Variations on a theme of K. Mahler

Attila Pethő

Department of Computer Science University of Debrecen Debrecen, Hungary

Uniform Distribution Theory CIRM Marseille-Luminy, October 3, 2018. Talk is base on the paper

Variations on a theme of K. Mahler, I., Annales Univ. Sci. Budapest., Sect. Comp. 48 (2018) 137–149.

The volume is dedicated - among others - to the 80th birthday of **Imre Kátai**.

1. Introduction and notations

Let $g,h \ge 2$. Denote $(n)_g$ the sequence of digits of the g-ary representation of n, e.g. $(2018)_{10} = 2018, (2018)_5 = 31033$. K. Mahler, 1981, proved that the number $0.(1)_g(h)_g(h^2)_g...$ is irrational, equivalently: the infinite word $(1)_g(h)_g(h^2)_g...$ is not periodic. Refinements, generalizations and new methods by

- P. Bundschuh, 1984
- H. Niederreiter, 1986
- Z. Shan, 1987

• Z. Shan and E. Wang, 1989: Let $(n_i)_{i=1}^{\infty}$ be a strictly increasing sequence of integers. Then $0.(g^{n_1})_h(g^{n_2})_h...$ is irrational. In the proof they used the theory of Thue equations.

Generalizations for numeration systems based on linear recursive sequences:

- P.G. Becker, 1991
- P.G. Becker and J. Sander 1995
- G. Barat, R. Tichy and R. Tijdeman, 1997
- G. Barat, C. Frougny and A. Pethő, 2005

2. Radix representation in number fields

Let \mathbb{K} an algebraic number field with ring of integers $\mathbb{Z}_{\mathbb{K}}$ \mathbb{L} a finite extension of \mathbb{K} with ring of integers $\mathbb{Z}_{\mathbb{L}}$ The pair (γ, \mathcal{D}) , where $\gamma \in \mathbb{Z}_{\mathbb{L}}$ and \mathcal{D} is a complete residue system modulo γ in $\mathbb{Z}_{\mathbb{K}}$ is called a GNS in $\mathbb{Z}_{\mathbb{L}}$ if for any $0 \neq \beta \in \mathbb{Z}_{\mathbb{L}}$ there exist an integer $\ell \geq 0$ and $a_0, \ldots, a_{\ell} \in \mathcal{D}, a_{\ell} \neq 0$ such that

$$\beta = a_{\ell} \gamma^{\ell} + \dots + a_1 \gamma + a_0. \tag{1}$$

Denote the sequence or word of the digits $a_{\ell} \dots a_1 a_0$ by $(\beta)_{\gamma}$.

The GNS concept was initiated by D. Knuth, and developed further by Penney, I. Kátai, J. Szabó, B. Kovács, etc.

3. Results on power sums

Let $0 \notin A, B \subset \mathbb{Z}_L$ be finite, and Γ, Γ^+ be the semigroup, group generated by B. Put

$$S(\mathcal{A},\mathcal{B},s) = \{\alpha_1\mu_1 + \dots + \alpha_s\mu_s : \alpha_j \in \mathcal{A}, \mu_j \in \Gamma\}.$$

Example: $\mathbb{L} = \mathbb{Q}, \mathcal{A} = \{1\}, \mathcal{B} = \{2, 3\}$ then $S(\mathcal{A}, \mathcal{B}, 2) = \{2^a 3^b + 2^c 3^d : a, b, c, d \ge 0\}.$ **Theorem 1.** Let $s \ge 1$ and \mathcal{A}, \mathcal{B} as above. Let (c_n) be such that $c_n \in S(\mathcal{A}, \mathcal{B}, s)$. If (γ, \mathcal{D}) is a GNS in $\mathbb{Z}_{\mathbb{L}}$, $\gamma \notin \Gamma^+$ and (c_n) has infinitely many distinct terms then the infinite word $(c_1)_{\gamma}(c_2)_{\gamma} \dots$ is not periodic.

Let $(c_1)_{\gamma}(c_2)_{\gamma}\ldots = f_0f_1\ldots$ Then

$$g = \sum_{j=0}^{\infty} f_j \gamma^{-j}$$

is a well defined complex number. A result of B. Kovács and I. Környei, 1992 implies $g \notin \mathbb{Q}$. We expect at least $g \notin \mathbb{L}$, but we are unable to prove this.

The proof of Theorem 1 is based on the following

Lemma 1. For any $w \in \mathcal{D}^*$ there are only finitely many $U \in S(\mathcal{A}, \mathcal{B}, s)$ such that $(U)_{\gamma} = w_1 w^k$, where w_1 is a suffix of w.

