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What is Uncertainty About?
General Uncertainty Principle

A (nonzero) function and its Fourier transform cannot be both highly
concentrated on small sets.
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What is Uncertainty About?
General Uncertainty Principle

A (nonzero) function and its Fourier transform cannot be both highly
concentrated on small sets.

The framework:
» G — finite abelian group (G = ]Ff, of particular interest);
> Gi= Hom(G, C*) — the dual group, x € G — characters;
» for f: G — C, the Fourier transform 7. G — Cis defined by

700 = = S Ha)x(@). xeG
&l 2
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What is Uncertainty About?
General Uncertainty Principle

A (nonzero) function and its Fourier transform cannot be both highly
concentrated on small sets.

The framework:
» G — finite abelian group (G = ]Ff, of particular interest);
> Gi= Hom(G, C*) — the dual group, x € G — characters;
» for f: G — C, the Fourier transform 7. G — Cis defined by

700 = = S Ha)x(@). xeG
&l 2

» suppf:={g e G: f(g) # 0}, and supp? ={x € G: 7(X) # 0}.
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What is Uncertainty About?
General Uncertainty Principle

A (nonzero) function and its Fourier transform cannot be both highly
concentrated on small sets.

The framework:
» G — finite abelian group (G = ]Ff, of particular interest);
> Gi= Hom(G, C*) — the dual group, x € G — characters;
» for f: G — C, the Fourier transform 7. G — Cis defined by

700 = = S Ha)x(@). xeG
Gl 2

» suppf:={g e G: f(g) # 0}, and supp? ={x € G: 7(X) # 0}.
The Basic Uncertainty Inequality
For any (nonzero) function f: G — C, we have
| supp f|[ supp f| = |G.
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Prime-order Groups: The Bir6-Tao Theorem
|supp f|| supp | > |G
For a subgroup H < G, let

HL::{XGG:X|H:1}§CA§.

The mapping H — H* establishes a bijection between the subgroups
of G and those of G.
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Prime-order Groups: The Bir6-Tao Theorem
|supp || supp ] > |G|

For a subgroup H < G, let
H+ ::{Xea:x|H:1}§é.

The mapping H — H* establishes a bijection between the subgroups
of G and those of G.

Since 1, = ﬁmL, we have

| supp 14| supp 14| = [H||H| = |G,

showing that the Basic Uncertainty Inequality is sharp.
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Prime-order Groups: The Bir6-Tao Theorem
|supp || supp ] > |G|

For a subgroup H < G, let
H+ ::{Xea:x|H:1}§é.

The mapping H — H* establishes a bijection between the subgroups
of G and those of G.

Since 1, = ﬁmL, we have

| supp 1| supp 14| = |H||H*| = |G],
showing that the Basic Uncertainty Inequality is sharp. However:

Theorem (Biré 1998, Tao 2005)
If G is cyclic of prime order, then in fact
|supp f| + [supp f| > |G + 1.
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Meshulam’s Generalization
Meshulam extended this to arbitrary finite abelian groups:
Theorem (Meshulam 2006)

Suppose that G is a finite abelian group, and f: G — C. Ifdi < db
are two consecutive divisors of |G| with dy < |supp f| < db, then

=~ - |G| 3
| supp f| > i (di + db — | supp f]).
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Meshulam’s Generalization
Meshulam extended this to arbitrary finite abelian groups:

Theorem (Meshulam 2006)

Suppose that G is a finite abelian group, and f: G — C. Ifdi < db
are two consecutive divisors of |G| with dy < |supp f| < db, then

G
| supp f| > |O|, (di + db — | supp f]).

» If, say, | supp f| = dy, then |supp?! > d‘f}z o = |SL|ij|),| the very

same estimate follows from the Basic Uncertainty Inequality.
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Meshulam’s Generalization
Meshulam extended this to arbitrary finite abelian groups:

Theorem (Meshulam 2006)

Suppose that G is a finite abelian group, and f: G — C. Ifdi < db
are two consecutive divisors of |G| with dy < |supp f| < db, then

G
suppTl > 12 (dh + s — | supp ).

