AN EXTENSION OF THE DIGITAL METHOD BASED ON *b*-ADIC INTEGERS

Authors: Roswitha Hofer and Ísabel Pirsic Speaker: Ísabel Pirsic Affiliation: Johannes Kepler University Linz Email: roswitha.hofer@jku.at, isabel.pirsic@jku.at Funding: Austrian Science Fund, F5511-N26 (RH), P27351-N26 (ÍP)

- A 'measure for randomness' for point sets (as pertinent to specific applications)
- Distance from state of uniform distribution
- Worst case error of numerical integration of interval indicator functions
- Many versions: different choices of norms, measures, weights, anchoring, wrapping ...
- Here: (star-discrepancy)
- Standard application:
- Goal: low-discrepancy seq.s
- <u>Good choice</u>: point sets/seq.s obtained by digital method ~→
- $D_N^*(P) = \sup_J |A_J/N \lambda(J)|$ $|\int_I f \frac{1}{N} \sum_P f| \le V(f) D_N^*(P)$ $N D_N^*(P) \approx O((\log N)^s)$

Digital method (classical)

- Simple example of LDS : van der Corput sequence reflection of digit expansion at decimal point: 2341 → 0.1432
- Digital method : map digit vectors to vectors over finite ring, apply linear maps, map to [0,1) by fractional digit expansion

$$\begin{aligned} \mathbf{v}_n &= (\bar{n}_1, \bar{n}_2, \dots)^\top, & \left(\begin{array}{c} n = \sum_{i \ge 0} & n_{i+1} & b^i \end{array} \right) \\ \mathbf{w}_{n,i} &= C_i \cdot \mathbf{v}_n, & \left(\begin{array}{c} C_i \in \mathcal{M}at(R), & i=1,\dots,s \end{array} \right) \\ &= (\bar{\mathbf{x}}_{n,i,1}, \bar{\mathbf{x}}_{n,i,2}, \dots)^\top \mapsto & \left(\begin{array}{c} \mathbf{x}_{n,i} = \sum_{j > 0} & \mathbf{x}_{n,i,j} & b^{-j} \end{array} \right) \end{aligned}$$

Vectors, matrices, may be finite or infinite, but n always has a finite expansion (and mat-vec prod.s exist). OTOH, $x_{n,i}$ need not, but is usually truncated to digit length of n.

Discrepancy then related to the 'rank structure' of the matrices : T(m), t -values defined by conditions of linear independence of combinatorial subsets of row vectors of C_i

The quality parameters T(m), t

For integers $m, t, m \ge t \ge 0$ consider partitions $m - t = d_1 + \cdots + d_s$ into nonnegative integers and for each $i = 1, \ldots, s$ collect the initial d_i row vectors of C_i , truncated to the first m coordinates, in a new matrix. If for each partition the rank of this matrix is m - t then T(m) := m - tis called the **quality parameter at** m of a **digital** (T(m), s)-sequence over R.

If $\lim_{m \to \infty} (m - T(m)) = \infty$ then the sequence is UD.

If T(m) ≤ t for all m then the sequence is an LDS with discrepancy bound

$$D^*_N(P) \in \mathcal{O}(b^t rac{\log^s N}{N}).$$

■ (Similar for a finite point set of size b^m
 ~→ digital (t, m, s)-net over R; (s - 1) in log-term)

b-adic integers \mathbb{Z}_b

- A subring of the ring \mathbb{Q}_b , b need not be prime
- Informally: Laurent series in b with +, *,... as in digit expansion vectors of N. Then Z_b = set of power series in b.
- More formal: obtained by completion of Q with a (pseudo-)valuation ('absolute value'), inducing a non-archimedean metric. Then Z_b = {a, |a|_b ≤ 1}
- Examples: $|b^3 + b^5|_b = b^{-3}$, $|b^{-4} + b + 1|_b = b^4$, $|6|_{24} = |18|_{24} = 1/\sqrt[3]{24}$, $|12|_{24} = 1/\sqrt[3]{24^2}$.
- Usually: \mathbb{Q}_p , p prime, generally $\mathbb{Q}_b \cong \mathbb{Q}_{p_1} \times \cdots \times \mathbb{Q}_{p_r}$, p_i the distinct prime divisors of b.
- $\mathbb{Z} \subsetneq \mathbb{Z}_b$ and \mathbb{Z}_b is indeed a subring as above

