Automatic and q-multiplicative sequences through the lens of Higher order Fourier analysis

Jakub Konieczny

Hebrew University of Jerusalem Jagiellonian University

6th International Conference on Uniform Distribution Theory CIRM, 1-5 October 2018

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

+--+-++--+-++-++--++--++--++---+++--...

+--+-++--+-++-++--++--++--++---+++--...

The Thue–Morse sequence (discovered by Prouhet) can be seen in many ways:

+--+-++--++-++-++--+++-...

The Thue–Morse sequence (discovered by Prouhet) can be seen in many ways: Explicit formula:

 $t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$

The Thue–Morse sequence (discovered by Prouhet) can be seen in many ways: Explicit formula:

$$t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$$

2 Recurrence:

$$t(0) = +1, \quad t(2n) = t(n), \quad t(2n+1) = -t(n).$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

2/22

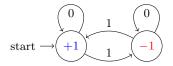
The Thue–Morse sequence (discovered by Prouhet) can be seen in many ways: Explicit formula:

$$t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$$

2 Recurrence:

$$t(0) = +1, \quad t(2n) = t(n), \quad t(2n+1) = -t(n).$$

3 Automatic sequence:



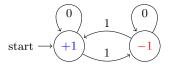
The Thue–Morse sequence (discovered by Prouhet) can be seen in many ways: **1** Explicit formula:

$$t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$$

2 Recurrence:

$$t(0) = +1, \quad t(2n) = t(n), \quad t(2n+1) = -t(n).$$

3 Automatic sequence:



@ 2-Multiplicative sequence: $t(2^j) = -1$ for all j, and

$$t(n+m) = t(n)t(m)$$

if digits of n and m do not overlap, i.e., $2^i \mid n$ and $m < 2^i$ for some i.

2 / 22

Question (Mauduit & Sarközy (1998))

Is the Thue–Morse sequence uniform/pseudorandom in some meaningful sense?

Question (Mauduit & Sarközy (1998))

Is the Thue–Morse sequence uniform/pseudorandom in some meaningful sense?

No! At least in some ways.

• Linear subword complexity: $\# \{ w \in \{+1, -1\}^l : w \text{ appears in } t \} = O(l).$

- **2** # {n < N : t(n) = t(n+1)} $\simeq N/3 \neq N/2. \longrightarrow t(n) = t(n+1)$ iff $2 \nmid \nu_2(n+1)$

イロト イヨト イヨト イヨト 三日

Question (Mauduit & Sarközy (1998))

Is the Thue–Morse sequence uniform/pseudorandom in some meaningful sense?

No! At least in some ways.

But in other ways: Yes!

•
$$\mathbb{E}_{n < N} t(n) = O(1/N)$$
 (not very hard). $\longrightarrow \mathbb{E}_{n < N}$ is shorthand for $\frac{1}{N} \sum_{n = 0}^{N} \frac{1}{N} \sum_{n < N} \sum_{n < N} \frac{1}{N} \sum_{n < N} \frac{1}{N} \sum_{n < N} \sum_{n$

N - 1

イロト イヨト イヨト イヨト 三日

Question (Mauduit & Sarközy (1998))

Is the Thue–Morse sequence uniform/pseudorandom in some meaningful sense?

No! At least in some ways.

But in other ways: Yes!

Question (Mauduit & Sarközy (1998))

Is the Thue–Morse sequence uniform/pseudorandom in some meaningful sense?

No! At least in some ways.

But in other ways: Yes!

$$\begin{array}{c} \bullet \quad \underset{n < N}{\mathbb{E}} t(n) = O(1/N) \text{ (not very hard).} & \longrightarrow \underset{n < N}{\mathbb{E}} \text{ is shorthand for } \frac{1}{N} \sum_{n=0} \\ \bullet \quad \underset{n < N}{\mathbb{E}} t(an+b) = O(N^{-c}) \text{ with } c > 0. & \longrightarrow \text{ Gelfond (1968)} \\ \bullet \quad \underset{\alpha \in \mathbb{R}}{\mathbb{E}} \left| \underset{n < N}{\mathbb{E}} t(n) e(n\alpha) \right| = O(N^{-c}) \text{ with } c > 0. & \longrightarrow \text{ shorthand: } e(\theta) = e^{2\pi i \theta} \end{array}$$

N-1

イロト イヨト イヨト イヨト 三日

Gelfond problems

1 Thue-Morse does not correlate with the primes:

$$\# \{n < N : n \text{ is prime, } t(n) = +1\} = \frac{1}{2}\pi(N) + O(N^{1-c}).$$

 $\longrightarrow \pi(N) = \#$ primes $\leq N$; Prime Number Theorem: $\pi(N) \sim N/\log N$ Proved by Mauduit & Rivat (2010).

Gelfond problems

1 Thue-Morse does not correlate with the primes:

$$\# \{n < N : n \text{ is prime, } t(n) = +1\} = \frac{1}{2}\pi(N) + O(N^{1-c}).$$

 $\rightarrow \pi(N) = \#$ primes $\leq N$; Prime Number Theorem: $\pi(N) \sim N/\log N$ Proved by Mauduit & Rivat (2010).

2 If $p(x) \in \mathbb{R}[x]$, $p(\mathbb{N}) \subset \mathbb{N}$, then t does not correlate with the values of p:

$$\# \{n < N : t(p(n)) = +1\} = \frac{1}{2}N + O(N^{1-c}).$$

Proved by Mauduit & Rivat (2009) for $p(n) = n^2$ (already known for deg p = 1).