» If, say, | supp f| = dy, then |supp?! > 6‘11%'2 o = |5L|1p;|:f| the very

same estimate follows from the Basic Uncertainty Inequality.
Meshulam improves over the Basic Uncertainty Inequality when
| supp f| stays away from any divisor of |G|;
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Meshulam’s Generalization
Meshulam extended this to arbitrary finite abelian groups:

Theorem (Meshulam 2006)

Suppose that G is a finite abelian group, and f: G — C. Ifdi < db
are two consecutive divisors of |G| with dy < |supp f| < db, then
IG!

> —
| supp f| o

(di + db — | supp f]).

» If, say, | supp f| = dy, then |supp?! > o‘,ﬂz o = |5L|1p;|:f| the very

same estimate follows from the Basic Uncertainty Inequality.
Meshulam improves over the Basic Uncertainty Inequality when
| supp f| stays away from any divisor of |G|;

» If p=|G] is prime, then we are forced to take d; = 1 and d> = p,
to get |supp7| > 1+ p — | supp f|; this is the Biré-Tao theorem;
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Meshulam’s Generalization
Meshulam extended this to arbitrary finite abelian groups:

Theorem (Meshulam 2006)

Suppose that G is a finite abelian group, and f: G — C. Ifdi < db
are two consecutive divisors of |G| with dy < |supp f| < db, then
IG!

> —
| supp f| o

(di + db — | supp f]).

» If, say, | supp f| = dy, then | supp f] > O‘IGO}Z a = |5L|1p;|:f| the very
same estimate follows from the Basic Uncertainty Inequality.
Meshulam improves over the Basic Uncertainty Inequality when
| supp f| stays away from any divisor of |G|;

» If p=|G] is prime, then we are forced to take d; = 1 and d> = p,
to get |supp7| > 1+ p — | supp f|; this is the Biré-Tao theorem;

» Meshulam’s proof uses induction, with the Bir6-Tao theorem
serving as a base case.
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The Three Pillars

The Basic Uncertainty Inequality

| supp || supp 1| > |Gl.

Theorem (Bird 1998, Tao 2005)
|Gl=p = |suppf|+|suppf|>p+1.

Theorem (Meshulam 2006)

dh <|suppf|<db = |suppf|> S (di+ cb—|suppf]).
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The Three Pillars

The Basic Uncertainty Inequality
|supp || supp | > |Gl.

Theorem (Bird 1998, Tao 2005)
|Gl=p = |suppf|+|suppf|>p+1.

Theorem (Meshulam 2006)
dh <|suppf|<db = |suppf|> S (di+ cb—|suppf]).

4

Meshulam’s theorem shows that in R?, the points (| supp f|, | supp?\) lie
on or above the convex polygonal line through the points (|H|, |G/H]),
where H ranges over all subgroups of G. At the same time, the BasiAc
Uncertainty Inequality merely states that the points (| supp f|, | supp f|)
lie on or above the hyperbola through the points (|H|, |G|/|H]|).
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The Basic Inequality / Biré-Tao / Meshulam Visualized

1G]

'(lsupp fl,|supp M) ® (|supp f],|supp *f])

(GIH

Xy =p xy = |G
X+y=p+1 Y = g (0h + &b — x)
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The Basic Inequality / Biré-Tao / Meshulam Visualized

“(supp flisupp 1)

Xy =p
X+y=p+1

Gl

IGY/H]

® (|supp f],|supp *f])

Tao conjectured that the Basic Uncertainty Inequality can always be
strengthened provided that | supp f| and | supp f| stay away from any
divisor of |G|. Meshulam’s Theorem confirms this conjecture.
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The Basic Inequality / Biré-Tao / Meshulam Visualized

'(\supp fl,|supp M) ® (|supp f],|supp *f])

IGY/H]

Xy =p xy = |Gl
X+y=p+1 y =35 (d +db— X)

Tao conjectured that the Basic Uncertainty Inequality can always be
strengthened provided that | supp f| and | supp f| stay away from any
divisor of |G|. Meshulam’s Theorem confirms this conjecture.

In fact, it might be sufficient to assume that supp f and supp?
“stay away from any coset of a subgroup of G".

Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM — October 2018 5/16



Getting beyond Meshulam

From now on, G = ]Ff,.
Given a function f: IF% — C, we write S:=suppfand X := supp?.
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Getting beyond Meshulam

From now on, G = ]Ff,.
Given a function f: IFf, — C, we write S:=suppfand X := supp?.

