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Talk is base on the paper
Variations on a theme of K. Mahler, 1., Annales Univ. Sci. Bu-
dapest., Sect. Comp. 48 (2018) 137-149.

The volume is dedicated - among others - to the 80th birthday
of Imre Katai.



1. Introduction and notations

Let g,h > 2. Denote (n)g the sequence of digits of the g-ary
representation of n, e.g. (2018);0 = 2018,(2018)s = 31033.
K. Mahler, 1981, proved that the number 0.(1)4(h)4(h?)g... is
irrational, equivalently: the infinite word (1)g(h)g(h2)g... is not
periodic. Refinements, generalizations and new methods by

e P. Bundschuh, 1984

e H. Niederreiter, 1986

e /. Shan, 1987

e Z. Shan and E. Wang, 1989: Let (n;)s2, be a strictly increas-
ing sequence of integers. Then 0.(¢g"1),(g™2),, ... is irrational. In
the proof they used the theory of Thue equations.



Generalizations for numeration systems based on linear recursive
sequences:

o P.G. Becker, 1991

o P.G. Becker and J. Sander 1995

e G. Barat, R. Tichy and R. Tijdeman, 1997
e G. Barat, C. Frougny and A. Pethd, 2005



2. Radix representation in number fields

Let K an algebraic number field with ring of integers Zg

L a finite extension of K with ring of integers Zj

The pair (v,D), where v € Z; and D is a complete residue system
modulo v in Zk is called a GNS in Zg if for any 0 = 8 € Zy, there
exist an integer £ > 0 and aq,...,ay € D,ay # 0 such that

B=an’+ - + a1y +ao (1)
Denote the sequence or word of the digits ay...ajag by (58)~.

The GNS concept was initiated by D. Knuth, and developed
further by Penney, 1. Katai, J. Szabo, B. Kovacs, etc.



3. Results on power sums

Let O ¢ A,B C Zy, be finite, and I, t be the semigroup, group
generated by B. Put

S(A,B,S) — {allul+"'+aslu8 : aj EA)H] S r}

Example: L=Q, A ={1},B={2,3} then

S(A,B,2) = {23° 4+ 2°3% : ¢, b,c,d > 0O}.



Theorem 1. Let s> 1 and A, B as above. Let (¢,) be such that
cn € S(A,B,s). If (v,D) is a GNS in Z;, v ¢ T and (¢) has
infinitely many distinct terms then the infinite word (c1)~(c2)~ ...
IS not periodic.

Let (61)7(62)7 ...= fof1.... Then
e .
g= > fiv’
j=0
is a well defined complex number. A result of B. Kovacs and I.
Kornyei, 1992 implies g ¢ Q. We expect at least g ¢ L, but we

are unable to prove this.

The proof of Theorem 1 is based on the following



Lemma 1. For any w € D* there are only finitely many U &
S(A,B,s) such that (U)~ = wiw®, where wy is a suffix of w.

Proof. Let w = dg...dp_1. If (U)y = wiw® then w; = X\ or

w1 = dt---dh—l- Set q =20 if wqy = A, and qo = dt+dt+1’7+- ..+
dy,_1v"~t~1 otherwise. Further let ¢ =dg+div+...+dp_ 17" 1.
We also have U = aju1 + -+ + asus. Then

k—1
arpr+ - Fasps = g+ ¢y
1=0
hk
h—ty " —1
q0 + qry ’Yh 1
Q’}/h_t h—t

_ hk _
17 + 40




Setting

Q’}/h_t . o Q’}/h_t
s+2 0 ’Yh —1

Ggt1 —

we get the equation

arpr + -+ osps = oy 17" 4 oo, (2)

As (v,D) is a GNS |y| > 1, hence v* # 1 and a 41, a,1 o are well
defined. Plainly a; € L,7=1,...;s+2and a; #0,k =1,...,s
by assumption. It is easy to see that a4 # 0 holds too.



Taking ;1 the multiplicative semigroup generated by v and b €
B (2) is a N{-unit equation. If there are infinitely many U €
S(A, B,s) such that (U)y = wiw® then k can take arbitrary large
values and (2) has infinitely many solutions in (u1,..., us,¥**) €
I“i+1. By the theory of weighted S-unit equations the assumption
v ¢ T excluded this. []



Proof of Theorem 1. Let W = (c1)y(c2)~... and assume that
it is eventually periodic. Omitting, if necessary, some starting
members of (¢,) we may assume that it is periodic, i.e. W = H*®
with H € D",

There exist for all n > 1 a suffix ¢,g a prefix ¢,7 of H and an
integer e, > 0 such that (cn)y = coHcp1.

