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What is Uncertainty About?
General Uncertainty Principle
A (nonzero) function and its Fourier transform cannot be both highly
concentrated on small sets.

The framework:
I G — finite abelian group (G = F2

p of particular interest);
I Ĝ := Hom(G,C×) — the dual group, χ ∈ Ĝ — characters;
I for f : G→ C, the Fourier transform f̂ : Ĝ→ C is defined by

f̂ (χ) :=
1
|G|

∑
g∈G

f (g)χ(g), χ ∈ Ĝ;

I supp f := {g ∈ G : f (g) 6= 0}, and supp f̂ := {χ ∈ Ĝ : f̂ (χ) 6= 0}.

The Basic Uncertainty Inequality
For any (nonzero) function f : G→ C, we have

| supp f || supp f̂ | ≥ |G|.
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I for f : G→ C, the Fourier transform f̂ : Ĝ→ C is defined by
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I Ĝ := Hom(G,C×) — the dual group, χ ∈ Ĝ — characters;
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The Basic Uncertainty Inequality
For any (nonzero) function f : G→ C, we have

| supp f || supp f̂ | ≥ |G|.

Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM – October 2018 1 / 16



What is Uncertainty About?
General Uncertainty Principle
A (nonzero) function and its Fourier transform cannot be both highly
concentrated on small sets.

The framework:
I G — finite abelian group (G = F2

p of particular interest);
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Prime-order Groups: The Biró-Tao Theorem
| supp f || supp f̂ | ≥ |G|

For a subgroup H ≤ G, let

H⊥ := {χ ∈ Ĝ : χ|H = 1} ≤ Ĝ.

The mapping H 7→ H⊥ establishes a bijection between the subgroups
of G and those of Ĝ.

Since 1̂H = 1
[G:H]1H⊥ , we have

| supp 1H || supp 1̂H | = |H||H⊥| = |G|,

showing that the Basic Uncertainty Inequality is sharp.

However:

Theorem (Biró 1998, Tao 2005)
If G is cyclic of prime order, then in fact

| supp f |+ | supp f̂ | ≥ |G|+ 1.
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Meshulam’s Generalization
Meshulam extended this to arbitrary finite abelian groups:

Theorem (Meshulam 2006)
Suppose that G is a finite abelian group, and f : G→ C. If d1 < d2
are two consecutive divisors of |G| with d1 ≤ | supp f | ≤ d2, then

| supp f̂ | ≥ |G|
d1d2

(d1 + d2 − | supp f |).

I If, say, | supp f | = d1, then | supp f̂ | ≥ |G|
d1d2
· d2 = |G|

| supp f | ; the very
same estimate follows from the Basic Uncertainty Inequality.
Meshulam improves over the Basic Uncertainty Inequality when
| supp f | stays away from any divisor of |G|;

I If p = |G| is prime, then we are forced to take d1 = 1 and d2 = p,
to get | supp f̂ | ≥ 1 + p − | supp f |; this is the Biró-Tao theorem;

I Meshulam’s proof uses induction, with the Biró-Tao theorem
serving as a base case.
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The Three Pillars

The Basic Uncertainty Inequality

| supp f || supp f̂ | ≥ |G|.

Theorem (Biró 1998, Tao 2005)

|G| = p ⇒ | supp f |+ | supp f̂ | ≥ p + 1.

Theorem (Meshulam 2006)

d1 ≤ | supp f | ≤ d2 ⇒ | supp f̂ | ≥ |G|
d1d2

(d1 + d2 − | supp f |).

Meshulam’s theorem shows that in R2, the points (| supp f |, | supp f̂ |) lie
on or above the convex polygonal line through the points (|H|, |G/H|),
where H ranges over all subgroups of G. At the same time, the Basic
Uncertainty Inequality merely states that the points (| supp f |, | supp f̂ |)
lie on or above the hyperbola through the points (|H|, |G|/|H|).
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The Basic Inequality / Biró-Tao / Meshulam Visualized

xy = p
x + y = p + 1

xy = |G|
y = |G|

d1d2
(d1 + d2 − x)

Tao conjectured that the Basic Uncertainty Inequality can always be
strengthened provided that | supp f | and | supp f̂ | stay away from any
divisor of |G|. Meshulam’s Theorem confirms this conjecture.

