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Talk is base on the paper

Variations on a theme of K. Mahler, I., Annales Univ. Sci. Bu-

dapest., Sect. Comp. 48 (2018) 137–149.

The volume is dedicated - among others - to the 80th birthday

of Imre Kátai.



1. Introduction and notations

Let g, h ≥ 2. Denote (n)g the sequence of digits of the g-ary

representation of n, e.g. (2018)10 = 2018, (2018)5 = 31033.

K. Mahler, 1981, proved that the number 0.(1)g(h)g(h2)g . . . is

irrational, equivalently: the infinite word (1)g(h)g(h2)g . . . is not

periodic. Refinements, generalizations and new methods by

• P. Bundschuh, 1984

• H. Niederreiter, 1986

• Z. Shan, 1987

• Z. Shan and E. Wang, 1989: Let (ni)
∞
i=1 be a strictly increas-

ing sequence of integers. Then 0.(gn1)h(gn2)h . . . is irrational. In

the proof they used the theory of Thue equations.



Generalizations for numeration systems based on linear recursive

sequences:

• P.G. Becker, 1991

• P.G. Becker and J. Sander 1995

• G. Barat, R. Tichy and R. Tijdeman, 1997

• G. Barat, C. Frougny and A. Pethő, 2005



2. Radix representation in number fields

Let K an algebraic number field with ring of integers ZK
L a finite extension of K with ring of integers ZL
The pair (γ,D), where γ ∈ ZL and D is a complete residue system

modulo γ in ZK is called a GNS in ZL if for any 0 6= β ∈ ZL there

exist an integer ` ≥ 0 and a0, . . . , a` ∈ D, a` 6= 0 such that

β = a`γ
` + · · ·+ a1γ + a0. (1)

Denote the sequence or word of the digits a` . . . a1a0 by (β)γ.

The GNS concept was initiated by D. Knuth, and developed

further by Penney, I. Kátai, J. Szabó, B. Kovács, etc.



3. Results on power sums

Let 0 /∈ A,B ⊂ ZL be finite, and Γ,Γ+ be the semigroup, group

generated by B. Put

S(A,B, s) = {α1µ1 + · · ·+ αsµs : αj ∈ A, µj ∈ Γ}.

Example: L = Q,A = {1},B = {2,3} then

S(A,B,2) = {2a3b + 2c3d : a, b, c, d ≥ 0}.



Theorem 1. Let s ≥ 1 and A,B as above. Let (cn) be such that

cn ∈ S(A,B, s). If (γ,D) is a GNS in ZL, γ /∈ Γ+ and (cn) has

infinitely many distinct terms then the infinite word (c1)γ(c2)γ . . .

is not periodic.

Let (c1)γ(c2)γ . . . = f0f1 . . .. Then

g =
∞∑
j=0

fjγ
−j

is a well defined complex number. A result of B. Kovács and I.

Környei, 1992 implies g /∈ Q. We expect at least g /∈ L, but we

are unable to prove this.

The proof of Theorem 1 is based on the following



Lemma 1. For any w ∈ D∗ there are only finitely many U ∈
S(A,B, s) such that (U)γ = w1w

k, where w1 is a suffix of w.

Proof. Let w = d0 . . . dh−1. If (U)γ = w1w
k then w1 = λ or

w1 = dt . . . dh−1. Set q0 = 0 if w1 = λ, and q0 = dt+dt+1γ+ . . .+

dh−1γ
h−t−1 otherwise. Further let q = d0 + d1γ+ . . .+ dh−1γ

h−1.

We also have U = α1µ1 + · · ·+ αsµs. Then

α1µ1 + · · ·+ αsµs = q0 + γh−t
k−1∑
i=0

qγih

= q0 + qγh−t
γhk − 1

γh − 1

=
qγh−t

γh − 1
γhk + q0 −

qγh−t

γh − 1
.



Setting

αs+1 =
qγh−t

γh − 1
, αs+2 = q0 −

qγh−t

γh − 1

we get the equation

α1µ1 + · · ·+ αsµs = αs+1γ
hk + αs+2. (2)

As (γ,D) is a GNS |γ| > 1, hence γh 6= 1 and αs+1, αs+2 are well

defined. Plainly αj ∈ L, j = 1, . . . , s + 2 and αj 6= 0, k = 1, . . . , s

by assumption. It is easy to see that αs+1 6= 0 holds too.



Taking Γ1 the multiplicative semigroup generated by γ and b ∈
B (2) is a Γ1-unit equation. If there are infinitely many U ∈
S(A,B, s) such that (U)γ = w1w

k then k can take arbitrary large

values and (2) has infinitely many solutions in (µ1, . . . , µs, γ
hk) ∈

Γs+1
1 . By the theory of weighted S-unit equations the assumption

γ /∈ Γ+ excluded this.



Proof of Theorem 1. Let W = (c1)γ(c2)γ . . . and assume that

it is eventually periodic. Omitting, if necessary, some starting

members of (cn) we may assume that it is periodic, i.e. W = H∞

with H ∈ Dh.

There exist for all n ≥ 1 a suffix cn0 a prefix cn1 of H and an

integer en ≥ 0 such that (cn)γ = cn0H
encn1.

