The Rudin-Shapiro sequence and similar sequences are normal along squares

Clemens Müllner

Tuesday, October 2nd, 2018

Sum of digits

Let $q \ge 2$ be a base.

$$n=\sum_{j=0}^r \varepsilon_j^{(q)}(n)q^j,$$

where
$$\varepsilon_j^{(q)}(n) \in \{0, \ldots, q-1\}$$
 and $r = \lfloor \log_q(n) \rfloor$.

Definition

We define the sum of digits function $s_q(n)$

$$s_q(n) := \sum_{j=0}^r \varepsilon_j^{(q)}(n).$$

イロト イロト イヨト イ

Sum of digits

Let $q \ge 2$ be a base.

$$n=\sum_{j=0}^r \varepsilon_j^{(q)}(n)q^j,$$

where
$$\varepsilon_j^{(q)}(n) \in \{0, \ldots, q-1\}$$
 and $r = \lfloor \log_q(n) \rfloor$.

Definition

We define the sum of digits function $s_q(n)$

$$s_q(n) := \sum_{j=0}^r \varepsilon_j^{(q)}(n)$$

・ロト ・ 日 ト ・ 目 ト ・

Sum of digits

Let $q \ge 2$ be a base.

$$n=\sum_{j=0}^r \varepsilon_j^{(q)}(n)q^j,$$

where
$$\varepsilon_j^{(q)}(n) \in \{0, \ldots, q-1\}$$
 and $r = \lfloor \log_q(n) \rfloor$.

Definition

We define the sum of digits function $s_q(n)$

$$s_q(n) := \sum_{j=0}^r \varepsilon_j^{(q)}(n).$$

Let $q \ge 2$ and m such that gcd(q-1, m) = 1.

Theorem (Gelfond 1967)

 $(s_q(an + b) \mod m)_{n \in \mathbb{N}}$ is simply normal.

2. Gelfond Problem

 $(s_q(p) \mod m)_{p \in \mathcal{P}}$ is simply normal. Solved by Mauduit and Rivat in 2010.

3. Gelfond Problem

Let $q \ge 2$ and m such that gcd(q-1, m) = 1.

Theorem (Gelfond 1967)

 $(s_q(an + b) \mod m)_{n \in \mathbb{N}}$ is simply normal.

2. Gelfond Problem

 $(s_q(p) \mod m)_{p \in \mathcal{P}}$ is simply normal. Solved by Mauduit and Rivat in 2010.

3. Gelfond Problem

Let $q \ge 2$ and m such that gcd(q-1, m) = 1.

Theorem (Gelfond 1967)

 $(s_q(an + b) \mod m)_{n \in \mathbb{N}}$ is simply normal.

2. Gelfond Problem

 $(s_q(p) \mod m)_{p \in \mathcal{P}}$ is simply normal. Solved by Mauduit and Rivat in 2010.

3. Gelfond Problem

Let $q \ge 2$ and m such that gcd(q-1, m) = 1.

Theorem (Gelfond 1967)

 $(s_q(an + b) \mod m)_{n \in \mathbb{N}}$ is simply normal.

2. Gelfond Problem

 $(s_q(p) \mod m)_{p \in \mathcal{P}}$ is simply normal. Solved by Mauduit and Rivat in 2010.

3. Gelfond Problem

Let $q \ge 2$ and m such that gcd(q-1, m) = 1.

Theorem (Gelfond 1967)

 $(s_q(an + b) \mod m)_{n \in \mathbb{N}}$ is simply normal.

2. Gelfond Problem

 $(s_q(p) \mod m)_{p \in \mathcal{P}}$ is simply normal. Solved by Mauduit and Rivat in 2010.

3. Gelfond Problem

Let $q \ge 2$ and m such that gcd(q-1, m) = 1.

Theorem (Gelfond 1967)

 $(s_q(an + b) \mod m)_{n \in \mathbb{N}}$ is simply normal.

2. Gelfond Problem

 $(s_q(p) \mod m)_{p \in \mathcal{P}}$ is simply normal. Solved by Mauduit and Rivat in 2010.

3. Gelfond Problem

Definition (Pattern-counting function)

Fix $\ell \geq 1$ and a pattern $P = (p_0, \dots, p_{\ell-1}) \in \{0, \dots, q-1\}^{\ell}, P \neq (0, \dots, 0).$ Then we define the *pattern-counting function*

$$f_P(n) = \sum_{j=0}^{r-\ell+1} \mathbf{1}_{\left[\left(\varepsilon_{j+\ell-1}^{(q)}(n), \dots, \varepsilon_j^{(q)}(n)\right)=P\right]}.$$

Rudin-Shapiro: $(f_{11}(n) \mod 2)_{n \in \mathbb{N}}$.

