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H(n) +1 if nis evil (i.e., sum of binary digits is even),
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—1 if n is odious (i.e., sum of binary digits is odd).
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The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways:

@ Explicit formula:

H(n) +1 if nis evil (i.e., sum of binary digits is even),
n) =
—1 if n is odious (i.e., sum of binary digits is odd).

® Recurrence:
t(0) =+1, t(2n)=t(n), t2n+1)=—t(n).

® Automatic sequence:

start —

1
@ 2-Multiplicative sequence: t(27) = —1 for all j, and
t(n +m) = t(n)t(m)

if digits of n and m do not overlap, i.e., 2° | n and m < 2¢ for some 1.
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Uniformity of Thue-Morse (1/3)
Question (Mauduit & Sarkézy (1998))

Is the Thue-Morse sequence uniform/pseudorandom in some meaningful sense?
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Question (Mauduit & Sarkozy (1998)) J

Is the Thue-Morse sequence uniform/pseudorandom in some meaningful sense?

No! At least in some ways.
© Linear subword complexity: # {w € {+1,—1}' : w appears in t} = O(l).
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Is the Thue-Morse sequence uniform/pseudorandom in some meaningful sense?

Question (Mauduit & Sarkozy (1998)) J

No! At least in some ways.
© Linear subword complexity: # {w € {+1,—1}' : w appears in t} = O(l).
O #{n<N:t(n)=tn+1)} *N/3#N/2. — t(n)=tn+1)iff 24va(n+1)
® #{n< N :t(n)=tn+1)=t(n+2)} =0. — in general: ¢ is cube-free

But in other ways: Yes!

N-1

® [ t(n)=0O(1/N) (not very hard). — [E is shorthand for El >
n<N n<N N n=0

® K tlan+b) =O(N™°) with ¢ > 0. — Gelfond (1968)
n<N

® sup | [£ t(n)e(na)| = O(N™°) with ¢ > 0. — shorthand: e(f) = €27
a€R [n< N




Uniformity of Thue-Morse (2/3)
Gelfond problems
® Thue-Morse does not correlate with the primes:

#{n < N : nis prime, t(n) =41} = %TI'(N) +O(N'79).

— m(N) = # primes < N; Prime Number Theorem: 7(N) ~ N/log N
Proved by Mauduit & Rivat (2010).



Uniformity of Thue-Morse (2/3)
Gelfond problems

® Thue-Morse does not correlate with the primes:
1
#{n < N : nis prime, t(n) =41} = §7r(N) +O(N'79).

— m(N) = # primes < N; Prime Number Theorem: 7(N) ~ N/log N
Proved by Mauduit & Rivat (2010).

® If p(z) € Riz], p(N) C N, then ¢ does not correlate with the values of p:
#{n < N : t(p(n)) = +1} = %N +O(N'™9).
Proved by Mauduit & Rivat (2009) for p(n) = n? (already known for degp = 1).
Improved by Drmota, Mauduit & Rivat (2013): t(n?) is strongly normal, i.e.,
#{n<N :t((n+i)?) =efor0<i<kl= QikN+0(NH)
for any k € N and any ¢; € {+1,—1} for 0 <i < k.

For degp > 3 — open problem!

N}



Uniformity of Thue-Morse (3/3)
A problem that is not Gelfond’s — Drmota (2014)
® Let a € R\ Z; then

H{n< N : t([n%]) = +1} = %N+O(N1‘C).

Proved for o < 3/2 by Miillner & Spiegelhofer (2017).
Moreover, for such «, t(|n*]) is strongly normal.

For a > 3/2 — open problem!



Uniformity of Thue-Morse (3/3)
A problem that is not Gelfond’s — Drmota (2014)
® Let a € R\ Z; then

H{n< N : t([n%]) = +1} = %N+O(N1‘C).

Proved for o < 3/2 by Miillner & Spiegelhofer (2017).
Moreover, for such «, t(|n*]) is strongly normal.

For @ > 3/2 — open problem!

Question

Fix k € N. How many k-term arithmetic progressions n, n+m, ..., n+ (k—1)m
contained in {0,..., N — 1} are there such that ¢(n+im) =1 for 0 < ¢ < k?

More generally, is it the case that
# {(m,n) :n+im<Nandt(n+im):eifor0<i<k}:L
? - (k —1)2k+1

for any €¢; € {+1,-1} (0 <i < k)?