Uniform distribution of sequences in \mathbb{Z}, \mathbb{Z}_b

- **UD** mod m: asymp. frequency 1/m for all residue classes
- UD mod \mathbb{Z} : UD mod m, for all m > 1
- UD mod \mathbb{Z}_b : k-digit truncations UD mod b^k , for all $k \ge 0$
- Trivial case: $(n)_{n\geq 0}$ is UD in \mathbb{Z}_b
- Some sequences UD in \mathbb{Z} (thus also in \mathbb{Z}_b):
 - $(\lfloor \alpha n \rfloor)_{n \geq 0}$ for irrational α
 - ([f(n)])_{n≥0} for f polynomial where some coefficient apart from the constant is irrational.
 - $(\lfloor \alpha n^{\sigma} \rfloor)_{n \geq 0}$ for α arbitrary, σ positive, nonintegral.
- Also: (an + c)_{n≥0} is UD in Z_b if a ∈ Z_b is a unit (constant term is relative prime to b), c ∈ Z_b arbitrary
- Not UD in \mathbb{Z}_b (nor in \mathbb{Z}): e.g., $(n^2)_{n\geq 0}$

Choose some sequence (s_n)_{n≥0} in Z_b
 (i.e., its b-adic expansion) as input
 instead of (n)_{n≥0} → matrices need to have finite rows

- Choose some sequence (s_n)_{n≥0} in Z_b (i.e., its b-adic expansion) as input instead of (n)_{n≥0} → matrices need to have finite rows
- Note 1: finite-row-matrices are important in base-mixing context

- Choose some sequence (s_n)_{n≥0} in Z_b (i.e., its b-adic expansion) as input instead of (n)_{n≥0} → matrices need to have finite rows
- Note 1: finite-row-matrices are important in base-mixing context
- Note 2: true generalization, since, e.g., identity matrix and (αn² + β)_{n≥0} give a sequence that can not be reproduced by the classical method (nonlinear, nonfinite input, *b*-adic shift).

- Choose some sequence (s_n)_{n≥0} in Z_b (i.e., its b-adic expansion) as input instead of (n)_{n≥0} → matrices need to have finite rows
- Note 1: finite-row-matrices are important in base-mixing context
- Note 2: true generalization, since, e.g., identity matrix and (αn² + β)_{n≥0} give a sequence that can not be reproduced by the classical method (nonlinear, nonfinite input, *b*-adic shift).
- Theorem 1: If (fin.row) matrices C_i ∈ Mat_∞(F_q) classically generate a UD sequence and s_n is UD in Z_q then both generate a UD sequence in the extended algorithm.

- Choose some sequence (s_n)_{n≥0} in Z_b (i.e., its b-adic expansion) as input instead of (n)_{n≥0} → matrices need to have finite rows
- Note 1: finite-row-matrices are important in base-mixing context
- Note 2: true generalization, since, e.g., identity matrix and (αn² + β)_{n≥0} give a sequence that can not be reproduced by the classical method (nonlinear, nonfinite input, *b*-adic shift).
- Theorem 1: If (fin.row) matrices C_i ∈ Mat_∞(F_q) classically generate a UD sequence and s_n is UD in Z_q then both generate a UD sequence in the extended algorithm.
- Converse does not hold: (n²)_{n≥0} not UD, but there is a simple matrix over 𝔽₂ such that their combined sequence is UD

Theorem 2: Let C₁,..., C_s be ∞-matrices over F_q with row length not exceeding their row index times s. If they generate a (0, s)-sequence then together with a sequence s_n in Z_q a UD sequence will be generated *if and only if s_n* is UD in Z_q.

- Theorem 2: Let C₁,..., C_s be ∞-matrices over F_q with row length not exceeding their row index times s. If they generate a (0, s)-sequence then together with a sequence s_n in Z_q a UD sequence will be generated *if and only if s_n* is UD in Z_q.
- Remark: The case s = 1 and $C_1 = Id$ was proven by Hellekallek and Niederreiter in a special case.

- Theorem 2: Let C₁,..., C_s be ∞-matrices over F_q with row length not exceeding their row index times s. If they generate a (0, s)-sequence then together with a sequence s_n in Z_q a UD sequence will be generated *if and only if s_n* is UD in Z_q.
- Remark: The case s = 1 and $C_1 = Id$ was proven by Hellekallek and Niederreiter in a special case.
- Prop.2: Discrepancy estimate for (s_n)_{n≥0} = (n + α)_{n≥0} and generators of a (T(m), s)-sequence.
- Cor.2: If additionally T(m) is bounded then a low-discrepancy sequence is generated.
- **Cor.3:** If T(m) is bounded and $gcd(v, q) = 1, \alpha$ arbitrary, then $s_n = \frac{1}{v}n + \alpha$ also generates a low-discrepancy sequence.