Definition (Pattern-counting function)

Fix $\ell \geq 1$ and a pattern $P = (p_0, \dots, p_{\ell-1}) \in \{0, \dots, q-1\}^{\ell}, P \neq (0, \dots, 0).$ Then we define the *pattern-counting function*

$$f_P(n) = \sum_{j=0}^{r-\ell+1} \mathbf{1}_{[(\varepsilon_{j+\ell-1}^{(q)}(n),...,\varepsilon_j^{(q)}(n))=P]}.$$

Rudin-Shapiro: $(f_{11}(n) \mod 2)_{n \in \mathbb{N}}$.

Definition (Pattern-counting function)

Fix $\ell \geq 1$ and a pattern $P = (p_0, \dots, p_{\ell-1}) \in \{0, \dots, q-1\}^{\ell}, P \neq (0, \dots, 0).$ Then we define the *pattern-counting function*

$$f_P(n) = \sum_{j=0}^{r-\ell+1} \mathbf{1}_{[(\varepsilon_{j+\ell-1}^{(q)}(n),...,\varepsilon_j^{(q)}(n))=P]}.$$

Rudin-Shapiro: $(f_{11}(n) \mod 2)_{n \in \mathbb{N}}$.

Definition (Block-additive function)

We say that $b : \mathbb{N} \to \mathbb{Z}$ is *block-additive* / *digital* if there exists $\ell \ge 1$ and $F : \{0, \ldots, q-1\}^{\ell} \to \mathbb{Z}$ such that $F(0, \ldots, 0) = 0$ and

$$b(n) = \sum_{j \in \mathbb{Z}} F(\varepsilon_{j+\ell-1}^{(q)}(n), \dots, \varepsilon_j^{(q)}(n)),$$

where
$$\varepsilon_j(n) = 0$$
 for $j \notin \{0, \ldots, r\}$.

A block-additive function is (almost) a linear combination of pattern-counting functions.

Proposition

Block-additive functions mod m give automatic sequences.

Clemens Müllner

Digital sequences along squares are normal

2. 10. 2018 5 / 10

Definition (Block-additive function)

We say that $b : \mathbb{N} \to \mathbb{Z}$ is *block-additive* / *digital* if there exists $\ell \ge 1$ and $F : \{0, \ldots, q-1\}^{\ell} \to \mathbb{Z}$ such that $F(0, \ldots, 0) = 0$ and

$$b(n) = \sum_{j \in \mathbb{Z}} F(\varepsilon_{j+\ell-1}^{(q)}(n), \dots, \varepsilon_j^{(q)}(n)),$$

where
$$\varepsilon_j(n) = 0$$
 for $j \notin \{0, \ldots, r\}$.

A block-additive function is (almost) a linear combination of pattern-counting functions.

Proposition

Block-additive functions mod m give automatic sequences.

Definition (Block-additive function)

We say that $b : \mathbb{N} \to \mathbb{Z}$ is *block-additive* / *digital* if there exists $\ell \ge 1$ and $F : \{0, \ldots, q-1\}^{\ell} \to \mathbb{Z}$ such that $F(0, \ldots, 0) = 0$ and

$$b(n) = \sum_{j \in \mathbb{Z}} F(\varepsilon_{j+\ell-1}^{(q)}(n), \dots, \varepsilon_j^{(q)}(n)),$$

where
$$\varepsilon_j(n) = 0$$
 for $j \notin \{0, \ldots, r\}$.

A block-additive function is (almost) a linear combination of pattern-counting functions.

Proposition

Block-additive functions mod m give automatic sequences.

Clemens Müllner

Digital sequences along squares are normal

2. 10. 2018 5 / 10

イロト イヨト イヨト

Theorem (Mauduit and Rivat, 2015)

The Rudin-Shapiro sequence is simply normal along primes.

Theorem (Hanna, 2017)

Pattern-counting functions mod m along primes are simply normal.

Theorem (M., 2017)

All automatic sequences are orthogonal to the Mobius function. The densities along primes can be described.

Theorem (Mauduit and Rivat, 2015)

The Rudin-Shapiro sequence is simply normal along primes.

Theorem (Hanna, 2017)

Pattern-counting functions mod m along primes are simply normal.

Theorem (M., 2017)

All automatic sequences are orthogonal to the Mobius function. The densities along primes can be described.

Theorem (Mauduit and Rivat, 2015)

The Rudin-Shapiro sequence is simply normal along primes.

Theorem (Hanna, 2017)

Pattern-counting functions mod m along primes are simply normal.

Theorem (M., 2017)

All automatic sequences are orthogonal to the Mobius function. The densities along primes can be described.