Meshulam’s Theorem for G = IFf,
For any nonzero function f: IFf, — C, we have

, 1
min{|S], | X[} + 5 max{|S|, |X[} > p+1.
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Getting beyond Meshulam

From now on, G = ]Ff,.
Given a function f: IFf, — C, we write S:=suppfand X := supp?.

Meshulam’s Theorem for G = IFf,
For any nonzero function f: Ff, — C, we have

1
min{|S], | X[} + 5 max{|S|, |X[} > p+1.

Xy = p?
— the Basic Uncertainty Inequality

*(1X))

. min{|S], |X|} + J max{|S],|X|} > p+1
— Meshulam’s estimate

Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM — October 2018 6/16



Getting beyond Meshulam

From now on, G = ]F,Z,.
Given a function f: IF% — C, we write S:=suppfand X := supp?.

Meshulam’s Theorem for G = ]Ff,
For any nonzero function f: Ff, — C, we have

, 1
min{|S], | X[} + 5 max{|S|, |X[} > p+1.

Xy = p?
— the Basic Uncertainty Inequality

*(1X))

. min{|S], |X|} + 1 max{|S|,|X|} > p+1
— Meshulam’s estimate

> If f =1y, then f = C1,,. and |S| = |X| = p. Thus, to improve
Meshulam’s bound, one needs to take into account the structure.

Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM — October 2018 6/16



The Conjecture

~

Meshulam’s Theorem (G = I3, S = supp f, X = supp f)
For any nonzero function f: Ff, — C, we have
. 1
min{| S|, | X|} + 5 max{[S], X[} = p+1.
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The Conjecture

-~

Meshulam’s Theorem (G = IF,%, S =suppf, X =suppf)
For any nonzero function f: ]Ff, — C, we have
. 1
min{|S|, | X} + 5 max{|S|, |X[} = p+1.

Conjecture

For any nonzero function f: IF‘% — C, and any k € [1, p], we have
1 1
— mi X S
x MInISL X+ o X

unless at least one of the sets S C ]F,% and X C F2 is a dense subset of

a union of a small number of proper cosets of the corresponding group.

max{|S|, |[X[} > p+1,
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The Conjecture

-~

Meshulam’s Theorem (G = IF,%, S =suppf, X =suppf)

For any nonzero function f: ]Ff, — C, we have
, 1
min{|S|, | X} + 5 max{|S|, |X[} = p+1.

Conjecture
For any nonzero function f: Ff, — C, and any k € [1, p], we have

1
_ X|} > 1

=g IS IX]) 2 p-+1,
unless at least one of the sets S C ]F,% and X C F2 is a dense subset of
a union of a small number of proper cosets of the corresponding group.

1 .
% Mn{ISLIXI} + 5

» The case k = 1 of the conjecture is Meshulam’s Theorem,
the case k = p follows from it;
» generally, for k < p/2, the “case k” implies the “case p+ 1 — k.
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Visualizing the Conjecture

For a non-zero function f: ]F,% — C, and k € [1, p], we “normally” have

max{|S|, |X[} = p+1.

1 . 1
P min{[S|, [X|} + p+i1—k

— k=1
—— k=(p+1)/2
—— k=p

— VISI+VIX| Z p+1

i S@+)

3+

ptl

1 P Pt 3D SeH) X
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Visualizing the Conjecture

For a non-zero function f: ]F;‘; — C, and k € [1, p], we “normally” have

1 .
% min{ISL1X]} +

_ 1
+1-k

max{|S|, |X[} = p+1.

0O p 2 3 4

Conjecture (restated)

S(p+1)

3+

+ \\E\\f

— k=1
k= (p+1)/2
—— k=p

— VISI+VIX| Z p+1

P
Ry

g/

ptl 3+ St X

For a non-zero function f: ]F,z, — C, we “normally” have

VS| +

IX| > p+1.
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Rational Functions: the Case k = 2

Theorem (establishing the case k = 2 for rational functions only)
Iff: IF,% — Q1is nonzero, then (wr1iting S :=suppfand X := supp?),
5 min{|S], |X]} + EE] max{|S[,[X|} = p+1,

except if there is a nonzero, proper subgroup H < IF,% such that f is
constant on each H-coset (in which case X = H+ or X = H+\ {1}).
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Rational Functions: the Case k = 2

Theorem (establishing the case k = 2 for rational functions only)
Iff: IF,% — Q is nonzero, then (wr1iting S :=suppfand X := supp?),
> min{|S[, [ X} + p—1 max{|S[,[X|} = p+1,

except if there is a nonzero, proper subgroup H < IF,Z, such that f is
constant on each H-coset (in which case X = H+ or X = H+\ {1}).

