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Sum of digits

Let q ≥ 2 be a base.

n =
r∑

j=0

ε
(q)
j (n)qj ,

where ε
(q)
j (n) ∈ {0, . . . , q − 1} and r = blogq(n)c.

Definition

We define the sum of digits function sq(n)

sq(n) :=
r∑

j=0

ε
(q)
j (n).
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Gelfond

Let q ≥ 2 and m such that gcd(q − 1,m) = 1.

Theorem (Gelfond 1967)

(sq(an + b) mod m)n∈N is simply normal.

2. Gelfond Problem

(sq(p) mod m)p∈P is simply normal.
Solved by Mauduit and Rivat in 2010.

3. Gelfond Problem

Let P(x) be a polynomial with integer coefficients.
Then (sq(P(n)) mod m)n∈N is simply normal.
Solved by Mauduit and Rivat in 2009 for P(n) = n2.
Drmota, Mauduit and Rivat (2018): (s2(n2) mod 2)n∈N is normal!
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Pattern-counting function

Definition (Pattern-counting function)

Fix ` ≥ 1 and a pattern
P = (p0, . . . , p`−1) ∈ {0, . . . , q − 1}`,P 6= (0, . . . , 0).
Then we define the pattern-counting function

fP(n) =
r−`+1∑
j=0

1
[(ε

(q)
j+`−1(n),...,ε

(q)
j (n))=P]

.

Rudin-Shapiro: (f11(n) mod 2)n∈N.
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Block-additive function

Definition (Block-additive function)

We say that b : N→ Z is block-additive / digital if there exists
` ≥ 1 and F : {0, . . . , q − 1}` → Z such that F (0, . . . , 0) = 0 and

b(n) =
∑
j∈Z

F (ε
(q)
j+`−1(n), . . . , ε

(q)
j (n)),

where εj(n) = 0 for j /∈ {0, . . . , r}.

A block-additive function is (almost) a linear combination of
pattern-counting functions.

Proposition

Block-additive functions modm give automatic sequences.
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Extensions for the 2nd Gelfond Problem

Theorem (Mauduit and Rivat, 2015)

The Rudin-Shapiro sequence is simply normal along primes.

Theorem (Hanna, 2017)

Pattern-counting functions modm along primes are simply normal.

Theorem (M., 2017)

All automatic sequences are orthogonal to the Mobius function.
The densities along primes can be described.
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Main Result

Theorem (M., 2017)

Let b be a block-additive function and m ∈ N with
gcd(q − 1,m) = 1 and gcd(m, {b(n), n ∈ N}) = 1. Then
(b(n2) mod m)n∈N is normal in base m′.

This covers all pattern-counting functions mod m, where
gcd(q − 1,m) = 1, including the Thue-Morse sequence and the
Rudin-Shapiro sequence.
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Conditions

1 gcd(m, {b(n), n ∈ N}) = 1: necessary for simple normality.

2 gcd(q − 1,m) = 1: sq(n) ≡ n(modq − 1) is periodic.

3 F (0, . . . , 0) = 0 : f(0,...,0)(n) = blogq(n)c −
∑

P 6=(0,...,0) fP(n).

4 Index-range Z instead of N: f(0,1) + f(1,0) mod 2.

The technical conditions (3) and (4) are necessary to get very
natural restrictions (1) and (2).
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General Strategy

Rewrite the statement in terms of exponential sums.
Every block of length k appears with density m−k if∣∣∣∣∣∑

n≤N

e

(
k−1∑
j=0

αjb((n + j)2

)∣∣∣∣∣ = o(N),

for all (α0, . . . , αk−1) 6= (0, . . . , 0), where e(x) = exp(2πix).
Use a variation of the Van-der-Corput inequality,∣∣∣∣∣ ∑

0<n<N

zn

∣∣∣∣∣
2

≤ N + QR − Q

R

∑
|r |<R

(
1− |r |

R

)
∑

0<n,n+Qr<N

zn+Qrzn.

This cuts off “high“ and “low“ digits.
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General Strategy

Use Vaaler’s method to approximate the characteristic function
of [0, α) mod 1.

Find appropriate estimates for the new Fourier-terms,

H I
λ(h, d) =

∑
u<qλ

e

(∑
j

αjb(u + jd + ij)− huq−λ

)
.
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