Theorem (M., 2017)

Let b be a block-additive function and $m \in \mathbb{N}$ with gcd(q-1,m) = 1 and $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$. Then $(b(n^2) \mod m)_{n \in \mathbb{N}}$ is normal in base m'.

This covers all pattern-counting functions mod m, where gcd(q-1,m) = 1, including the Thue-Morse sequence and the Rudin-Shapiro sequence.

Theorem (M., 2017)

Let b be a block-additive function and $m \in \mathbb{N}$ with gcd(q-1,m) = 1 and $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$. Then $(b(n^2) \mod m)_{n \in \mathbb{N}}$ is normal in base m'.

This covers all pattern-counting functions mod m, where gcd(q-1, m) = 1, including the Thue-Morse sequence and the Rudin-Shapiro sequence.

gcd(m, {b(n), n ∈ N}) = 1: necessary for simple normality.
gcd(q − 1, m) = 1: s_q(n) ≡ n(mod q − 1) is periodic.
F(0,...,0) = 0 : f_(0,...,0)(n) = ⌊log_q(n)⌋ − ∑_{P≠(0,...,0)} f_P(n).
Index-range Z instead of N: f_(0,1) + f_(1,0) mod 2.

gcd(m, {b(n), n ∈ N}) = 1: necessary for simple normality. gcd(q − 1, m) = 1: s_q(n) ≡ n(mod q − 1) is periodic. F(0,...,0) = 0 : f_(0,...,0)(n) = ⌊log_q(n)⌋ − ∑_{P≠(0,...,0)} f_P(n). Index-range Z instead of N: f_(0,1) + f_(1,0) mod 2.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- **2** gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- $cd(q-1,m) = 1: s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- 2 gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- **5** $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- 3 gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- 3 gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- **2** gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$

• Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

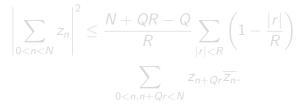
- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- 3 gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

General Strategy

Rewrite the statement in terms of exponential sums.
Every block of length k appears with density m^{-k} if

$$\left|\sum_{n\leq N} e\left(\sum_{j=0}^{k-1} \alpha_j b((n+j)^2)\right)\right| = o(N),$$

for all $(\alpha_0, \ldots, \alpha_{k-1}) \neq (0, \ldots, 0)$, where $e(x) = exp(2\pi ix)$. • Use a variation of the Van-der-Corput inequality,



• This cuts off "high" and "low" digits.

Clemens Müllner

General Strategy

Rewrite the statement in terms of exponential sums.
Every block of length k appears with density m^{-k} if

$$\left|\sum_{n\leq N} e\left(\sum_{j=0}^{k-1} \alpha_j b((n+j)^2)\right)\right| = o(N),$$

for all $(\alpha_0, \ldots, \alpha_{k-1}) \neq (0, \ldots, 0)$, where $e(x) = exp(2\pi ix)$. • Use a variation of the Van-der-Corput inequality,

$$\left|\sum_{0 < n < N} z_n\right|^2 \le \frac{N + QR - Q}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R}\right)$$
$$\sum_{0 < n, n + Qr < N} z_{n + Qr} \overline{z_n}.$$

• This cuts off "high" and "low" digits.

General Strategy

Rewrite the statement in terms of exponential sums.
Every block of length k appears with density m^{-k} if

$$\left|\sum_{n\leq N} e\left(\sum_{j=0}^{k-1} \alpha_j b((n+j)^2)\right)\right| = o(N),$$

for all $(\alpha_0, \ldots, \alpha_{k-1}) \neq (0, \ldots, 0)$, where $e(x) = exp(2\pi ix)$. • Use a variation of the Van-der-Corput inequality,

$$\left|\sum_{0 < n < N} z_n\right|^2 \le \frac{N + QR - Q}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R}\right)$$
$$\sum_{0 < n, n + Qr < N} z_{n + Qr} \overline{z_n}.$$

• This cuts off "high" and "low" digits.

- Use Vaaler's method to approximate the characteristic function of [0, α) mod 1.
- Find appropriate estimates for the new Fourier-terms,

$$H_{\lambda}^{I}(h,d) = \sum_{u < q^{\lambda}} e\left(\sum_{j} \alpha_{j}b(u+jd+i_{j}) - huq^{-\lambda}\right)$$

- Use Vaaler's method to approximate the characteristic function of [0, α) mod 1.
- Find appropriate estimates for the new Fourier-terms,

$$H_{\lambda}^{I}(h,d) = \sum_{u < q^{\lambda}} e\left(\sum_{j} \alpha_{j} b(u+jd+i_{j}) - huq^{-\lambda}\right)$$