IXI
S(p+1)

3(p+l)

b
h
4p+l) ‘\l
N
|

2(pt1)

l - —
ptl

————

ptl 2(pt1) 3(p+1) 4(p+1) S(p+1) IS
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Rational Functions: the Case k = 2

Theorem (establishing the case k = 2 for rational functions only)
Iff: IF,% — Q is nonzero, then (wr1iting S :=suppfand X := supp?),
5 min{|S], |X]} + EE] max{|S[,[X|} = p+1,

except if there is a nonzero, proper subgroup H < IF,% such that f is
constant on each H-coset (in which case X = H+ or X = H+\ {1}).

: l‘ ! > If Hy, Hy < IF5 are (distinct) nonzero,
o ‘ ! proper subgroups, then for the
o ‘ | function f := 14, — 14, we have
il \\ S| = |X| =2(p—1).

2(p+1)

l - —
p+l

ptl 2(pt1) 3(p+1) 4(p+1) S(p+1) IS
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Rational Functions: the Case k = 2

Theorem (establishing the case k = 2 for rational functions only)
Iff: IF,% — Q1is nonzero, then (wr1iting S :=suppfand X := supp?),
5 min{|S], |X]} + EE] max{|S[,[X|} = p+1,

except if there is a nonzero, proper subgroup H < IF,% such that f is
constant on each H-coset (in which case X = H+ or X = H+\ {1}).

IXI

S0+ proper subgroups, then for the

function f := 14, — 14, we have
\. Sl =[X| =2(p—1).
|

4(p+l)

! > If Hy, Hy < IF5 are (distinct) nonzero,
\
‘.

3(p+l)

e e et

2(p+l)

e » Hence, equality holds in this case,
- l______ showing that the estimate is sharp
and cannot be improved.
ptl 2(ptl) 3(ptl) 4(ptl) S(p+l) 8]
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Rational Functions: the Case k = 2

Theorem (establishing the case k = 2 for rational functions only)
Iff: IF,% — Q1is nonzero, then (wr1iting S :=suppfand X := supp?),
5 min{|S], |X]} + EE] max{|S[,[X|} = p+1,

except if there is a nonzero, proper subgroup H < IF% such that f is
constant on each H-coset (in which case X = H+ or X = H+\ {1}).

Dropping the rationality assumption, we could prove the following:

Theorem
Iff: IF,% — C s nonzero, then

1 1
— min{|S|, | X|} + —= max{|S|, |X|} > p,
2 Min{ISL, X} + 5 max{| S}, [X|} > p

except if the smallest of the sets S and X is contained in a coset of a
nonzero, proper subgroup of the corresponding group (IF,% or ]F’% ).

4
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The Next (Easiest) Case: k = p — 1

Theorem

Iff: IF,% —C is1nonzero, then (writi?g S:=suppfand X := supp?),
=1 min{[S|, [X|} + > max{[S|, [X|} = p+1,

except if S = g+ H and X = yH* for some g € F2, x e]g‘%, H<]F,%.

y
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The Next (Easiest) Case: k = p — 1

Theorem

Iff: IF,% — C is nonzero, then (writing S := supp f and X := supp?)
S min{|S| X[} + 5 max{(Sl, X[} > p-+1,

exceptifS=g+ Hand X = XHL for some g € F2, x € ]F2 H < Fe.

