


Marseille 2018

On the digits of primes and squares
Joél RIVAT
Institut de Mathématiques de Marseille, Université d'Aix-Marseille.

in collaboration with

Michael DRMOTA (TU Wien)
Christian MAUDUIT (Marseille)



Background, problems and Results
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Gelfond’s paper

In base ¢ > 2 any n € N can be written n = » gj(n) ¢’ where ej(n) €{0,...,q—1}.
7=0

Gelfond, 1968: The sum of digits S(n) = > ;(n) is well distributed in arithmetic progres-

j=0
sions: given m > 2 with (m,q — 1) = 1, there exists an explicit oy, > O such that
vm! € N*, Y(n/, s) € 72, 3 1=—— 4 0(am),
mm

nx
n=n' mod m/’
s(n)=s mod m

Gelfond’s problems, 1968:
1. Evaluate the number of prime numbers p < x such that s(p) = a mod m.

2. Evaluate the number of integers n < x such that s(P(n)) = a mod m, where P is
suitable polynomial [for example P(n) = n?].



Gelfond’s conjecture for primes
Mauduit-Rivat, 2010: If (¢ — 1)a € R\ Z, there exists Cy(a) > 0 and o4(a) > O,

< Cy(a) pl—oale)

Z exp(2iras(p))

P

Hence

e For g > 2 the sequence (aS(pn))n>1 is equidistributed modulo 1 if and only if & € R\ Q

(here (pn)yn>1 denotes the sequence of prime numbers).

e Forg>2,m > 2suchthat (m,q—1) =1 and a € Z,

> 1~%Zl (x = +00).

PST P
s(p)=a mod m



Local result for primes

Drmota-Mauduit-Rivat, 2009: uniformly for all integers k > O with (k,q — 1) =1

#{p <z :s(p) =k}

_ . . 2
L S 5 C) <exp ( = 11a1099 ) ) + 0((log x>—%+€>> ,
(g —1) \/27'('0'3 log, x 205 10942

where

q—1 > ¢?—1
1 12
and € > O is arbitrary but fixed.

Such a local result was considered by Erdos as “hopelessly difficult”.



Gelfond's conjecture for squares
Mauduit-Rivat, 2009: if (¢ — 1)a € R\ Z, there exist Cy(c) > 0 and o4¢(a) > O,

S exp(2iras(n?))| < Cyla) xt=a(@).

n<x

Hence
e For g > 2 the sequence (« S(nz))n>1 is equidistributed modulo 1 if and only if & € R\ Q.

e Forg>2,m > 2suchthat (m,qg—1) =1 and a € Z,

> 1 ~ 2 (z — +00).
nx m
s(n?)=a mod m



The Rudin-Shapiro sequence

Let

f(n)=e (é Z €j_1(n)€j(n)> = (_1)Zj>1 ej—1(n)e;(n)

721

}";\ are flat polynomials:

—~ 1-)\
7, <25
@)

Since ||f/’;\H2 = 1, by Cauchy-Schwarz it is easy to deduce that

N[>~

A—1 —~
27 <A, <2

The proof for the sum of digits function requires H]?;‘Hl = O(277>‘) with n < %

This is not satisfied for the Rudin-Shapiro sequence !!!



Rudin-Shapiro sequences of order ¢

Let 6 € N and B5(n) the number of occurencies of patterns 1 x---x 1, i.e. of the form 1wl

0
(where w € {0, 1}9) in the representation of n:

Bs(n) = > ep_s_1(n)er(n).

k>0+1

Mauduit-Rivat, 2014: foranyd € N, o € R, ¥ € R and x > 2, there exists explicit constants
C(6) and o(a) > O such that

> A(n)e(Bs(n)a + 9n)| < C(5) (log 2) % 1o (@)

n<x

and

3" u(n) e (Bs(n)a + 9n)| < C(5) (logz) & 17,

nx




Rudin-Shapiro sequences of degree d

Let d € N with d > 2 and by (n) denote the number of occurencies of 1 --- 1 i.e. blocks of d

d
consecutive 1's in the representation of n in base 2:

bg(n) = > ep_qt1(n)---e(n).
k>d—1

Mauduit-Rivat, 2014: forany d € Nwithd > 2, a € R, ¥ € R and x > 2 there exist an
explicit constant o(d, &) > O such that

S A(n) e (by(n)a+ 9n)| < (logz) ¢ ot =o(d)

nx

> p(n)e(bg(n)a+ 9n)| < (log x)% pl—o(da)

n<x
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General result — Definitions

Let U= {2 € C, |z|] =1}.