In fact, it might be sufficient to assume that supp f and supp f̂
“stay away from any coset of a subgroup of G”.
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Getting beyond Meshulam
From now on, G = F2

p.
Given a function f : F2

p → C, we write S := supp f and X := supp f̂ .

Meshulam’s Theorem for G = F2
p

For any nonzero function f : F2
p → C, we have

min{|S|, |X |}+ 1
p

max{|S|, |X |} ≥ p + 1.

xy = p2

— the Basic Uncertainty Inequality

min{|S|, |X |}+ 1
p max{|S|, |X |} ≥ p + 1

— Meshulam’s estimate

I If f = 1H , then f̂ = C1H⊥ and |S| = |X | = p. Thus, to improve
Meshulam’s bound, one needs to take into account the structure.
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The Conjecture

Meshulam’s Theorem (G = F2
p, S = supp f , X = supp f̂ )

For any nonzero function f : F2
p → C, we have

min{|S|, |X |}+ 1
p

max{|S|, |X |} ≥ p + 1.

Conjecture

For any nonzero function f : F2
p → C, and any k ∈ [1,p], we have

1
k

min{|S|, |X |}+ 1
p + 1− k

max{|S|, |X |} ≥ p + 1,

unless at least one of the sets S ⊆ F2
p and X ⊆ F̂2

p is a dense subset of
a union of a small number of proper cosets of the corresponding group.

I The case k = 1 of the conjecture is Meshulam’s Theorem,
the case k = p follows from it;

I generally, for k < p/2, the “case k ” implies the “case p + 1− k ”.
Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM – October 2018 7 / 16
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Visualizing the Conjecture

For a non-zero function f : F2
p → C, and k ∈ [1,p], we “normally” have

1
k

min{|S|, |X |}+ 1
p + 1− k

max{|S|, |X |} ≥ p + 1.

k = 1
k = (p + 1)/2
k = p√
|S| +

√
|X | ≥ p + 1

Conjecture (restated)

For a non-zero function f : F2
p → C, we “normally” have√
|S|+

√
|X | ≥ p + 1.
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Rational Functions: the Case k = 2

Theorem (establishing the case k = 2 for rational functions only)

If f : F2
p → Q is nonzero, then (writing S := supp f and X := supp f̂ ),

1
2

min{|S|, |X |}+ 1
p − 1

max{|S|, |X |} ≥ p + 1,

except if there is a nonzero, proper subgroup H < F2
p such that f is

constant on each H-coset (in which case X = H⊥ or X = H⊥ \ {1}).

I If H1,H2 < F2
p are (distinct) nonzero,

proper subgroups, then for the
function f := 1H1 − 1H2 we have
|S| = |X | = 2(p − 1).

I Hence, equality holds in this case,
showing that the estimate is sharp
and cannot be improved.
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Theorem
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1
2

min{|S|, |X |}+ 1
√

p
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nonzero, proper subgroup of the corresponding group (F2

p or F̂2
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The Next (Easiest) Case: k = p − 1

Theorem

If f : F2
p → C is nonzero, then (writing S := supp f and X := supp f̂ ),

1
p − 1

min{|S|, |X |}+ 1
2

max{|S|, |X |} ≥ p + 1,

except if S = g + H and X = χH⊥ for some g ∈ F2
p, χ ∈ F̂2

p, H < F2
p.

I If f = 1g1+H − 1g2+H , then |S| = 2p
and |X | = p − 1; hence, equality
holds in this case, showing that the
estimate is sharp.

