
An extension of the digital method
based on b-adic integers

Authors: Roswitha Hofer and Ísabel Pirsic
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Discrepancy

A ‘measure for randomness’ for point sets
(as pertinent to specific applications)

Distance from state of uniform distribution

Worst case error of numerical integration
of interval indicator functions

Many versions: different choices of
norms, measures, weights, anchoring, wrapping ...

Here:
�� ��star-discrepancy D∗N(P) = supJ |AJ/N − λ(J)|

Standard application: |
∫
I f −

1
N

∑
P f | ≤ V (f )D∗N(P)

Goal: low-discrepancy seq.s ND∗N(P) ≈ O((logN)s)

Good choice: point sets/seq.s obtained by digital method  



Digital method (classical)

Simple example of LDS : van der Corput sequence —
reflection of digit expansion at decimal point: 2341 7→ 0.1432

Digital method : map digit vectors to vectors over finite ring,
apply linear maps, map to [0, 1) by fractional digit expansion

vn = (n̄1, n̄2, . . . )
>,

�� ��n =
∑

i≥0 ni+1 b
i

wn,i = Ci · vn,
�� ��Ci ∈Mat (R), i=1,...,s

= (x̄n,i ,1, x̄n,i ,2, . . . )
> 7→

�� ��xn,i =
∑

j>0 xn,i ,j b
−j

Vectors, matrices, may be finite or infinite, but n always has a
finite expansion (and mat-vec prod.s exist). OTOH, xn,i need
not, but is usually truncated to digit length of n.

Discrepancy then related to the ‘rank structure’ of the

matrices :
�� ��T (m), t -values defined by conditions of linear

independence of combinatorial subsets of row vectors of Ci



The quality parameters T (m), t

For integers m, t, m ≥ t ≥ 0 consider partitions
m − t = d1 + · · ·+ ds into nonnegative integers and for each
i = 1, . . . , s collect the initial di row vectors of Ci , truncated
to the first m coordinates, in a new matrix. If for each
partition the rank of this matrix is m − t then T (m) := m − t
is called the quality parameter at m of a
digital (T (m), s)-sequence over R.

If limm(m − T (m)) =∞ then the sequence is UD.

If T (m) ≤ t for all m then the sequence is an LDS with
discrepancy bound

D∗N(P) ∈ O(bt
logs N

N
).

(Similar for a finite point set of size bm

 digital (t,m, s)-net over R; (s − 1) in log-term)



b-adic integers Zb

A subring of the ring Qb, b need not be prime

Informally: Laurent series in b with +, ∗, . . . as in digit
expansion vectors of N. Then Zb = set of power series in b.

More formal: obtained by completion of Q with a
(pseudo-)valuation (‘absolute value’), inducing a
non-archimedean metric. Then Zb = {a, |a|b ≤ 1}
Examples: |b3 + b5|b = b−3, |b−4 + b + 1|b = b4,

|6|24 = |18|24 = 1/ 3
√

24, |12|24 = 1/
3
√

242.

Usually: Qp, p prime, generally Qb
∼= Qp1 × · · · ×Qpr ,

pi the distinct prime divisors of b.

Z ( Zb and Zb is indeed a subring as above



Uniform distribution of sequences in Z,Zb

UD mod m: asymp. frequency 1/m for all residue classes

UD mod Z: UD mod m, for all m > 1

UD mod Zb: k-digit truncations UD mod bk , for all k ≥ 0

Trivial case: (n)n≥0 is UD in Zb

Some sequences UD in Z (thus also in Zb):

(bαnc)n≥0 for irrational α
(bf (n)c)n≥0 for f polynomial where
some coefficient apart from the constant is irrational.
(bαnσc)n≥0 for α arbitrary, σ positive, nonintegral.

Also: (an + c)n≥0 is UD in Zb if a ∈ Zb is a unit
(constant term is relative prime to b), c ∈ Zb arbitrary

Not UD in Zb (nor in Z): e.g., (n2)n≥0



Extended Digital Method

Choose some sequence (sn)n≥0 in Zb

(i.e., its b-adic expansion) as input

instead of (n)n≥0  matrices need to have
�� ��finite rows

Note 1: finite-row-matrices are important in base-mixing
context

Note 2: true generalization, since, e.g., identity matrix and
(αn2 + β)n≥0 give a sequence that can not be reproduced by
the classical method (nonlinear, nonfinite input, b-adic shift).

Theorem 1: If (fin.row) matrices Ci ∈Mat∞(Fq) classically
generate a UD sequence and sn is UD in Zq then both
generate a UD sequence in the extended algorithm.

Converse does not hold: (n2)n≥0 not UD, but there is a simple
matrix over F2 such that their combined sequence is UD
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Extended Digital Method II

Theorem 2: Let C1, . . . ,Cs be ∞-matrices over Fq with row
length not exceeding their row index times s. If they generate
a (0, s)-sequence then together with a sequence sn in Zq a
UD sequence will be generated if and only if sn is UD in Zq.

Remark: The case s = 1 and C1 = Id was proven by
Hellekallek and Niederreiter in a special case.

Prop.2: Discrepancy estimate for (sn)n≥0 = (n + α)n≥0
and generators of a (T (m), s)-sequence.

Cor.2: If additionally T (m) is bounded then a
low-discrepancy sequence is generated.

Cor.3: If T (m) is bounded and gcd(v , q) = 1, α arbitrary,
then sn = 1

v n + α also generates a low-discrepancy sequence.
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Numerical Experiments – Plots

Using Stirling matrices over F5:

Out[245]=

And three different input sequences:
sn = n
sn = 〈1,−1, 2,−2, . . . 〉
sn = 1

2n −
1
4

... produces these point sets (500 pts):
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Numerical Experiments – 1d-discrepancy

Using the identity matrix over F2

And three different input sequences :
black sn = n
gray sn = 〈1,−1, 2,−2, . . . 〉
blue sn = n − 1/(2 + 2−1) = n − 2/5

... gives the following discrepancies (divided by logN/N):
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Numerical Experiments – 2d-discrepancy

Using the Stirling matrices over F2

And three different input sequences :
black sn = n
gray sn = −(n + 1)
blue sn = n − 1/(2 + 2−10) = n − 1024/2049

... gives the following discrepancies (divided by log2N/N):
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Open to research (and to reflect)

Determine const.s, e.g., for linear input seq.s more explicitly

Composite b — Does anything unexpected happen ?

Many more input sequences, esp.polynomials;
probably either not easy to investigate or not that good ...

What about sequences of algebraic integers
(i.e., algebraic integers in some Qp(α))?

Conceptually interesting: UD in Zb, or analogously, in Fb[[x ]],
can be spread out to UD in Fb[[x ]]s by simple linear
transformation — what kind of matrices suffice
(do we really need the full (t, s)-property)?

Integrate a ‘discrepancy in integers’ into this frameweork

Silly questions : — Where does the powerful randomness of
multivariate digital sequences ‘come from’? Zb ? FN

b ? Or
which one rather, of the maps

vn : Zb 7→ FN
b , (Ci )i : Fb[[x ]] 7→ Fb[[x ]]s?
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The End.

Thank you

for your kind attention !


