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Inversive generator
Let R be a (finite, commutative, unitary) ring and define the
sequence (u,) by

up = P(up—1), n>1 with @Z)(x):g+b, a,becR.
x

or in general

. b
Wy = (1y_1), n>1 with w(x):LId, ab.c.dcR.
CcX

with an initial value ug € R.

» The sequence (u,) can be finite, or
» ultimately periodic, as R is finite.
For computational aspect, there are two interesting cases:
» R =T, typically prime field: ¢ is large prime.
» R = Zy, pis small, typically p = 2.



Examples for inversive generator

Letr > 3 and

_ ax+b

= — b,c,d € Zy:.
¢(x) cx—{—d’ a,b,c,d < 4L

Assume, that

a by (1 0 0 1
<c d>:<0 1) or (1 0> mod 2.
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Letr > 3 and

ax+b
Y(x) = m,

a,b,c,d € L.
Assume, that

(a)=(o 1) o (o) o
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Examples for inversive generator

Letr > 3 and

w(x):ax—{—b a,b,c,d € Zy.
Assume, that

cx+d’
a by (1 0 0 1
(c d>:<0 1) (1 0> mod 2.

Then ¢ defines a permutation on Z5,.

If ¢ is a permutation of Z3,, then (u,) = (4" (u)) is purely
periodic.

lts period length is 7 = 2 for some 0 < k < — 1.
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Examples for inversive generator
® @
(23) % & =4
il & O

mod 25, u, = ¢Y(u,_1), n>1.
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Distribution for inversive generator

Assume, that ¢ is a permutation of Z3, and let (u,) be defined
as

Uy = w(unfl)a n>1

with initial value uy € Z5, and period length 7.
Our goal is to study the discrepancy Dy (uy,) of

up/2', ... uy—1/2"€0,1), N<T.
As usual, the main tool is to bound

= 27iu
Zexp <h 5 ") ,  ged(h,2) = 1.

n=0




Distribution for inversive generator
Niederreiter, Winterhof '05:

N—1

27 3
Zexp (h 7;7") < 2%tN%T7%, 1<N<ZT,
n=0

where 7 is the period length and gcd(k,2) = 1.
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Distribution for inversive generator
Niederreiter, Winterhof '05:

p 2miu 3,1 1
Zexp <h n> <K 2¥N2772, 1<N<T,

o
where 7 is the period length and ged(h,2) = 1.
The result is nontrivial if

721" and N> 237

For example, if (u,) has large period length: 7 > 2, then one
needs N > 23.

Can we do more?
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Inversive generator, special cases
Proposition

Assume, that <Z Z) has eigenvalue with multiplicity. Then

an + ug
Uy, =
T Bn+1

mod 2, forn > 0.

If 5 =0, we have a linear generator (an + uo).
If 5 # 0, Sy(N) is a Kloosterman sum.
Korolev ’16:

S exp <“”12t+””> — o(N)

c<n<N+c
2tn

for 2¢(*/") < N < 21/,



Explicit inversive generator

Assume, that <‘CZ Z) is diagonalizable over Z,:. Then

[0
U= —— +~ mod?2, n>0 withg, a,B3,v¢€Z.
=g g, B,y



Explicit inversive generator

Assume, that <‘CZ Z) is diagonalizable over Z,:. Then

[0
U= —— +~ mod?2, n>0 withg, a,B3,v¢€Z.
=g g, B,y



Explicit inversive generator

Assume, that <CCZ Z) is diagonalizable over Z,:. Then
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Explicit inversive generator

Assume, that <? Z) is diagonalizable over Z,:. Then

Uy = e +~ mod?2, n>0, withg o, 8,v¢€Z.
g+
Theorem (M., Shparlinski)

For odd « write 7+ = 21=v+1,
Lett > 16v. Then for 28 < N < 2/2,

N—1

27l og N \2
3 exp (h 7;’“) < N'==CF) 2t

n=0

for some s > 0.
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Explicit inversive generator — Discrepancy bound

Let Dy(u,) be the discrepancy of the sequence
uo/zt, - ,MN_1/2[ S [0, 1).

Reminder:

L, €1:0<
Dy(i) = sup #{u, €I1:0<n<N}

5 ).
1Co,1)

Corollary (M., Shparlinski)

For odd o write T = 2!=7+1, 1
Let: > 32v. Then for2% < N <2079 with0 < § < 1/2,

logN)2

Dy (1) <5 N~ CF)

for some &' = £'(§) > 0.
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|dea of the proof

» Dealing with exponential terms
Let 7, be the order of g modulo 2°. Then

gr=1+v2’

g =1+v <rll)25 4 <Z>2k“' mod 2’

where (k+ 1)s > t.
Thus ¢g"™ can be approximated by f(n2°) with f(x) € Q[x].

and

» Shift and average method:

N—12°—1

2 1 - 2
Yo (#75) = 5 X X (127527

n=0 x=0




Thank you!