Fourier analysis: first glance

Problem: Let A C [N], #A = aN and k € N. How many k-term arithmetic
progressions in A? Is there at least one?
— [N]:=4{0,1,..., N — 1}; we identify [N] ~ Z/NZ and assume N is prime.
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Fourier analysis: first glance

Problem: Let A C [N], #A = aN and k € N. How many k-term arithmetic
progressions in A? Is there at least one?
— [N]:=4{0,1,..., N — 1}; we identify [N] ~ Z/NZ and assume N is prime.

Fourier expansion:

1an) = 3 1a(@)e <%) , where 14(§) = E 1a(n)e < ]ffn)

n<N

Note that 14(0) = a.

Motto: A is random <= 14(€) are small for € # 0.

Lemma
Suppose that ‘iA(§)| < e for all € #0. Then

3
#{(n,m) € [N]> : n,n+m,n+2me A} = %NQ + O(eN?).

Corollary: The number of 3-term APs in {n € [N] : ¢(n) = +1} is ~ N?/32.



Higher order Fourier analysis (1/2)

Fact (Fourier analysis is not enough)

There exist A C [N], #A = aN such that 14(£) ~ 0 for € # 0 but the number of
4-term APs in A is not ~ o*N?/6 (like for a random set).

Example: A= {n € [N]:0< {n’V2} <a}. — {z} =2 — |z
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Fact (Fourier analysis is not enough)

There exist A C [N], #A = aN such that 14(€) ~ 0 for € # 0 but the number of
4-term APs in A is not ~ o*N?/6 (like for a random set).

Example: A= {n € [N]: 0< {n’V2} <a}. — {z}=2—[z]

Higher order Fourier analysis

Definition (Gowers norm)
Fix s > 1. Let f: [N] = R. Then || f||ysin] > 0 is defined by:
||f||%JS[N] =K H f(no+wini +...wsns),
7 we{0,1}s

where the average is taken over all parallelepipeds in [N], i.e., over all
n = (no,...,ns) € 7Z°t! such that ng + wing + ...wsns € [N] for all w € {0,1}°.

— for C-valued functions: conjugate the terms with wy + w2 + -+ + ws odd
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Fact (Fourier analysis is not enough)

There exist A C [N], #A = aN such that 14(€) ~ 0 for € # 0 but the number of
4-term APs in A is not ~ o*N?/6 (like for a random set).

Example: A= {n € [N]: 0< {n’V2} <a}. — {z}=2—[z]

Higher order Fourier analysis

Definition (Gowers norm)
Fix s > 1. Let f: [N] = R. Then || f||ysin] > 0 is defined by:
”f”%]SS[N] = H f(no+wini +...wsns),
7 we{0,1}s

where the average is taken over all parallelepipeds in [N], i.e., over all
n = (no,...,ns) € 7Z°t! such that ng + wing + ...wsns € [N] for all w € {0,1}°.

— for C-valued functions: conjugate the terms with wy + w2 + -+ + ws odd

Motto: A is uniform of order s <= ||1a — aljnj||us(n] is small
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Higher order Fourier analysis (2/2)

Facts:
© ||fllus(w) is well-defined for s > 1, i.e., the average on the RHS is > 0
2] Hf”Ul[N] = |E, f(n)| and ||fHU2[N] = Hf||é4 — true in Z/NZ rather than [N]

O | fllorw < I flluzpny < 1fllusiny < - -
o ||f +gllusiny < W llus vy + lgllvs v
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Facts:
© ||fllus(w) is well-defined for s > 1, i.e., the average on the RHS is > 0

2] ||f”U1[N] = |E, f(n)| and ||f”U2[N] = Hf||é4 — true in Z/NZ rather than [N]

O | fllorw < I flluzpny < 1fllusiny < - -
o ||f +gllusiny < W llus vy + lgllvs v

Example

If p € R[z], f(n) = e(p(n)), degp = s then || fl|ysin) =~ 0 but || f|lgetipn = 1.

— assume here that the leading coefficient of p is reasonable

Theorem (Generalised von Neumann Theorem)

Fiz s> 1. If AC [N], #A = aN and ||[1a — odnil|usv) < €, then A contains as

many (s + 1)-term APs as a random set of the same size, up to an error of size e:

#{(n,m) € [N]> : n,n+m,...,n+sm e A} = a’N?/2s + O(eN?).
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Let p denote the Mobius function

(n) (=1)* if n = p1...px where p1,...,px are distinct primes,
n)=
K 0 if n is divisible by a square.

Recall that u is multiplicative, meaning that u(mn) = u(m)u(n) if ged(m,n) = 1.
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Let p denote the Mobius function

p(n) =

(=1)* if n = p1...px where p1,...,px are distinct primes,
0 if n is divisible by a square.