I In the exceptional case, we
“essentially” have f = 1g+H
(more precisely, f = C1g+H · χ).
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The Case k = p − 2

Theorem (a partial result towards the case k = p − 2)

If f : F2
p → C is nonzero, then we have either

1
p − 2

min{|S|, |X |}+ 1
3

max{|S|, |X |} ≥ p + 1,
or

min{|S|, |X |} ≥ 3
2
(p − 1),

except if the smallest of S and X is “essentially” a coset, and the
largest is a coset, or a union of two cosets of the orthogonal subgroup.

I The exceptional cases can be fully
classified.
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A UDT Application: Counting Perfect Directions
Given a set P ⊆ F2

p and a “weight function” w : P → R (not vanishing
identically), we say that a direction in F2

p is perfect if every line in this
direction gets its exact share of the total weight; that is, for every two
lines `1, `2 in the direction in question, we have∑

x∈P∩`1

w(x) =
∑

x∈P∩`2

w(x).

If |P| = 1, there are no perfect directions. If |P| = 2 or |P| = 3, there is
at most one perfect direction, for |P| = 4 there can be two. In general,
how many perfect directions can there be?

Theorem
If P ⊆ F2

p, and w : P → R does not vanish identically, then there are at
most 1

2 |P| perfect directions, unless there is a line ` entirely contained
in P such that w is constant on `, and vanishes outside of ` (in which
case all, but one direction are perfect).
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Sets with Many Perfect Directions
Theorem
If P ⊆ F2

p, and w : P → R does not vanish identically, then there are at
most 1

2 |P| perfect directions, unless, essentially, P is a line, and w is
constant on P (in which case there are p perfect directions).

Example
If P = `1 ∪ `2 is a union of two parallel lines, and w = c11`1 + c21`2

(that is, w is constant on each of these lines), then |P| = 2p and there
are p = 1

2 |P| perfect directions.

Example
If P = (`1 ∪ `2) \ (`1 ∩ `2) with `1 and `2 not parallel, and w = 1`1 − 1`2 ,
then |P| = 2(p − 1) and there are p − 1 = 1

2 |P| perfect directions.

(There are more elaborate examples showing that 1
2 |P| is sharp.)
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Sketch of the Proof
P ⊆ F2

p, w : P → R ⇔ there are at most 1
2 |P| perfect directions

We assume that w is defined on F2
p (just let w(x) = 0 when x /∈ P),

and that supp w = P (by restricting P). WLOG, w is rational-valued
(by simultaneously approximating w(x), x ∈ P).

Let D be the set of all p + 1 directions in F2
p, each direction ∂ ∈ D

understood as a pencil of p parallel lines. Write D = D+ ∪ D−,
where D+ is the set of all perfect directions.

Consider the decomposition
LQ(F2

p) = (⊕∂∈DV∂)⊕ V0 :

I LQ(F2
p) is the vector space of all rational-valued functions on F2

p;
I V∂ < LQ(F2

p) is the subspace of all zero-mean functions which are
constant on every line ` ∈ ∂;

I V0 < LQ(F2
p) is the subspace of all constant functions.

If ∂ is perfect, then w has zero projection onto V∂ !
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Sketch of the Proof
P ⊆ F2

p, w : P → R ⇔ there are at most 1
2 |P| perfect directions

We assume that w is defined on F2
p (just let w(x) = 0 when x /∈ P),

and that supp w = P (by restricting P). WLOG, w is rational-valued
(by simultaneously approximating w(x), x ∈ P).

Let D be the set of all p + 1 directions in F2
p, each direction ∂ ∈ D

understood as a pencil of p parallel lines. Write D = D+ ∪ D−,
where D+ is the set of all perfect directions.

Consider the decomposition
LQ(F2

p) = (⊕∂∈DV∂)⊕ V0 :

I LQ(F2
p) is the vector space of all rational-valued functions on F2

p;
I V∂ < LQ(F2

p) is the subspace of all zero-mean functions which are
constant on every line ` ∈ ∂;

I V0 < LQ(F2
p) is the subspace of all constant functions.