Proof. Let $w = d_0 \dots d_{h-1}$. If $(U)_{\gamma} = w_1 w^k$ then $w_1 = \lambda$ or $w_1 = d_t \dots d_{h-1}$. Set $q_0 = 0$ if $w_1 = \lambda$, and $q_0 = d_t + d_{t+1}\gamma + \dots + d_{h-1}\gamma^{h-t-1}$ otherwise. Further let $q = d_0 + d_1\gamma + \dots + d_{h-1}\gamma^{h-1}$. We also have $U = \alpha_1 \mu_1 + \dots + \alpha_s \mu_s$. Then

$$\alpha_1 \mu_1 + \dots + \alpha_s \mu_s = q_0 + \gamma^{h-t} \sum_{i=0}^{k-1} q \gamma^{ih}$$
$$= q_0 + q \gamma^{h-t} \frac{\gamma^{hk} - 1}{\gamma^h - 1}$$
$$= \frac{q \gamma^{h-t}}{\gamma^h - 1} \gamma^{hk} + q_0 - \frac{q \gamma^{h-t}}{\gamma^h - 1}.$$

Setting

$$\alpha_{s+1} = \frac{q\gamma^{h-t}}{\gamma^h - 1}, \qquad \alpha_{s+2} = q_0 - \frac{q\gamma^{h-t}}{\gamma^h - 1}$$

we get the equation

$$\alpha_1 \mu_1 + \dots + \alpha_s \mu_s = \alpha_{s+1} \gamma^{hk} + \alpha_{s+2}.$$
 (2)

As (γ, \mathcal{D}) is a GNS $|\gamma| > 1$, hence $\gamma^h \neq 1$ and $\alpha_{s+1}, \alpha_{s+2}$ are well defined. Plainly $\alpha_j \in \mathbb{L}, j = 1, \dots, s+2$ and $\alpha_j \neq 0, k = 1, \dots, s$ by assumption. It is easy to see that $\alpha_{s+1} \neq 0$ holds too.

Taking Γ_1 the multiplicative semigroup generated by γ and $b \in \mathcal{B}$ (2) is a Γ_1 -unit equation. If there are infinitely many $U \in S(\mathcal{A}, \mathcal{B}, s)$ such that $(U)_{\gamma} = w_1 w^k$ then k can take arbitrary large values and (2) has infinitely many solutions in $(\mu_1, \ldots, \mu_s, \gamma^{hk}) \in \Gamma_1^{s+1}$. By the theory of weighted *S*-unit equations the assumption $\gamma \notin \Gamma^+$ excluded this.

Proof of Theorem 1. Let $W = (c_1)_{\gamma}(c_2)_{\gamma}...$ and assume that it is eventually periodic. Omitting, if necessary, some starting members of (c_n) we may assume that it is periodic, i.e. $W = H^{\infty}$ with $H \in \mathcal{D}^h$.

There exist for all $n \ge 1$ a suffix c_{n0} a prefix c_{n1} of H and an integer $e_n \ge 0$ such that $(c_n)_{\gamma} = c_{n0}H^{e_n}c_{n1}$.

There exist only finitely many, elements of $\mathbb{Z}_{\mathbb{K}}$ with a (γ, \mathcal{D}) representation of bounded length. Thus, the length of the words $(c_n)_{\gamma}, n = 1, 2, \ldots$ is not bounded. Further, there are only $|\mathcal{A}|^s$ possible choices for the *s*-tuple (a_{n1}, \ldots, a_{ns}) . Thus, there exists
an infinite sequence $k_1 < k_2 < \ldots$ of integers such that $l((c_{k_n})_{\gamma}) \ge h$ and $l((c_{k_{n+1}})_{\gamma}) > l((c_{k_n})_{\gamma})$ and the *s*-tuples $(a_{k_n1}, \ldots, a_{k_ns})$ are
the same for all $n \ge 1$.

Write $(c_{k_n})_{\gamma} = c_{k_n 0} H^{e_{k_n}} c_{k_n 1}$, where $c_{k_n 0}$ is a suffix and $c_{k_n 1}$ is a prefix of H for all $n \ge 1$. As H has at most h - 1 proper prefixes and h - 1 proper suffixes there exists an infinite subsequence of $k_n, n \ge 1$ such that the corresponding words satisfy $c_{k_n 0} = C_0$ and $c_{k_n 1} = C_1$. In the sequel we work only with this subsequence, therefore we omit the subindexes.

With this simplified notation we have $(c_n)_{\gamma} = C_0 H^{e_n} C_1$, where C_0 denotes a proper suffix, and C_1 a proper prefix of H and (e_n) tends to infinity. Finally, replacing H by the suffix of length h of HC_1 , and denoting it again by H we have $(c_n)_{\gamma} = C_0 H^{e_n}$. This contradicts Lemma 1. \Box

Considering for $\mathbb{K} = \mathbb{Q}$ the ordinary *g*-ary representation of integers we get immediately the following far reaching generalization of Mahler's result.