Definition 1 A function f

N — U has the carry property if, uniformly for (\, k., p) € N3 with

p < A, the number of integers O < £ < g such that there exists (k1,k2) € {0O,...,q" — 1}2

with

fUq™ + k1 + ko) f(lg" + k1) # froq,(€q” + k1 + k2) frq,(bq" + k1)

Is at most O(q)‘_p) where the implied constant may depend only on q and f.

Definition 2 Given a non decreasing function v : R — R satisfying limy_, 4 o v(A) = 400
and ¢ > O we denote by F~  the set of functions f : N — U such that for (k, \) € N2 with

kK< chandt € R:

—A
q

S flug®) e (—ut)| < ¢ YW,

O<u<qA

11



General result

Let v : R — R be a non decreasing function satisfying limy_, 4 . v(A\) = +o0, ¢ > 10 and
J : N — U be a function satisfying Definition 1 and f € F ¢ in Definition 2. Then for any
0 € R we have

S A(n)f(n) e (0n)| < ¢1(q)(log 33)62(@ - q—v(QL(log z)/80 109 qJ)/207

nx

with explicit ¢1(q) and c>(q).

Of course the same estimate holds if we replace the von Mangoldt function A by the Mobius

function .

Miillner has recently extended this result to all automatic sequences !

12



Gelfond’s conjecture for polynomials

Drmota-Mauduit-Rivat, 2011: let d > 2, ¢ > qo(d), and P € Z[X] of degree d such that
P(N) C N for which the leading coefficient a, is co-prime to q. If (¢ — 1) € R\ Z then there

exists ¢ = ¢(q,d) > O with

S exp(2imas(P(n))) < zt—cl@=1al”

n<x

Furthermore

q90(d) < 667d3(log d)2.

With a more technical proof the assumptions that ¢ is prime and that (a4, ¢) = 1 can be relaxed.

The case ¢ < go(d), remains an open problem.

13



Primes in two bases

Drmota-Mauduit-Rivat, 2018:

If f is a strongly q1-multiplicative function and g a strongly g>-multiplicative function such that
(q1,92) = 1 and f is is not of the form n +— e(kn/(q1 — 1)) with & € Z, then we have
uniformly for 4 € R

log x )

L xexp (—c
log log x

> N(n) f(n)g(n)e(9n)

nx

for some positive constant c.

The proof uses a variant of Baker's theorem on linear forms due to Waldschmidt, which does not

permit to save a power of .

14



0110100110010110100101100110100110010110011010010110100110010110
1001011001101001011010011001011001101001100101101001011001101001
1001011001101001011010011001011001101001100101101001011001101001
0110100110010110100101100110100110010110011010010110100110010110
1001011001101001011010011001011001101001100101101001011001101001
0110100110010110100101100110100110010110011010010110100110010110
0110100110010110100101100110100110010110011010010110100110010110
1001011001101001011010011001011001101001100101101001011001101001

The Thue-Morse sequence

1001011001101001011010011001011001101001100101101001011001101001
0110100110010110100101100110100110010110011010010110100110010110
0110100110010110100101100110100110010110011010010110100110010110
1001011001101001011010011001011001101001100101101001011001101001
0110100110010110100101100110100110010110011010010110100110010110
1001011001101001011010011001011001101001100101101001011001101001
1001011001101001011010011001011001101001100101101001011001101001
0110100110010110100101100110100110010110011010010110100110010110

15



The Thue-Morse sequence

The Thue-Morse sequence t = (tn,),cn can be defined by induction:

to — O, th —_— tn, t2n—|—1 =1- tn.

It is easy to check that

tn = So>(n) mod 2.

