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Inversive generator
Let R be a (finite, commutative, unitary) ring and define the
sequence (un) by

un = ψ(un−1), n ≥ 1 with ψ(x) =
a
x
+ b, a, b ∈ R.

or in general

un = ψ(un−1), n ≥ 1 with ψ(x) =
ax + b
cx + d

, a, b, c, d ∈ R.

with an initial value u0 ∈ R.

I The sequence (un) can be finite, or
I ultimately periodic, as R is finite.

For computational aspect, there are two interesting cases:
I R = Fq, typically prime field: q is large prime.
I R = Zpt , p is small, typically p = 2.
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Examples for inversive generator
Let t ≥ 3 and

ψ(x) =
ax + b
cx + d

, a, b, c, d ∈ Z2t .

Assume, that(
a b
c d

)
≡
(

1 0
0 1

)
or

(
0 1
1 0

)
mod 2.

Then ψ defines a permutation on Z∗2t .

If ψ is a permutation of Z∗2t , then (un) = (ψn(u)) is purely
periodic.
Its period length is τ = 2k for some 0 ≤ k ≤ t − 1.



Examples for inversive generator
Let t ≥ 3 and

ψ(x) =
ax + b
cx + d

, a, b, c, d ∈ Z2t .

Assume, that(
a b
c d

)
≡
(

1 0
0 1

)
or

(
0 1
1 0

)
mod 2.

Then ψ defines a permutation on Z∗2t .

If ψ is a permutation of Z∗2t , then (un) = (ψn(u)) is purely
periodic.
Its period length is τ = 2k for some 0 ≤ k ≤ t − 1.



Examples for inversive generator
Let t ≥ 3 and

ψ(x) =
ax + b
cx + d

, a, b, c, d ∈ Z2t .

Assume, that(
a b
c d

)
≡
(

1 0
0 1

)
or

(
0 1
1 0

)
mod 2.

Then ψ defines a permutation on Z∗2t .

If ψ is a permutation of Z∗2t , then (un) = (ψn(u)) is purely
periodic.
Its period length is τ = 2k for some 0 ≤ k ≤ t − 1.



Examples for inversive generator

ψ(x) =
x + 2

2x + 3
mod 25, un = ψ(un−1), n ≥ 1.
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Examples for inversive generator

ψ(x) =
x + 4

2x + 3
mod 25, un = ψ(un−1), n ≥ 1.



Distribution for inversive generator
Assume, that ψ is a permutation of Z∗2t and let (un) be defined
as

un = ψ(un−1), n ≥ 1

with initial value u0 ∈ Z∗2t and period length τ .

Our goal is to study the discrepancy DN(un) of

u0/2t, . . . , uN−1/2t ∈ [0, 1), N ≤ τ.

As usual, the main tool is to bound

N−1∑
n=0

exp
(

h
2πiun

2t

)
, gcd(h, 2) = 1.
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Distribution for inversive generator
Niederreiter, Winterhof ’05:

N−1∑
n=0

exp
(

h
2πiun

2t

)
� 2

3
4 tN

1
2 τ−

1
2 , 1 ≤ N ≤ τ,

where τ is the period length and gcd(h, 2) = 1.

The result is nontrivial if

τ � 2
3
4 t and N � 2

3
2 tτ−1.

For example, if (un) has large period length: τ � 2t, then one
needs N � 2

t
2 .

Can we do more?
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Inversive generator, special cases

Proposition

Assume, that
(

a b
c d

)
has eigenvalue with multiplicity. Then

un ≡
αn + u0

βn + 1
mod 2t, for n ≥ 0.

If β = 0, we have a linear generator (αn + u0).
If β 6= 0, Sh(N) is a Kloosterman sum.
Korolev ’16: ∑

c≤n<N+c
2-n

exp
(

an−1 + bn
2t

)
= o(N)

for 2c(t2/3) ≤ N ≤ 2t/2.
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Explicit inversive generator

Assume, that
(

a b
c d

)
is diagonalizable over Z2t . Then

un ≡
α

gn + β
+ γ mod 2t, n ≥ 0, with g, α, β, γ ∈ Z.

Theorem (M., Shparlinski)

For odd α write τ = 2t−ν+1.
Let t > 16ν. Then for 28ν < N ≤ 2t/2,

N−1∑
n=0

exp
(

h
2πiun

2t

)
� N1−ε( log N

t )
2

, 2 - h

for some ε > 0.
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Explicit inversive generator – Discrepancy bound
Let DN(un) be the discrepancy of the sequence

u0/2t, . . . , uN−1/2t ∈ [0, 1).

Reminder:

DN(un) = sup
I⊂[0,1)

∣∣∣∣#{un ∈ I : 0 ≤ n < N}
N

− |I|
∣∣∣∣ .

Corollary (M., Shparlinski)

For odd α write τ = 2t−ν+1.
Let t > 32ν. Then for 28ν < N ≤ 2(

1
2−δ)t, with 0 < δ < 1/2,

DN(un)�δ N−ε
′( log N

t )
2

,

for some ε′ = ε′(δ) > 0.
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Idea of the proof

I Dealing with exponential terms
Let τs be the order of g modulo 2s. Then

gτs = 1 + v2s

and

gn·τs ≡ 1 + v
(

n
1

)
2s + · · ·+ vk

(
n
k

)
2ks mod 2t

where (k + 1)s ≥ t.
Thus gn·τs can be approximated by f (n 2s) with f (x) ∈ Q[x].

I Shift and average method:

N−1∑
n=0

exp
(

h
2πiun

2t

)
≈ 1

2s

N−1∑
n=0

2s−1∑
x=0

exp
(

h
2πiun+x·τs

2t

)
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Thank you!