X 1
! |
‘ {
sp+1) 1
‘ l
4t \
‘ 1
3+ |
‘ i

2pt1) | -

p+l ‘ ———

P 2(p+D) 3(p1) 4pD) S(peD) 18]
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The Next (Easiest) Case: k =p — 1

Theorem

Iff: IF,% —=C is1nonzero, then (writi?g S :=suppfand X := supp?)
b1 min{[S], | X[} + 5 max{[S], |X[} = p+ 1,

exceptif S=g+ Hand X = yH*+ forsomege]Fz,xe]F2 H < F3

IX|

“ ‘.‘ > If f=1g, 44— 1g,4H, then |S| = 2p
e \l and | X| = p — 1; hence, equality
4p+) ‘ \ holds in this case, showing that the
| '\ estimate is sharp.
|

3(p*)

2(p+1)

‘N. —_—
ptl

P 2(p+D) 3(pH) 4D S(pHD) S|
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The Next (Easiest) Case: k =p — 1

Theorem

Iff: Ff, —=C is1nonzero, then (Writiq)g S :=suppfand X := supp?)
b1 min{[S], | X[} + 5 max{[S], |X[} = p+ 1,

exceptif S=g+ Hand X = yH*+ forsomege]Fz,xe]F2 H < F3

IX|

" ‘.‘ > If f=1g, 44— 1g,4H, then |S| = 2p
e \l and | X| = p — 1; hence, equality
4p+) ‘ \ holds in this case, showing that the
| '\ estimate is sharp.
201) |

—_— » In the exceptional case, we

e ‘ — “essentially” have f = 1g44
(more precisely, f = Clg, 4 - X).

pH 2ptD) 3(pH) 4D SEF) 18]

3(p*)
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The Case k =p —2

Theorem (a partial result towards the case k = p — 2)
Iff: IFf, — C is nonzero, then we have either

1 : 1
_ ~ >
. p—3 MMISLIXI}+ 3 max{|S], IX]} 2 p+1,

: 3
min{|S1, X} > S(p—1),
except if the smallest of S and X is “essentially” a coset, and the
largest is a coset, or a union of two cosets of the orthogonal subgroup.
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The Case k =p —2

Theorem (a partial result towards the case k = p — 2)

Iff: IFf, — C is nonzero, then we have either

: 1
~ >
N p_2 min{|S], | X} + 3 max{[S],| X[} = p+1,

min{|S1, X} > 3(p~ 1),

except if the smallest of S and X is “essentially” a coset, and the
largest is a coset, or a union of two cosets of the orthogonal subgroup.

IX|

S+ Il
\

» The exceptional cases can be fully
classified.

4p+1)

3+
2p+1) ! ‘__
T ——— —
ptl

pHL 2(p+1) 3(pt1) 4(p+D) S(p+1) IS
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A UDT Application: Counting Perfect Directions

Givenaset P C IB‘% and a “weight function” w: P — R (not vanishing

identically), we say that a direction in JF,% is perfect if every line in this
direction gets its exact share of the total weight; that is, for every two
lines ¢1, ¢ in the direction in question, we have

dowx) = D> w(x).

XGPO£1 XEPOEQ
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A UDT Application: Counting Perfect Directions

Givenaset P C IF‘% and a “weight function” w: P — R (not vanishing
identically), we say that a direction in JF,% is perfect if every line in this
direction gets its exact share of the total weight; that is, for every two
lines /1, ¢> in the direction in question, we have
dowx) = D> w(x).

XEPNY, xePniy
If |P| = 1, there are no perfect directions. If |P| =2 or |P| = 3, there is
at most one perfect direction, for |P| = 4 there can be two. In general,
how many perfect directions can there be?
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A UDT Application: Counting Perfect Directions

Givenaset P C IF% and a “weight function” w: P — R (not vanishing
identically), we say that a direction in JF,% is perfect if every line in this
direction gets its exact share of the total weight; that is, for every two
lines ¢1, ¢ in the direction in question, we have
dowx) = D> w(x).

xePney xePniy
If |P| = 1, there are no perfect directions. If |P| =2 or |P| = 3, there is
at most one perfect direction, for |P| = 4 there can be two. In general,
how many perfect directions can there be?

Theorem

IfPC ]Ff,, and w: P — R does not vanish identically, then there are at
most % |P| perfect directions, unless there is a line ¢ entirely contained
in P such that w is constant on ¢, and vanishes outside of ¢ (in which
case all, but one direction are perfect).
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Sets with Many Perfect Directions

Theorem

IfP C ]F,%, and w: P — R does not vanish identically, then there are at

most% |P| perfect directions, unless, essentially, P is a line, and w is
constant on P (in which case there are p perfect directions).