It is the fixed point of the substitution g = 0, O +— 01, 1 +— 10

O

01

0110

01101001

0110100110010110
01101001100101101001011001101001

0110100110010110100101100110100110010110011010010110100110010110
16



Symbolic complexity

Definition 3 The symbolic complexity of a sequence u € {0, 1} is the function py defined
for any integer k > 1 by

pu(k) = card{(bo, ...,bx_1) € {0,1}", Ji /u; =bo, ..., ujpr_1 = br_1}

(i.e. pu(k) is the number of distinct factors of length k that occur in the sequence ).

Let (X (u),T) be the dynamical system where 7" is the shift on {0, 1} and X (u) the closure
of the orbit of u under the action of T" (for the product topology of {0, 1}1) .

log pu(k).

The topological entropy of (X (u),T) can be shown to be equal to k”m
—00

In that sense pu constitutes a measure for the pseudorandomness of the sequence u.

17



The Thue Morse sequence is very "simple”
t is not periodic and cubeless.
t is almost periodic: any subword occuring in t occurs infinitely often with bounded gaps.

The symbolic complexity of t is very low: there exist c; > O and co > O such that, forall &k > 1,
c1k < pg(k) < cok.

log p(k) _ 5

Zero topological entropy of the corresponding dynamical system: h = k”m
—00

For any fixed (a,b) € N2 it is easy to check that the sequence tab = (tandb)nen is also
obtained by a simple algorithm (it is generated by a finite 2-automaton).

It follows that its symbolic complexity is also sublinear: p¢_, (k) = Oq(k) and that any sym-
bolic dynamical system (X (t,, ), T") obtained by extracting a subsequence of t along arithmetic

progressions still has zero topological entropy.
18



The Thue-Morse sequence along squares

Picking the values at square positions

0110100110010110100101100110100110010110011010010110100,

we get

0110110111110010111110110100110111111011110110100111
00011011001011111011100111111010011111011001011011110.

Moshe, 2007 (conjectured by Allouche and Shallit in 2003): the subword complexity of
(t,2)n>0 is p](f) = 2k je for k > 1, every word by - - - by with b; € {0,1} appears

In (th)n>O-
Mauduit-Rivat, 2009: Both letters O and 1 have frequency %

Question: what is the frequency of a given word ?
19



The Thue-Morse sequence along squares is normal

A sequence u € {0, 1} is normal if, for any k € N and any (bg, ..., br_1) € {0, 1}*:

1 1
lim —card{: < N, u; =bg,..., U411 =br._1} = —.
am { ui = bo, - s Uit -1 = bp—1} =

Notion introduced by Borel in 1909. First explicit construction by Champernowne in 1933.
Only few explicit constructions are known.
Drmota-Mauduit-Rivat: The sequence (Z,2),¢cN is normal.

This theorem provides a new method to construct normal numbers in a given base.

Xt o, :
The real number & = >~ &7 is normal in base 2.

n=0

20



ldeas and tools

21



Approach to digital problem

. Reduce the problem to an exponential sum,

. apply several times the van der Corput inequality to remove the upper and lower digits,

. separate into a discrete Fourier transform part and an analytic part,

. handle the analytic part to see which Fourier estimates are needed,

. obtain the corresponding Fourier estimates.

22



Introduction of exponential sums

For any (bg, ...,bp_1) € {0, 1}* we have

card{n < N : (t,2,... ,t(n_|_k_1)2) = (bo, -+, bp—1)}

= D, 1[t 2=bo] [t(n_l_k_l)szk—l]

n<N
Z H ( Z (— 1)0%(5((?%4-5)2) bé))
n<N £=0 ay=0
— % Z (_1)a0b0+""|‘04k;—1bk:—1 Z exp
Qs X1 n<N

so that

‘card{n < N : (tng, e ’t(n—l—k—l)Q) = (bo, ...

k—1
3 exp (m 3 aps((n +e)2)) l
¢=0

1
< oF >

(Ozo,...,ak_l)E{O,l}k\{(o,...,O)}

n<N

k—1

(iw > aps((n + £)?)
¢=0

)

|

23



Estimate of the exponential sum

We have to prove that for any & > 1 and (ag,...,ap_1) € {0,1}F\ {(0,...,0)} there
exists 17 > O for which

k—1
> exp (fm > aps((n —|—£)2)> < N1,

n<N =0

The case k = 1 corresponds to our previous result on s(n?).
But: the method used there fails when £ > 2 for many reasons.
Main difficulty: huge size and large number of variables.