Recall that u is multiplicative, meaning that u(mn) = u(m)u(n) if ged(m,n) = 1.
Theorem (Green & Tao (2008+2012))
Fix s > 2. The Mdébius function is Gowers uniform of order s:

lpellws vy = 0 as N — oo.

Hence, the primes contain many arithmetic progressions of length s + 1.

— Vast over-simplification, quantitative bounds needed and “hence” is an Annals paper!
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Gowers uniform sequences

Let p denote the Mobius function

p(n) =

(=1)* if n = p1...px where p1,...,px are distinct primes,
0 if n is divisible by a square.

Recall that u is multiplicative, meaning that u(mn) = u(m)u(n) if ged(m,n) = 1.
Theorem (Green & Tao (2008+2012))
Fix s > 2. The Mdébius function is Gowers uniform of order s:

lpellws vy = 0 as N — oo.

Hence, the primes contain many arithmetic progressions of length s + 1.
— Vast over-simplification, quantitative bounds needed and “hence” is an Annals paper!

Theorem (Frantzikinakis & Host (2017))

Let v be a (bounded) multiplicative function and s > 2. Then

lvllsivy — 0 as N — oo if and only if ||v]|y2ny — 0 as N — oo.

9 /22




Higher order Fourier analysis meets Thue-Morse

+1 if the sum of binary digits of n is even,

—1 if the sum of binary digits of n is odd.

Recall: t(n) = {
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+1 if the sum of binary digits of n is even,
Recall: t(n) = ) . A )

—1 if the sum of binary digits of n is odd.
Theorem (K.)

Fix s > 1. There exists ¢ = cs > 0 such that ||t||ys(n) < N €.

Key ideas: Write a recursive formula for ||t||2UsS L]
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Higher order Fourier analysis meets Thue-Morse

+1 if the sum of binary digits of n is even,

—1 if the sum of binary digits of n is odd.

Recall: t(n) = {

Theorem (K.)

Fix s > 1. There exists ¢ = cs > 0 such that ||t||ys(n) < N €.

Key ideas: Write a recursive formula for ||7§||2UsS (2L]-

Corollary
Fiz s > 1 and let ¢ = cs be as above. Then for any €; € {+1,—1}, (0 <4 < s)

2

#{(n,m) :n+im <N andt(n+im) =¢ for 0 <i<s} = + O(N?7°).

25+2g

In particular, the number of (s + 1)-term arithmetic progressions contained in the set
{n< N : t(n) = +1} is N?/2°T25 + O(N>7°).




Higher order Fourier analysis meets k-multiplicative sequences

Definition

Fix k > 2. A sequence f: N — C is k-multiplicative if

f(n+m) = f(n)f(m) for all n,m > 0 such that m < k', k‘|n.
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Higher order Fourier analysis meets k-multiplicative sequences

Definition

Fix k > 2. A sequence f: N — C is k-multiplicative if

fn+m) = f(n)f(m) for all n,m > 0 such that m < k', k‘|n.

Example

Recall that ¢t(n) is 2-multiplicative. More generally: Let
sk(n) = sum of digits of digits of n in base k.

Then e(ask(n)) is k-multiplicative for any o € R. — e(6) = 270
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Definition

Fix k > 2. A sequence f: N — C is k-multiplicative if

fn+m) = f(n)f(m) for all n,m > 0 such that m < k', k‘|n.

Example

Recall that ¢t(n) is 2-multiplicative. More generally: Let

sk(n) = sum of digits of digits of n in base k.

Then e(ask(n)) is k-multiplicative for any o € R. — e(f) =

627”'9

Theorem (Fan & K.)
Let f be a (bounded) k-multiplicative function and s > 2. Then

lfllvsivy — 0 as N — oo if and only if || f|ly2(n) — 0 as N — oo.

11 /22




Higher order Fourier analysis meets Rudin—Shapiro
Rudin—Shapiro sequence: r: N — {—1,+1}.
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Rudin—Shapiro sequence: r: N — {—1,+1}.
©® Explicit formula:

(n) = —1if 11 appears an odd number of times in the binary expansion of n,
Tl 41if11 appears an even number of times in the binary expansion of n.
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Higher order Fourier analysis meets Rudin—Shapiro
Rudin—Shapiro sequence: r: N — {—1,+1}.
©® Explicit formula:

—1if 11 appears an odd number of times in the binary expansion of n,

n)=
() {—H if 11 appears an even number of times in the binary expansion of n.

® Recurrence: r(0) = +1, r(2n) = r(n), r(2n+ 1) = (=1)"r(n).
® Automaton:

start - 0 0

—
o
—
o

—_

Theorem (K.)
Fiz s > 1. There exists ¢ = cs > 0 such that ||r||ysn) < N™°.
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Automatic sequences
A sequence f: Nyg — Q is k-automatic if and only if. ..