There exist only finitely many, elements of Zx with a (v,D)-
representation of bounded length. Thus, the length of the words
(cn)~y,m = 1,2,... is not bounded. Further, there are only |A|*
possible choices for the s-tuple (a,,1,...,ans). Thus, there exists
an infinite sequence k1 < kp < ... of integers such that I((cg, )~) >
h and l((Can)v) > 1((cg, )v) and the s-tuples (ag,1,...,a ) are
the same for all n > 1.



Write (cg, )y = ¢, 0H %ncy, 1, Where ¢ o is a suffix and ¢ 1 is a
prefix of H for all n > 1. As H has at most h — 1 proper prefixes
and h — 1 proper suffixes there exists an infinite subsequence of
kn,n > 1 such that the corresponding words satisfy ¢, o = Cp and
cr,1 = C1. In the sequel we work only with this subsequence,
therefore we omit the subindexes.

With this simplified notation we have (cn)y = CogH*"C7, where
Cp denotes a proper suffix, and C7 a proper prefix of H and (en)
tends to infinity. Finally, replacing H by the suffix of length A of
HC1, and denoting it again by H we have (¢n)y = CoH®. This
contradicts Lemma 1. [



Considering for K = Q the ordinary g-ary representation of inte-
gers we get immediately the following far reaching generalization
of Mahler's result.

Corollary 1. Let A, B be finite sets of positive integers and g > 2
be a positive integer. LetT =T (B) and ¢, = ap1un1+- - -+ anstns
With u,; € T,a,,; € A, 1 <i<sn>1. Ifgé& Tl and (cn) is not
bounded, then 0.(c1)g4(c2)g... is irrational.



To illustrate the power of Theorem 1 we formulate a further
corollary.

Corollary 2. Let v be an algebraic integer, which is neither ra-
tional nor imaginary quadratic. Let K = Q(v), D be a complete
residue system modulo ~ in Zx and (~v,D) be a GNS in Z[~].
If (¢n) is a sequence of elements of Z[vy] of given norm, which
includes infinitely many pairwise different terms, then the word
(c1)y(c2)~ ... is not periodic.

Proof. There exists in Zx only finitely many pairwise not asso-
Ciated elements with given norm. Let A be such a set. There
exist by Dirichlet’s theorem eq,...,&r such that every unit of in-
finite order of Zx can be written in the form sTl .- gl'r. Setting
B={e1,...,er} apply Theorem 1. L]



Notice that in the rational and in the imaginary quadratic fields

there are only finitely many elements with given norm, hence

there are cases, when (c¢1)~(c2)~... IS, and other cases, when it

IS not periodic.



4. Application to solutions of norm form equations

Let K be an algebraic number field of degree k. It has k isomor-
phic images, K1) =K,... , K&*) in C. Let a1 = 1,a9,...,as € Zg
be Q-linear independent elements and L(X) = a1 X1+ -+ asXs.
Plainly s < k. Consider the norm form equation

k , :
Nigjg(L(X)) = [[ (P x1+ - +ox)=t,  (3)
=1
where 0 = t € 7Z, which solutions are searched in Z. Notice
that the polynomial NK/@(L(X)) is invariant against conjugation,
thus, it has rational integer coefficients.

Now we are in the position to state our Mahler-type result on
the solutions of (3).



Theorem 2. Let (xn) = ((z,1,...,7ns)) be a sequence of so-
lutions of (3), including infinitely many different ones. Let
1 <j <s befixed and g > 2. If (z,;) is not ultimately zero
then the infinite word (|z1;])g(|z2;5|)g ... is not periodic.

Outline of the proof By a deep theorem of W.M. Schmidt there
exist a finite set A C Zk such that

a1Tn1 + -+ asTps = HUn

with u € A and with a unit u, € Zx. Taking conjugates we obtain
the system of linear equations

ag.Z)xn]._I—_l_ag)x S—M(Z) () 7"'7k7

which implies



(1) (k)

Tpj = ViUp + - 4 veuy

with some constants v; belonging to the normal closure of K.
The assumption (z,;) is not ultimately zero implies that (z,;) is
not bounded. Now we can apply Theorem 1.



Remark 1. If K is a real quadratic number field (3) is called
Pell equation, which solutions can be expressed by the union of
finitely many linear recursive sequences. In this case Theorem 2
is included implicitly in Theorem 1 of Barat, Frougny and Pethd.

Gyobry, Mignotte and Shorey, 1990 proved with the notation of
Theorem 2 that if the set of the j-th coordinate of the solu-
tions of (3) is not bounded then the greatest prime factor of
them tends to infinity. Our Theorem 2 shows that their assump-
tion always holds if (3) has infinitely many solutions, which j-th
coordinates is non-zero.