We introduce a new approach to control the Fourier transform of correlations of any order.

24



A variant of van der Corput’s inequality

For all complex numbers 21, ..., 27, and integers kK > 1, R > 1 we have
2
L L R—1 L—Fkr
L —I— kR — k 2 r .
> ou <= (z w242 Y (1-5) % %(mr%))-
(=1 (=1 r=1 (=1

(for K = 1 this is the classical van der Corput's inequality.)

Idea: Taking zp = exp(2imp(£)) for some function ¢, since 7 is small we can take advantage
a better control of the difference (£ 4+ kr) — ©(£) instead of the more general p(¢') — ©(¥).

Here (1) = >2; f((£ + dj)z) with f(n) = ty.
More generally in base g this is useful when f is g-additive.

With k£ = 1, this will permits to remove the upper digits.

With k& = ¢", this will permits to remove the lower digits.
25



Removing the upper digits

f is g-additive if for all k > 0 and all (ag,...,a;) € {0,...,q — 1}iT1

flag+a1q+ -+ ard”) = f(ag) + flarq) + - - + f(ard®).
Consider the difference f(a + b) — f(a), with b =< ¢® much smaller that a = ¢%. Example:

(87

a = 351 1679078099980654652A3475473462336857643565,

b= 396576345354568797095646467570,
&)

In the sum a < b the digits of index > (3 may change only by carry propagation. The proportion
of pairs (a,b) for which the carry propagation exceeds 3 + p is likely to be O(g™ ). If so we

can ignore these exceptional pairs and replace f(a 4+ b) — f(a) by fg4,(a +b) — fg4,(a)
where fg , is the truncated f function which considers only the digits of index < 5 4 p:

fo4,(n) := f(n mod ¢ T*)

which is periodic of period ¢° 17

26



Removing the lower digits

Now if a < ¢%, ¢ < ¢7 with v + 1 < «, consider the difference fg1 ,(a + g#c) — fg4,(a).
Example:

(87

a =351 167907809998O654652A3475473462336857643565,

gt'c = 396576345354568797095646467571 000000000000,
v %

In the sum a + g*c the digits of index < p are not modified. We have

fula+¢"c) = fu(a)

SO

fa4p(a+q"c) — faq,p(a) = (fa4, — fu)(a+ q"c) — (fa4, — fu)(a)
and fg4, — fu depends only on the digits of index € {py ..., 80+p—1}

If f is a more general digital function (not g-additive) these arguments need to be adapted.

27



Detection of digits

Let rq.k5(a) be the integer obtained using the digits of a of indexes k1, ..., k> — 1. We have

a U u—+1
I’nl,mg(a) = U <—— qTQ c [q’iQ_’il’ q’12_’11> _l_ 2.

It remains to detect which points belong to an interval modulo 1.

For O < a < 1 let xo(x) = |x| — | — «]. For any integer H > 1 there exist real valued
trigonometric polynomials such that for all x € R,

Xa(®) — Aq1(2)| < Bo, ()
(using Vaaler's kernel derived from the Beurling-Selberg function) with
Aga(x) = > ay pg(h)exp(irhz)
h|<H
Bosi(@) = 3 bosi(h) exp(2imha),
h|<H

with aq 17(0) = a, |ag, 1y (h)| < min (a, ﬁ) ,

ba,H(h)‘ < ﬁ

28



Muldimensional approximation

How to detect points in a small d-dimensional box (modulo 1) 7

For (a1,...,04) € [0,1)% and (Hy,...,Hy) € NYwith Hy > 1,..., H; > 1, we have
for all (z1,...,xz4) € RY

d d
1] xa;(zj) = 1] Aa, m,(z))| < > 1 xo;(z;) 1] Ba, m,(z5)
=1 j=1 0=JC{1,....d} 2T jeJ
where A, f(.) and B, g (.) are (Vaaler’s) real valued trigonometric polynomials.