® ...it is produced by a finite k-automaton A = (S, so, 0, 7).

» S — a finite set of states, sp € S — initial state;
» §: S x [k] = S — transition function; uniquely extending to a map

§: S x [k]" — S such that (s, uv) = §(d(s,u),v) for all u,v € [k]*;
— [k]* = words over the alphabet [k] = {0,...,k—1}

» 7: S — Q — output function.

A computes the sequence fa(n):=7(0(s, (n)r). — (n); = digits of n in base k

® ...it is given by a base k recurrence, i.e., the k-kernel Ny (f) is finite, where

Nu(f) = {f(k'n+r) - teN, 0<r<k'}.

® ...it is the letter-to-letter coding of a fixed point of a k-uniform morphism on
the monoid of words over some finite alphabet.



Automatic sequences
A sequence f: Nyg — Q is k-automatic if and only if. ..

® ...it is produced by a finite k-automaton A = (S, so, 0, 7).

» S — a finite set of states, sp € S — initial state;
» §: S x [k] = S — transition function; uniquely extending to a map

§: S x [k]" — S such that (s, uv) = §(d(s,u),v) for all u,v € [k]*;
— [k]* = words over the alphabet [k] = {0,...,k—1}

» 7: S — Q — output function.

A computes the sequence fa(n):=7(0(s, (n)r). — (n); = digits of n in base k

® ...it is given by a base k recurrence, i.e., the k-kernel Ny (f) is finite, where
Ne(f)={f(k'n+7r) : teN, 0<r<k'}.

® ...it is the letter-to-letter coding of a fixed point of a k-uniform morphism on
the monoid of words over some finite alphabet.

Motto: Automatic <= Computable by a finite device.



Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform?
If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?
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Question

Which among k-automatic sequences are Gowers uniform?
If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:
© slowly varying sequences like |log,(n)| mod 2;
® periodic sequences like n mod 3;

® almost periodic sequences like v2(n) mod 2.




Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform?
If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:
© slowly varying sequences like |log,(n)| mod 2;
® periodic sequences like n mod 3;

® almost periodic sequences like v2(n) mod 2.

Conjecture (Byszewski, K. & Miillner)

Any k-automatic sequence has a decomposition a = astr + @uni, where
—cC
HauniHUS[N] LN

for any s > 1, and astr is a “combination of sequences of the above type”.




Obstructions to Gowers uniformity

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Fix s > 1. Let f: [N] — C be a 1-bounded sequence. Then the following conditions
are equivalent:

(1)

I fllusiny = 6 for certain 6 > 0.
(2) there exists a 1-bounded (s — 1)-step nilsequence ¢ with complexity < C's. t.

E f(n)e(n) > n for certain n > 0.
n<N

More precisely, if (1) holds for a given value of § then there exist C' and 7, dependent
on ¢ and s only (but not on N and f), such that (2) holds.

Conversely, if (2) holds for given values of C and 71 then there exists d, dependent on
C, n and s (but not on N and f), such that (1) holds.

— Strictly speaking, Inverse Theorem is (1) = (2); the implication (2) = (1) is “easy”.

N}




Obstructions to Gowers uniformity

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Fix s > 1. Let f: [N] — C be a 1-bounded sequence. Then the following conditions
are equivalent:

(1)

I fllusiny = 6 for certain 6 > 0.
(2) there exists a 1-bounded (s — 1)-step nilsequence ¢ with complexity < C's. t.

E f(n)e(n) > n for certain n > 0.
n<N

More precisely, if (1) holds for a given value of § then there exist C' and 7, dependent
on ¢ and s only (but not on N and f), such that (2) holds.

Conversely, if (2) holds for given values of C and 71 then there exists d, dependent on
C, n and s (but not on N and f), such that (1) holds.

— Strictly speaking, Inverse Theorem is (1) = (2); the implication (2) = (1) is “easy”.

Motto: Obstructions to uniformity <= Nilsequences (of bounded complezity).
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A bounded sequence g: Z — R is a generalised polynomial if and only if there exists a
nilsystem (X, T), a point xo € X and a piecewise polynomial map F: X — R such
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Can generalised polynomials be automatic?

Question J

If f is both k-automatic and generalised polynomial, must f be ultimately periodic?

— A close cousin of previously mentioned question, but neither implies the other.
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Can generalised polynomials be automatic?

If f is both k-automatic and generalised polynomial, must f be ultimately periodic?

Question J

— A close cousin of previously mentioned question, but neither implies the other.