Numerical Experiments – Plots

• Using Stirling matrices over \mathbb{F}_5 :

Numerical Experiments – Plots

• Using Stirling matrices over \mathbb{F}_5 :

And three different input sequences:

•
$$s_n = n$$

• $s_n = \langle 1, -1, 2, -2, \dots \rangle$
• $s_n = \frac{1}{2}n - \frac{1}{4}$

Numerical Experiments – Plots

• Using Stirling matrices over \mathbb{F}_5 :

And three different input sequences:

•
$$s_n = n$$

• $s_n = \langle 1, -1, 2, -2, ...$
• $s_n = \frac{1}{2}n - \frac{1}{4}$

modules these point sets (500 pts):

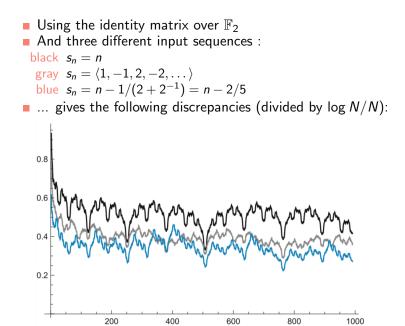
Numerical Experiments – 1d-discrepancy

• Using the identity matrix over \mathbb{F}_2

Numerical Experiments – 1d-discrepancy

Using the identity matrix over F₂
And three different input sequences : black s_n = n gray s_n = ⟨1, -1, 2, -2, ...⟩ blue s_n = n - 1/(2 + 2⁻¹) = n - 2/5

Numerical Experiments – 1d-discrepancy



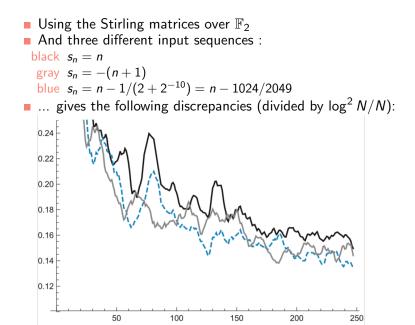
Numerical Experiments – 2d-discrepancy

• Using the Stirling matrices over \mathbb{F}_2

Numerical Experiments – 2d-discrepancy

 Using the Stirling matrices over F₂
 And three different input sequences :
 black s_n = n gray s_n = −(n+1) blue s_n = n − 1/(2+2⁻¹⁰) = n − 1024/2049

Numerical Experiments – 2d-discrepancy



Determine const.s, e.g., for linear input seq.s more explicitly

- Determine const.s, e.g., for linear input seq.s more explicitly
- Composite b Does anything unexpected happen ?

- Determine const.s, e.g., for linear input seq.s more explicitly
- Composite b Does anything unexpected happen ?
- Many more input sequences, esp.polynomials; probably either not easy to investigate or not that good ...

- Determine const.s, e.g., for linear input seq.s more explicitly
- Composite b Does anything unexpected happen ?
- Many more input sequences, esp.polynomials; probably either not easy to investigate or not that good ...
- What about sequences of algebraic integers (i.e., algebraic integers in some Q_p(α))?

- Determine const.s, e.g., for linear input seq.s more explicitly
- Composite b Does anything unexpected happen ?
- Many more input sequences, esp.polynomials; probably either not easy to investigate or not that good ...
- What about sequences of algebraic integers (i.e., algebraic integers in some Q_p(α))?
- Conceptually interesting: UD in Z_b, or analogously, in F_b[[x]], can be spread out to UD in F_b[[x]]^s by simple linear transformation what kind of matrices suffice (do we really need the full (t, s)-property)?

- Determine const.s, e.g., for linear input seq.s more explicitly
- Composite b Does anything unexpected happen ?
- Many more input sequences, esp.polynomials; probably either not easy to investigate or not that good ...
- What about sequences of algebraic integers (i.e., algebraic integers in some Q_p(α))?
- Conceptually interesting: UD in Z_b, or analogously, in F_b[[x]], can be spread out to UD in F_b[[x]]^s by simple linear transformation what kind of matrices suffice (do we really need the full (t, s)-property)?
- Integrate a 'discrepancy in integers' into this frameweork

- Determine const.s, e.g., for linear input seq.s more explicitly
- Composite b Does anything unexpected happen ?
- Many more input sequences, esp.polynomials; probably either not easy to investigate or not that good ...
- What about sequences of algebraic integers (i.e., algebraic integers in some Q_p(α))?
- Conceptually interesting: UD in Z_b, or analogously, in F_b[[x]], can be spread out to UD in F_b[[x]]^s by simple linear transformation what kind of matrices suffice (do we really need the full (t, s)-property)?
- Integrate a 'discrepancy in integers' into this frameweork
- Silly questions : Where does the powerful randomness of multivariate digital sequences 'come from'? Z_b ? F^N_b ? Or which one rather, of the maps

$$v_n: \mathbb{Z}_b \mapsto \mathbb{F}_b^{\mathbb{N}}, \quad (C_i)_i: \mathbb{F}_b[[x]] \mapsto \mathbb{F}_b[[x]]^s?$$

Thank you

for your kind attention !