This reminds to Koksma's inequality
® «1,..., ag are small here,

® Xaj.--:Xay on the right hand side can be used non trivially.
29



After two van der Corput’s inequalities

We have removed the upper and lower digits and are led to consider
s 2 2
Sexplir 3 ap(fur((n+0?) = fur((n+r+0)2)
n (=0

— fun((n+ 28+ 02) + fa((n 4 s2# +r + N))) ,

This is where the Fourier analysis becomes difficult !!!

30



Fourier analysis

We are now working modulo DA—H_ Consider the Discrete Fourier Transform

1 ut
Fa® =55 ¥ e(fun@w -5
O<u<2A—#

with

e(t) = exp(2int).

In our previous works, by Fourier inversion formula and exchanges of summations we could separate

the “Fourier part” and the “exponential sum” part.
Then the properties of the Fourier transforms permitted to complete the proof.

It is not sufficient to prove the normality of the Thue-Morse sequence along squares.

31



Estimates of the discrete Fourier transform

It is enough to provide good estimates for the Fourier terms

1 1kl h

1 :

Gy (h,d) = X > e > > apsy(u+d+ip) — SYE
oO<u<2? (=0

where sy(n) = > mnjand I = (ig,...,ix_1) € NFk.

J<A
These Fourier terms can be interpreted as coefficients of products of quite involved matrices and

the second step is to study the combinatorial properties of the graphs associated to these matrices
in order to provide these estimates.
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For any & € N, we denote by Z;. the set of integer vectors I = (ig,...,4,_1) with ig = 0
and iy <ip<iy_q1+ 1for 1 <4< k— 1 (note that Zj, consists of 2"~ 1 elements).

Proposition 1 /f ag + ... + . _1 is even, then there exists 1 > O such that for any I € 1,

we have

1

Y Y |Gk d)? < 27

o<d<2V

uniformly for all integers h, where %)\ <N <A

Proposition 2 /f ag + ... + ap._1is odd, then there exists n > O such that for any I € 1,
we have

(G (h, d)\ < 2L max‘G/\ (R, Ld/zLJ))

uniformly for all non-negative integers h,d and L.
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Estimate of the matrix product

The vector G (h,d) = (Gg\(h, d))1eT, can be determined recursively:

1
G(h,d) = MO (e(~h/2Y)) Gy_1(h, |d/2]),
where for any € € {0, 1}, M&(2) is a 281 x 25~1 matrix whose coefficients are of the form

a + bz with (a,b) € {—1,0,1}.

It follows by induction that for any integer n > 1, we have

G(h,d) = Qimmeowfm—l(d) (e(=h/2%)) Gr_p(h, [d/2)),

where for any d = (dp,...,dpyn—1) € {0, 1} we put

2m—1

M9I(2) = M-dm-1(2) = M90(2) ... MIm-1(z ).
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For example when k = 3 we have

1—2 0 0 O O -1 =z 0
0 . 1 z 0 O 1 10 1 O —2z
M@=1 1 o ol MB=|0 0 1 .
0 —1 =z O O O O 1—=z
and foranyd = (dp, ..., dm—1) € {0, 1}"™ we interpret the coefficients of the matrix M4(2)

as coding of paths of length m with, for 5 € {0,...,m — 1}, step j in the graph Q(zzj):

35



wo1(z) = 2 wio(z) =1

wio(z) = —1 wo1(2) = —=



Open problems

For any polynomial of degree > 3 taking values in N, is it true that (t P(n))nEN is normal ?

Mauduit-Rivat, 2010: the frequencies of O and 1 in the sequence (tp, ), cN are equal to %

(where (pn),enN denote the sequence of prime numbers).
For any non constant polynomial taking values in N, is it true that (tp(pn))REN is normal ?

Moreover it would be interesting to find some other almost periodic sequences u with the same

property and also to understand this phenomenon from the dynamical system point of view.
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