (F ′

n).
Then this graph Gn(F

′
n) possesses property P6 of Chung, Graham and

Wilson, thus it is quasi-random by their Theorem A.

The most important part of the proof is that the sum in P6 is small
(

o(n3)
)

; this can be derived from assumption (iii) (C2(Fn) = o(n))
relatively easily by a one and half page computation.

Note that the crucial assumptions are (ii) (symmetry) and (iii)
(

C2(. . .) = o(n)
)

; thus to construct quasi-random graphs we may start
out from −1,+1 sequences with small C2, and then we have to look for
symmetric ones among them.

Finally, in our paper we presented 6 examples for applications of our
Theorem 1. First we showed that the quasi-randomness of the Payley
graph (which is a well-known fact) is just a (very) special case of our
theorem:
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COROLLARY 1. If q = 4k + 1 is a prime, then the Payley graph (defined
earlier) is quasi-random.

SKETCH OF THE PROOF. One takes Fq = {f0, f1, . . . , fq−1} =
{

−1,
(

1

q

)

,
(

2

q

)

, . . . ,
(

q−1

q

)}

in Theorem 1. Then Gq(F
′
q) is the Payley

graph, and Theorem 1 can be applied since Fq is symmetric, i.e.,
(

i
q

)

=
(

−i
q

)

which follows from q = 4k + 1, and

C2(Fq) = C2

(

−1,

(

1

q

)

,

(

2

q

)

, . . . ,

(

q − 1

q

))

≪

≪ C2

((

1

q

)

,

(

2

q

)

, . . . ,

(

q − 1

q

))

= o(q)

which can be proved by Weil’s theorem (see, e.g., our ’97 paper with
Mauduit on pseudorandomness of binary sequences in which we also

proved that C2

((

1

q

)

,
(

2

q

)

, . . . ,
(

q−1

q

))

≪ q1/2 log q).

15 / 20



Finally, another (more complicated) application of Theorem 1:
As suggested earlier, we will start out from a family of ±1 sequences

with strong PR properties:

THEOREM B (L. Goubin, C. Mauduit, A. Sárközy, 2004). Assume: q is
a prime, f (x) ∈ Fq[x ], deg f (x) = t (> 0), f (x) has no multiple zero in
Fq, and the sequence Eq = (e1, e2, . . . , eq) is defined by

en =

{
(

f (n)
q

)

for (f (n), q) = 1,

+1 for q | f (n)

(for n = 1, 2, . . . , q) where
(

...
q

)

is the Legendre symbol, k ∈ N satisfies

one of the following assumptions:
(i) k = 2;
(ii) k < q, and 2 is a primitive root modulo q;
(iii) (4t)k < q.
Then we have

(5) Ck(Eq) < 10tkq1/2 log q.
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As we suggested earlier, if we have a family of ±1 sequences with
strong PR properties (small C2) at hand, then the next step is to find a
large subfamily of it consisting of sequences possessing the symmetry
property, and then to adjust these sequences to be able to use Theorem 1:
we transform them into bit sequences and modify them to ensure that
their first element is 0. In this case we end up with the following theorem:
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THEOREM 2. Assume that q is prime with q → ∞, t ∈ N with

(6) t = o

(

q1/2

log q

)

,

and let a1, a2, . . . , at ∈ Fq be such that

(7) ai 6= 0 for i = 1, 2, . . . , t
and
(8) a2

i 6= a2

j for i , j = 1, 2, . . . , t, i 6= j .

Define f (x) ∈ Fq[x ] by

(9) f (x) =

t
∏

i=1

(x2 − a2

i ) =

t
∏

i=1

(x − ai)(x + ai)

and Fq = (f0, f1, . . . , fq−1) by

(10) fi =

{(

f (i)
q

)

for (f (i), q) = 1,

+1 for q | f (i)

(for i = 0, 1, . . . , q − 1), and write

F q =
(

f 0, f 1, . . . , f q−1

)

=−f0(f0, f1, . . . , fq−1)=(−1,−f0f1, . . . ,−f0fq−1).

Then the circulant graphs Gq = Gq(F
′

q) are quasi-random.
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PROOF. We will apply Theorem 1 with F q in place of Fn. Indeed, the
first element of F q is −1 so that (i) in the Theorem holds. Fq is
symmetric, i.e. fi = fq−i since the polynomial f (x) in (9) and (10) is
even, thus F q is also symmetric so that (ii) also holds. Finally, it follows
from (7), (8) and (9) that all the zeros of f (x) are in Fq and they are
distinct, thus we may apply Theorem B with Fq and 2 in place of Eq and
k , so that we may apply it to estimate C2(Fq). Then by (6) (our
assumption on t), we obtain from (5) in Theorem B that

C2(F q) = C2(Fq) < 10tkq1/2 log q = 20tq1/2 log q

= o

(

q1/2

log q

)

q1/2 log q = o(q)

so that F q also satisfies (iii) in Theorem 1. Thus, indeed, we may apply
Theorem 1 with F q in place of Fn, and then we get that the circulant

graphs Gq = Gq(F
′

q) are quasi-random, which was to be proved.

There are 4 more constructions presented in our paper. (Two of them
are “good” in a certain quantitative sense, while two others will serve to
illustrate certain phenomena in our next papers.)
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THANK YOU FOR YOUR ATTENTION!
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