Corollary 1. Let \mathcal{A}, \mathcal{B} be finite sets of positive integers and $g \ge 2$ be a positive integer. Let $\Gamma = \Gamma(\mathcal{B})$ and $c_n = a_{n1}u_{n1} + \cdots + a_{ns}u_{ns}$ with $u_{ni} \in \Gamma, a_{ni} \in \mathcal{A}, 1 \le i \le s, n \ge 1$. If $g \notin \Gamma$ and (c_n) is not bounded, then $0.(c_1)_g(c_2)_g...$ is irrational. To illustrate the power of Theorem 1 we formulate a further corollary.

Corollary 2. Let γ be an algebraic integer, which is neither rational nor imaginary quadratic. Let $\mathbb{K} = \mathbb{Q}(\gamma)$, \mathcal{D} be a complete residue system modulo γ in $\mathbb{Z}_{\mathbb{K}}$ and (γ, \mathcal{D}) be a GNS in $\mathbb{Z}[\gamma]$. If (c_n) is a sequence of elements of $\mathbb{Z}[\gamma]$ of given norm, which includes infinitely many pairwise different terms, then the word $(c_1)_{\gamma}(c_2)_{\gamma}...$ is not periodic.

Proof. There exists in $\mathbb{Z}_{\mathbb{K}}$ only finitely many pairwise not associated elements with given norm. Let \mathcal{A} be such a set. There exist by Dirichlet's theorem $\varepsilon_1, \ldots, \varepsilon_r$ such that every unit of infinite order of $\mathbb{Z}_{\mathbb{K}}$ can be written in the form $\varepsilon_1^{m_1} \cdots \varepsilon_r^{m_r}$. Setting $\mathcal{B} = \{\varepsilon_1, \ldots, \varepsilon_r\}$ apply Theorem 1.

Notice that in the rational and in the imaginary quadratic fields there are only finitely many elements with given norm, hence there are cases, when $(c_1)_{\gamma}(c_2)_{\gamma}\dots$ is, and other cases, when it is not periodic.

4. Application to solutions of norm form equations

Let \mathbb{K} be an algebraic number field of degree k. It has k isomorphic images, $\mathbb{K}^{(1)} = \mathbb{K}, \ldots, \mathbb{K}^{(k)}$ in \mathbb{C} . Let $\alpha_1 = 1, \alpha_2, \ldots, \alpha_s \in \mathbb{Z}_{\mathbb{K}}$ be \mathbb{Q} -linear independent elements and $L(\mathbf{X}) = \alpha_1 X_1 + \cdots + \alpha_s X_s$. Plainly $s \leq k$. Consider the norm form equation

$$N_{\mathbb{K}/\mathbb{Q}}(L(\mathbf{X})) = \prod_{j=1}^{k} (\alpha_1^{(j)} X_1 + \dots + \alpha_s^{(j)} X_s) = t, \qquad (3)$$

where $0 \neq t \in \mathbb{Z}$, which solutions are searched in \mathbb{Z} . Notice that the polynomial $N_{\mathbb{K}/\mathbb{Q}}(L(\mathbf{X}))$ is invariant against conjugation, thus, it has rational integer coefficients.

Now we are in the position to state our Mahler-type result on the solutions of (3).

Theorem 2. Let $(\mathbf{x}_n) = ((x_{n1}, \ldots, x_{ns}))$ be a sequence of solutions of (3), including infinitely many different ones. Let $1 \le j \le s$ be fixed and $g \ge 2$. If (x_{nj}) is not ultimately zero then the infinite word $(|x_{1j}|)_g(|x_{2j}|)_g\ldots$ is not periodic.

Outline of the proof By a deep theorem of W.M. Schmidt there exist a finite set $\mathcal{A} \subset \mathbb{Z}_{\mathbb{K}}$ such that

$$\alpha_1 x_{n1} + \dots + \alpha_s x_{ns} = \mu u_n$$

with $\mu \in \mathcal{A}$ and with a unit $u_n \in \mathbb{Z}_{\mathbb{K}}$. Taking conjugates we obtain the system of linear equations

$$\alpha_1^{(i)} x_{n1} + \dots + \alpha_s^{(i)} x_{ns} = \mu^{(i)} u_n^{(i)}, i = 1, \dots, k,$$

which implies

$$x_{nj} = \nu_1 u_n^{(1)} + \dots + \nu_k u_n^{(k)}$$

with some constants ν_i belonging to the normal closure of \mathbb{K} . The assumption (x_{nj}) is not ultimately zero implies that (x_{nj}) is not bounded. Now we can apply Theorem 1. **Remark 1.** If \mathbb{K} is a real quadratic number field (3) is called Pell equation, which solutions can be expressed by the union of finitely many linear recursive sequences. In this case Theorem 2 is included implicitly in Theorem 1 of Barat, Frougny and Pethő.

Győry, Mignotte and Shorey, 1990 proved with the notation of Theorem 2 that if the set of the *j*-th coordinate of the solutions of (3) is not bounded then the greatest prime factor of them tends to infinity. Our Theorem 2 shows that their assumption always holds if (3) has infinitely many solutions, which *j*-th coordinates is non-zero.