Example

If P = ¢4 U /5 is a union of two parallel lines, and w = ¢{1,, + ¢21y,
(that is, w is constant on each of these lines), then |P| = 2p and there
are p = % |P| perfect directions.
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Sets with Many Perfect Directions

Theorem

IfP C ]Fg, and w: P — R does not vanish identically, then there are at

most% |P| perfect directions, unless, essentially, P is a line, and w is
constant on P (in which case there are p perfect directions).

Example

If P = ¢4 U /5 is a union of two parallel lines, and w = ¢{1,, + ¢21y,
(that is, w is constant on each of these lines), then |P| = 2p and there
are p = % |P| perfect directions.

Example

If P = (1 ULo)\ (¢1 N L) with ¢4 and ¢, not parallel, and w = 1,, — 1,
then |P| = 2(p — 1) and there are p — 1 = } | P| perfect directions.

v

Vsevolod Lev (U Haifa) Uncertainty in Finite Planes CIRM — October 2018 13/16



Sets with Many Perfect Directions

Theorem

IfPC ]Fg, and w: P — R does not vanish identically, then there are at

most% |P| perfect directions, unless, essentially, P is a line, and w is
constant on P (in which case there are p perfect directions).

Example

If P = ¢4 U /5 is a union of two parallel lines, and w = ¢{1,, + ¢21y,
(that is, w is constant on each of these lines), then |P| = 2p and there
are p = % |P| perfect directions.

Example

If P= (¢4 Ul)\ (41 N¥p) with ¢4 and ¢, not parallel, and w = 1,, — 1y,
then |P| = 2(p — 1) and there are p — 1 = } | P| perfect directions.

v

(There are more elaborate examples showing that % |P| is sharp.)
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Sketch of the Proof

P C Ff,, w: P — R < there are at most % |P| perfect directions

We assume that w is defined on IF,% (just let w(x) = 0 when x ¢ P),

and that supp w = P (by restricting P). WLOG, w is rational-valued
(by simultaneously approximating w(x), x € P).
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Sketch of the Proof

P C IF,%, w: P — R < there are at most % |P| perfect directions

We assume that w is defined on IF,% (just let w(x) = 0 when x ¢ P),

and that supp w = P (by restricting P). WLOG, w is rational-valued
(by simultaneously approximating w(x), x € P).

Let D be the set of all p + 1 directions in 2, each direction 9 € D
understood as a pencil of p parallel lines. Write D = D+ U D,
where DT is the set of all perfect directions.
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Sketch of the Proof

P C IF,%, w: P — R < there are at most % |P| perfect directions

We assume that w is defined on IF,% (just let w(x) = 0 when x ¢ P),
and that supp w = P (by restricting P). WLOG, w is rational-valued
(by simultaneously approximating w(x), x € P).

Let D be the set of all p + 1 directions in 2, each direction 9 € D
understood as a pencil of p parallel lines. Write D = D+ U D,
where DT is the set of all perfect directions.

Consider the decomposition
Lo(F3) = (®aep Vo) & Vo :

> Lo(F3) is the vector space of all rational-valued functions on F3;
» Vy < LQ(F,%) is the subspace of all zero-mean functions which are

constant on every line ¢ € 0;
» Vp < L@(IF,%) is the subspace of all constant functions.
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Sketch of the Proof

P C IF,%, w: P — R < there are at most % |P| perfect directions

We assume that w is defined on IF,% (just let w(x) = 0 when x ¢ P),
and that supp w = P (by restricting P). WLOG, w is rational-valued
(by simultaneously approximating w(x), x € P).

Let D be the set of all p + 1 directions in 2, each direction 9 € D
understood as a pencil of p parallel lines. Write D = D+ U D,
where DT is the set of all perfect directions.

Consider the decomposition
Lo(F3) = (®aep Vo) & Vo :
> L@(IFfJ) is the vector space of all rational-valued functions on F2;

> Vh < LQ(Fg) is the subspace of all zero-mean functions which are
constant on every line ¢ € 0;

» Vp < L@(IF,%) is the subspace of all constant functions.