Proposition (Allouche & Shallit (2003))
The sequence f(n) = |an + B8] mod m is automatic iff « € Q. (o, 8 € R, m € N>») J

Ideas from Allouche & Shallit (implicit: circle rotation by a) combined with
Bergelson & Leibman representation (rotations on nilmanifolds) lead to:
Proposition (Byszewski & K.)

If f is both k-automatic and generalised polynomial, then there exists a periodic
sequence p and a set Z C N with d*(Z) = 0 such that f(n) = p(n) for alln € N\ Z.

AN[M,M+ N
— d* is the Banach density: d*(A) = lim sup max M
N—oco M N
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® Nothing is known for linear recursive sequences of order > 4.




Sparse generalised polynomials

A set A C N is GP, k-automatic, etc. iff the sequence 14 is GP, k-automatic, etc.

Example
©® The set of Fibonacci numbers {1,2,3,5,8,13,...} is GP;
® The set of ‘Tribonacci’ numbers is GP (Ti13 = Tit2 + Tit1 + T3);

® Nothing is known for linear recursive sequences of order > 4.

Proposition

If A= {a1,az,...} CNand liminfbgﬂ > 1, then A is GP.

i—00 og a;
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® The characteristic function of the set {kl NS N} s a generalised polynomial.




Sparse generalised polynomials

A set A C N is GP, k-automatic, etc. iff the sequence 14 is GP, k-automatic, etc.

Example
©® The set of Fibonacci numbers {1,2,3,5,8,13,...} is GP;
® The set of ‘Tribonacci’ numbers is GP (Ti13 = Tit2 + Tit1 + T3);

® Nothing is known for linear recursive sequences of order > 4.

Proposition

log a;
If A={ai,a2,...} CNand li_minfM
1—00 og a;

> 1, then A is GP.

Theorem (Byszewski & K.)
Fix k > 2. Then, one of the following holds:

©® Any k-automatic generalised polynomial sequence is eventually periodic;

® The characteristic function of the set {kl NS N} s a generalised polynomial.

Question: Which is it?




THANK YOU FOR YOUR ATTENTION!

22



Bibliography I

@ Jean-Paul Allouche and Jeffrey Shallit.
The ring of k-regular sequences. II.
Theoret. Comput. Sci., 307(1):3-29, 2003.

@ Vitaly Bergelson and Alexander Leibman.

Distribution of values of bounded generalized polynomials.
Acta Math., 198(2):155-230, 2007.

ﬁ Jakub Byszewski and Jakub Konieczny.
Factors of generalised polynomials and automatic sequences.
Indag. Math. (N.S.), 29(3):981-985, 2018.

@ Jakub Byszewski and Jakub Konieczny.
Sparse generalised polynomials.
Trans. Amer. Math. Soc., 370(11):8081-8109, 2018.

@ Michael Drmota.
Subsequences of automatic sequences and uniform distribution.

In Uniform distribution and quasi-Monte Carlo methods, volume 15 of Radon Ser.
Comput. Appl. Math., pages 87-104. De Gruyter, Berlin, 2014.

20 / 22



Bibliography I1

ﬁ Nikos Frantzikinakis and Bernard Host.
Higher order Fourier analysis of multiplicative functions and applications.
J. Amer. Math. Soc., 30(1):67-157, 2017.

[3 A. 0. Gel'fond.
Sur les nombres qui ont des propriétés additives et multiplicatives données.
Acta Arith., 13:259-265, 1967 /1968.

ﬁ Ben Green and Terence Tao.
The primes contain arbitrarily long arithmetic progressions.
Ann. of Math. (2), 167(2):481-547, 2008.

ﬁ Ben Green and Terence Tao.
The Mébius function is strongly orthogonal to nilsequences.
Ann. of Math. (2), 175(2):541-566, 2012.

ﬁ Ben Green, Terence Tao, and Tamar Ziegler.

An inverse theorem for the Gowers U*t![N]-norm.
Ann. of Math. (2), 176(2):1231-1372, 2012.

21



Bibliography III

B

[

Christian Mauduit and Joél Rivat.

Sur un probléme de Gelfond: la somme des chiffres des nombres premiers.
Ann. of Math. (2), 171(3):1591-1646, 2010.

Christian Mauduit and Andras Sarkozy.

On finite pseudorandom binary sequences. II. The Champernowne, Rudin-Shapiro, and
Thue-Morse sequences, a further construction.

J. Number Theory, 73(2):256-276, 1998.

Clemens Miillner and Lukas Spiegelhofer.
Normality of the Thue-Morse sequence along Piatetski-Shapiro sequences, II.
Israel J. Math., 220(2):691-738, 2017.