There exist only finitely many, elements of ZK with a (γ,D)-

representation of bounded length. Thus, the length of the words

(cn)γ, n = 1,2, . . . is not bounded. Further, there are only |A|s

possible choices for the s-tuple (an1, . . . , ans). Thus, there exists

an infinite sequence k1 < k2 < . . . of integers such that l((ckn)γ) ≥
h and l((ckn+1

)γ) > l((ckn)γ) and the s-tuples (akn1, . . . , akns) are

the same for all n ≥ 1.



Write (ckn)γ = ckn0H
eknckn1, where ckn0 is a suffix and ckn1 is a

prefix of H for all n ≥ 1. As H has at most h− 1 proper prefixes

and h− 1 proper suffixes there exists an infinite subsequence of

kn, n ≥ 1 such that the corresponding words satisfy ckn0 = C0 and

ckn1 = C1. In the sequel we work only with this subsequence,

therefore we omit the subindexes.

With this simplified notation we have (cn)γ = C0H
enC1, where

C0 denotes a proper suffix, and C1 a proper prefix of H and (en)

tends to infinity. Finally, replacing H by the suffix of length h of

HC1, and denoting it again by H we have (cn)γ = C0H
en. This

contradicts Lemma 1. �



Considering for K = Q the ordinary g-ary representation of inte-

gers we get immediately the following far reaching generalization

of Mahler’s result.

Corollary 1. Let A,B be finite sets of positive integers and g ≥ 2

be a positive integer. Let Γ = Γ(B) and cn = an1un1+· · ·+ansuns

with uni ∈ Γ, ani ∈ A,1 ≤ i ≤ s, n ≥ 1. If g /∈ Γ and (cn) is not

bounded, then 0.(c1)g(c2)g... is irrational.



To illustrate the power of Theorem 1 we formulate a further
corollary.

Corollary 2. Let γ be an algebraic integer, which is neither ra-
tional nor imaginary quadratic. Let K = Q(γ), D be a complete
residue system modulo γ in ZK and (γ,D) be a GNS in Z[γ].
If (cn) is a sequence of elements of Z[γ] of given norm, which
includes infinitely many pairwise different terms, then the word
(c1)γ(c2)γ . . . is not periodic.

Proof. There exists in ZK only finitely many pairwise not asso-
ciated elements with given norm. Let A be such a set. There
exist by Dirichlet’s theorem ε1, . . . , εr such that every unit of in-
finite order of ZK can be written in the form ε

m1
1 · · · εmr

r . Setting
B = {ε1, . . . , εr} apply Theorem 1.



Notice that in the rational and in the imaginary quadratic fields

there are only finitely many elements with given norm, hence

there are cases, when (c1)γ(c2)γ . . . is, and other cases, when it

is not periodic.



4. Application to solutions of norm form equations

Let K be an algebraic number field of degree k. It has k isomor-

phic images, K(1) = K, . . . ,K(k) in C. Let α1 = 1, α2, . . . , αs ∈ ZK
be Q-linear independent elements and L(X) = α1X1 + · · ·+αsXs.

Plainly s ≤ k. Consider the norm form equation

NK/Q(L(X)) =
k∏

j=1

(α(j)
1 X1 + · · ·+ α

(j)
s Xs) = t, (3)

where 0 6= t ∈ Z, which solutions are searched in Z. Notice

that the polynomial NK/Q(L(X)) is invariant against conjugation,

thus, it has rational integer coefficients.

Now we are in the position to state our Mahler-type result on

the solutions of (3).



Theorem 2. Let (xn) = ((xn1, . . . , xns)) be a sequence of so-

lutions of (3), including infinitely many different ones. Let

1 ≤ j ≤ s be fixed and g ≥ 2. If (xnj) is not ultimately zero

then the infinite word (|x1j|)g(|x2j|)g . . . is not periodic.

Outline of the proof By a deep theorem of W.M. Schmidt there

exist a finite set A ⊂ ZK such that

α1xn1 + · · ·+ αsxns = µun

with µ ∈ A and with a unit un ∈ ZK. Taking conjugates we obtain

the system of linear equations

α
(i)
1 xn1 + · · ·+ α

(i)
s xns = µ(i)u

(i)
n , i = 1, . . . , k,

which implies



xnj = ν1u
(1)
n + · · ·+ νku

(k)
n

with some constants νi belonging to the normal closure of K.

The assumption (xnj) is not ultimately zero implies that (xnj) is

not bounded. Now we can apply Theorem 1.



Remark 1. If K is a real quadratic number field (3) is called

Pell equation, which solutions can be expressed by the union of

finitely many linear recursive sequences. In this case Theorem 2

is included implicitly in Theorem 1 of Barat, Frougny and Pethő.

Győry, Mignotte and Shorey, 1990 proved with the notation of

Theorem 2 that if the set of the j-th coordinate of the solu-

tions of (3) is not bounded then the greatest prime factor of

them tends to infinity. Our Theorem 2 shows that their assump-

tion always holds if (3) has infinitely many solutions, which j-th

coordinates is non-zero.