If 0 is perfect, then w has zero projection onto Vj!
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Sketch of the Proof (Concluded)

PC IF,%, w: P — R < there are at most } |P| perfect directions

As a result,
WZZW@-I-C, wy € V.
oeD~
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Sketch of the Proof (Concluded)
PC IF%, w: P — R < there are at most } |P| perfect directions
As a result,

W:ZW@—{—C, wy € V.
oeD—
But wy € Vj implies that most of the Fourier coefficients of wj vanish:

supp wy € H\ {1},
where H < IF,% is the subgroup corresponding to the direction 9. Hence,
|suppw| < (p—1)|D~[ +1.
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Sketch of the Proof (Concluded)

P C IF%, w: P— R < there are at most % |P| perfect directions

As a result,
W:ZWB—{—C, wy € V.
oeD~

But wy € Vj implies that most of the Fourier coefficients of wj vanish:

supp wp € HH\ {1},

where H < IF,% is the subgroup corresponding to the direction 9. Hence,

|suppw| < (p—1)|D7| +1.
Applying to w the estimate

1 1 ~
5 | supp f| + p—1 |supp f| > p + 1
from Slide 9, we conclude that, normally

1
p+1<f|P|+|D \+p71< (IP|+1)+|D|,

implying
D =p+1-|D7| <5 (|P|+1)
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Summary

» The Uncertainty Principle: For a function f: G — C, either supp f,
or supp f must be large.

v,
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Summary

» The Uncertainty Principle: For a function f: G — C, either supp f,
or supp f must be large.

» The Basic Uncertainty Inequality: | supp f|| supp?\ > |G|
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Summary
» The Uncertainty Principle: For a function f: G — C, either supp f,
or supp f must be large.
» The Basic Uncertainty Inequality: | supp f|| supp?\ > |G|

» Meshulam’s Estimate: If di < |supp f| < db, where d; < d, are
consecutive divisors of |G|, then

|supp7| > % (dy + d> — | supp f]).
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Summary

» The Uncertainty Principle: For a function f: G — C, either supp f,
or supp f must be large.

» The Basic Uncertainty Inequality: | supp f|| supp?\ > |G.

» Meshulam’s Estimate: If di < |supp f| < db, where d; < d, are
consecutive divisors of |G|, then

7 G
|supp | > g (dh + cb — | supp ).

» We have established a number of improvements upon

Meshulam’s result for the particular groups ]F,z,.
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Summary
» The Uncertainty Principle: For a function f: G — C, either supp f,
or supp f must be large.
» The Basic Uncertainty Inequality: | supp f|| supp?\ > |G|

» Meshulam’s Estimate: If di < |supp f| < db, where d; < d, are
consecutive divisors of |G|, then

7 G
|supp | > g (dh + cb — | supp ).
» We have established a number of improvements upon
Meshulam’s result for the particular groups ]F,%.

» Much more is conjectured! In particular, we conjecture that,

“normally”, —
|supp f| +\/|suppf| > p+1, f:F5—C,
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Summary
» The Uncertainty Principle: For a function f: G — C, either supp f,
or supp f must be large.
» The Basic Uncertainty Inequality: | supp f|| supp?\ > |G|

» Meshulam’s Estimate: If dy < |supp f| < db, where d; < d» are
consecutive divisors of |G|, then

3 G
| supp f| > % (dy + d> — | supp f]).
» We have established a number of improvements upon
Meshulam’s result for the particular groups ]Ff,.
» Much more is conjectured! In particular, we conjecture that,

“normally”, —
|supp f| +\/|suppf| > p+1, f:F5—C,
to be compared with the Bir6-Tao inequality saying that

]suppf!ﬂsupp?\ >p+1, f:Fp—C.
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Summary

>

>

The Uncertainty Principle: For a function f: G — C, either supp f,
or supp f must be large.

The Basic Uncertainty Inequality: | supp f|| supp?\ > |G.
Meshulam’s Estimate: If d; < |supp f| < db, where d; < d are
consecutive divisors of |G|, then

|supp | > 4% (di + d2 — | supp f]).
We have established a number of improvements upon
Meshulam’s result for the particular groups ]Ff,.
Much more is conjectured! In particular, we conjecture that,

“normally”, —
|supp f| +\/|suppf| > p+1, f:F5—C,
to be compared with the Bird-Tao inequality saying that

| supp f| + \supp?\ >p+1, f:Fp—C.
As an application, we have shown that a set P C IB‘% determines
at most 1 | P| perfect directions.

v
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Thank you!
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