If ∂ is perfect, then w has zero projection onto V∂ !
Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM – October 2018 14 / 16



Sketch of the Proof
P ⊆ F2

p, w : P → R ⇔ there are at most 1
2 |P| perfect directions

We assume that w is defined on F2
p (just let w(x) = 0 when x /∈ P),

and that supp w = P (by restricting P). WLOG, w is rational-valued
(by simultaneously approximating w(x), x ∈ P).

Let D be the set of all p + 1 directions in F2
p, each direction ∂ ∈ D

understood as a pencil of p parallel lines. Write D = D+ ∪ D−,
where D+ is the set of all perfect directions.

Consider the decomposition
LQ(F2

p) = (⊕∂∈DV∂)⊕ V0 :

I LQ(F2
p) is the vector space of all rational-valued functions on F2

p;
I V∂ < LQ(F2

p) is the subspace of all zero-mean functions which are
constant on every line ` ∈ ∂;

I V0 < LQ(F2
p) is the subspace of all constant functions.

If ∂ is perfect, then w has zero projection onto V∂ !
Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM – October 2018 14 / 16



Sketch of the Proof
P ⊆ F2

p, w : P → R ⇔ there are at most 1
2 |P| perfect directions

We assume that w is defined on F2
p (just let w(x) = 0 when x /∈ P),

and that supp w = P (by restricting P). WLOG, w is rational-valued
(by simultaneously approximating w(x), x ∈ P).

Let D be the set of all p + 1 directions in F2
p, each direction ∂ ∈ D

understood as a pencil of p parallel lines. Write D = D+ ∪ D−,
where D+ is the set of all perfect directions.

Consider the decomposition
LQ(F2

p) = (⊕∂∈DV∂)⊕ V0 :

I LQ(F2
p) is the vector space of all rational-valued functions on F2

p;
I V∂ < LQ(F2

p) is the subspace of all zero-mean functions which are
constant on every line ` ∈ ∂;

I V0 < LQ(F2
p) is the subspace of all constant functions.

If ∂ is perfect, then w has zero projection onto V∂ !
Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM – October 2018 14 / 16



Sketch of the Proof (Concluded)
P ⊆ F2

p, w : P → R ⇔ there are at most 1
2 |P| perfect directions

As a result,
w =

∑
∂∈D−

w∂ + C, w∂ ∈ V∂ .

But w∂ ∈ V∂ implies that most of the Fourier coefficients of w∂ vanish:

supp ŵ∂ ⊆ H⊥ \ {1},
where H < F2

p is the subgroup corresponding to the direction ∂. Hence,

| supp ŵ | ≤ (p − 1)|D−|+ 1.

Applying to w the estimate
1
2
| supp f |+ 1

p − 1
| supp f̂ | ≥ p + 1

from Slide 9, we conclude that, “normally”,

p + 1 ≤ 1
2
|P|+ |D−|+ 1

p − 1
<

1
2
(|P|+ 1) + |D−|,

implying
|D+| = p + 1− |D−| < 1

2
(|P|+ 1).
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Summary
I The Uncertainty Principle: For a function f : G→ C, either supp f ,

or supp f̂ must be large.
I The Basic Uncertainty Inequality: | supp f || supp f̂ | ≥ |G|.
I Meshulam’s Estimate: If d1 ≤ | supp f | ≤ d2, where d1 ≤ d2 are

consecutive divisors of |G|, then
| supp f̂ | ≥ |G|

d1d2
(d1 + d2 − | supp f |).

I We have established a number of improvements upon
Meshulam’s result for the particular groups F2

p.
I Much more is conjectured! In particular, we conjecture that,

“normally”,√
| supp f |+

√
| supp f̂ | ≥ p + 1, f : F2

p → C,
to be compared with the Biró-Tao inequality saying that

| supp f |+ | supp f̂ | ≥ p + 1, f : Fp → C.
I As an application, we have shown that a set P ⊆ F2

p determines
at most 1

2 |P| perfect directions.
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Thank you!
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