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m A 'measure for randomness’ for point sets
(as pertinent to specific applications)

m Distance from state of uniform distribution

m Worst case error of numerical integration
of interval indicator functions

m Many versions: different choices of
norms, measures, weights, anchoring, wrapping ...

» Here: (star—discrepancy] Dy (P) =supy |Ay/N — A(J)|
= Standard application: | [, f =& X6 f| < V(£)Djy(P)
» Goal: low-discrepancy seq.s NDy(P) ~ O((log N)*)
» Good choice: point sets/seq.s obtained by digital method ~~



Digital method (classical)

m Simple example of LDS : van der Corput sequence —
reflection of digit expansion at decimal point: 2341 — 0.1432

m Digital method : map digit vectors to vectors over finite ring,
apply linear maps, map to [0, 1) by fractional digit expansion
Vo = (1, 2, ... ), n=>%i>0 Nit1 bij

Wi = Ci - Vn, (Ci € Mat(R), i:l,...,s)

= (Rnid, Xnj2se--) (Xn,i =3 />0 Xnij b_jJ

Vectors, matrices, may be finite or infinite, but n always has a
finite expansion (and mat-vec prod.s exist). OTOH, x, ; need
not, but is usually truncated to digit length of n.

m Discrepancy then related to the ‘rank structure’ of the

matrices : | T(m),t |-values defined by conditions of linear
independence of combinatorial subsets of row vectors of C;




The quality parameters T(m), t

m For integers m, t, m > t > 0 consider partitions
m—t =di + -+ ds into nonnegative integers and for each
i=1,...,s collect the initial d; row vectors of C;, truncated
to the first m coordinates, in a new matrix. If for each
partition the rank of this matrix is m — t then T(m) :=m —t
is called the quality parameter at m of a
digital (T(m), s)-sequence over R.

w If limy,(m — T(m)) = oo then the sequence is UD.

u If T(m) <t for all m then the sequence is an LDS with

discrepancy bound
log® N
Di(P) € o6& 1y,

u (Similar for a finite point set of size b™
~ digital (t, m,s)-net over R; (s — 1) in log-term)



b-adic integers Zj,

m A subring of the ring Qp, b need not be prime

m Informally: Laurent series in b with +,x*,... as in digit
expansion vectors of N. Then Z; = set of power series in b.

m More formal: obtained by completion of Q with a
(pseudo-)valuation (‘absolute value'), inducing a
non-archimedean metric. Then Z, = {a, |al, < 1}

= Examples: b3+ b5, =b"3  |b*+b+1|p = b*
16124 = [18l2a = 1/V/24,  [12]24 = 1/V/242.

= Usually: Qp, p prime, generally Qp = Qp, X -+ X Qp,,
pi the distinct prime divisors of b.

m Z C Zp and Zy, is indeed a subring as above



Uniform distribution of sequences in Z, Z,,

UD mod m: asymp. frequency 1/m for all residue classes
UD mod Z: UD mod m, forall m>1

UD mod Zy: k-digit truncations UD mod b¥, for all k >0
Trivial case: (n),>0 is UD in Zj,

Some sequences UD in Z (thus also in Zp):
B (lan]|)n>o for irrational «
m ([f(n)]|)n>o for f polynomial where
some coefficient apart from the constant is irrational.
B ([an?])s>o for « arbitrary, o positive, nonintegral.
m Also: (an+ ¢)p>0 is UD in Zy, if a € Zp, is a unit
(constant term is relative prime to b), ¢ € Zy, arbitrary

= Not UD in Z, (nor in Z): e.g., (n?)n>0
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n Choose some sequence (s,)p>0 in Zy
(i.e., its b-adic expansion) as input
instead of (n)p,>p ~> matrices need to have

m Note 1: finite-row-matrices are important in base-mixing
context

m Note 2: true generalization, since, e.g., identity matrix and
(an? + )0 give a sequence that can not be reproduced by
the classical method (nonlinear, nonfinite input, b-adic shift).

» Theorem 1: If (fin.row) matrices C; € Mat(Fq) classically
generate a UD sequence and s, is UD in Z, then both
generate a UD sequence in the extended algorithm.

= Converse does not hold: (n?),>o not UD, but there is a simple
matrix over [F» such that their combined sequence is UD



Extended Digital Method Il
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Extended Digital Method Il

» Theorem 2: Let C,..., Cs be co-matrices over Fg with row
length not exceeding their row index times s. If they generate
a (0, s)-sequence then together with a sequence s, in Zq a
UD sequence will be generated if and only if s, is UD in Zg.

m Remark: The case s =1 and C; = Id was proven by
Hellekallek and Niederreiter in a special case.

» Prop.2: Discrepancy estimate for (sp)n>0 = (n+ &)n>0
and generators of a (T(m), s)-sequence.

m Cor.2: If additionally T(m) is bounded then a
low-discrepancy sequence is generated.

» Cor.3: If T(m) is bounded and gcd(v, q) = 1, v arbitrary,
then s, = %n + « also generates a low-discrepancy sequence.



Numerical Experiments — Plots

m Using Stirling matrices over Fs:
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m Using Stirling matrices over Fs:
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m And three different input sequences:
mS,=n
w5y =(1,-1,2,-2,...)
_ 1 1
m s, = §n — 2



Numerical Experiments — Plots

m Using Stirling matrices over Fs:

m And three different input sequences:

W S,=n
W sy =(1,-1,2,-2,...)
e s =lp 1

» ... produces these point sets (500 pts):
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Numerical Experiments — 1d-discrepancy

m Using the identity matrix over [
m And three different input sequences :
black s, =n
gray s, =(1,-1,2,-2,...)
blue s,=n—1/(2+27 ) =n-2/5
» ... gives the following discrepancies (divided by log N/N):
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Numerical Experiments — 2d-discrepancy
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Numerical Experiments — 2d-discrepancy

» Using the Stirling matrices over F»
m And three different input sequences :
black s, =n
gray s, =—(n+1)
blue s, =n—1/(2+2710) = n —1024/2049



Numerical Experiments — 2d-discrepancy

» Using the Stirling matrices over F»
m And three different input sequences :
black s, =n
gray s, =—(n+1)
blue s, =n—1/(2+2710) = n —1024/2049
w ... gives the following discrepancies (divided by log® N/N):
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m Determine const.s, e.g., for linear input seq.s more explicitly
m Composite b — Does anything unexpected happen 7

m Many more input sequences, esp.polynomials;
probably either not easy to investigate or not that good ...

= What about sequences of algebraic integers
(i.e., algebraic integers in some Qp(v))?

u Conceptually interesting: UD in Zjp, or analogously, in Fp[[x]],
can be spread out to UD in Fp[[x]]* by simple linear
transformation — what kind of matrices suffice
(do we really need the full (¢, s)-property)?

m Integrate a ‘discrepancy in integers' into this frameweork

m Silly questions : — Where does the powerful randomness of
multivariate digital sequences ‘come from'? Zj, 7 IE‘IE ? Or
which one rather, of the maps

Vn @ Lp > IFN, (C,'),' : Fb[[x]] — Fb[[X]]S?



The End.

Thank you

for your kind attention !