Improved by Drmota, Mauduit & Rivat (2013): $t(n^2)$ is strongly normal, i.e.,

$$\# \left\{ n < N : t((n+i)^2) = \epsilon_i \text{ for } 0 \le i < k \right\} = \frac{1}{2^k} N + O(N^{1-c})$$

for any $k \in \mathbb{N}$ and any $\epsilon_i \in \{+1, -1\}$ for $0 \le i < k$.

For $\deg p \ge 3$ — open problem!

A problem that is not Gelfond's

 \longrightarrow Drmota (2014)

3 Let $\alpha \in \mathbb{R} \setminus \mathbb{Z}$; then

$$\# \{n < N : t(\lfloor n^{\alpha} \rfloor) = +1\} = \frac{1}{2}N + O(N^{1-c}).$$

Proved for $\alpha < 3/2$ by Müllner & Spiegelhofer (2017). Moreover, for such α , $t(\lfloor n^{\alpha} \rfloor)$ is strongly normal.

For $\alpha > 3/2$ — open problem!

A problem that is not Gelfond's

 \longrightarrow Drmota (2014)

3 Let $\alpha \in \mathbb{R} \setminus \mathbb{Z}$; then

$$\# \{n < N : t(\lfloor n^{\alpha} \rfloor) = +1\} = \frac{1}{2}N + O(N^{1-c}).$$

Proved for $\alpha < 3/2$ by Müllner & Spiegelhofer (2017). Moreover, for such α , $t(\lfloor n^{\alpha} \rfloor)$ is strongly normal.

For $\alpha > 3/2$ — open problem!

Question

Fix $k \in \mathbb{N}$. How many k-term arithmetic progressions $n, n+m, \ldots, n+(k-1)m$ contained in $\{0, \ldots, N-1\}$ are there such that t(n+im) = 1 for $0 \le i < k$?

More generally, is it the case that

{ (m,n) : n + im < N and $t(n + im) = \epsilon_i$ for $0 \le i < k$ } $\simeq \frac{N}{(k-1)2^{k+1}}$

for any $\epsilon_i \in \{+1, -1\} \ (0 \le i < k)$?

Problem: Let $A \subset [N]$, $\#A = \alpha N$ and $k \in \mathbb{N}$. How many k-term arithmetic progressions in A? Is there at least one?

 $\longrightarrow [N] := \{0, 1, \dots, N-1\};$ we identify $[N] \simeq \mathbb{Z}/N\mathbb{Z}$ and assume N is prime.

Problem: Let $A \subset [N]$, $\#A = \alpha N$ and $k \in \mathbb{N}$. How many k-term arithmetic progressions in A? Is there at least one?

 $\longrightarrow [N] := \{0, 1, \dots, N-1\};$ we identify $[N] \simeq \mathbb{Z}/N\mathbb{Z}$ and assume N is prime.

Fourier expansion:

$$1_A(n) = \sum_{\xi < N} \hat{1}_A(\xi) e\left(\frac{\xi n}{N}\right), \text{ where } \hat{1}_A(\xi) = \mathop{\mathbb{E}}_{n < N} 1_A(n) e\left(\frac{-\xi n}{N}\right)$$

Note that $\hat{1}_A(0) = \alpha$.

Problem: Let $A \subset [N]$, $\#A = \alpha N$ and $k \in \mathbb{N}$. How many k-term arithmetic progressions in A? Is there at least one?

 $\longrightarrow [N] := \{0, 1, \dots, N-1\};$ we identify $[N] \simeq \mathbb{Z}/N\mathbb{Z}$ and assume N is prime.

Fourier expansion:

$$1_A(n) = \sum_{\xi < N} \hat{1}_A(\xi) e\left(\frac{\xi n}{N}\right), \text{ where } \hat{1}_A(\xi) = \mathop{\mathbb{E}}_{n < N} 1_A(n) e\left(\frac{-\xi n}{N}\right)$$

Note that $\hat{1}_A(0) = \alpha$.

Motto: A is random $\iff \hat{1}_A(\xi)$ are small for $\xi \neq 0$.

Lemma

Suppose that $|\hat{1}_A(\xi)| < \varepsilon$ for all $\xi \neq 0$. Then

$$\#\{(n,m)\in [N]^2 : n, n+m, n+2m \in A\} = \frac{\alpha^3}{4}N^2 + O(\varepsilon N^2).$$

Problem: Let $A \subset [N]$, $\#A = \alpha N$ and $k \in \mathbb{N}$. How many k-term arithmetic progressions in A? Is there at least one?

 $\longrightarrow [N] := \{0, 1, \dots, N-1\};$ we identify $[N] \simeq \mathbb{Z}/N\mathbb{Z}$ and assume N is prime.

Fourier expansion:

$$1_A(n) = \sum_{\xi < N} \hat{1}_A(\xi) e\left(\frac{\xi n}{N}\right), \text{ where } \hat{1}_A(\xi) = \mathop{\mathbb{E}}_{n < N} 1_A(n) e\left(\frac{-\xi n}{N}\right)$$

Note that $\hat{1}_A(0) = \alpha$.

Motto: A is random $\iff \hat{1}_A(\xi)$ are small for $\xi \neq 0$.

Lemma

Suppose that $|\hat{1}_A(\xi)| < \varepsilon$ for all $\xi \neq 0$. Then

$$\#\{(n,m)\in [N]^2 : n, n+m, n+2m \in A\} = \frac{\alpha^3}{4}N^2 + O(\varepsilon N^2).$$

Corollary: The number of 3-term APs in $\{n \in [N] : t(n) = +1\}$ is $\sim N^2/32$.

4日 > 4日 > 4日 > 4目 > 4目 > 目 のQで 6/22

Fact (Fourier analysis is not enough)

There exist $A \subset [N]$, $\#A = \alpha N$ such that $\hat{1}_A(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4-term APs in A is not $\simeq \alpha^4 N^2/6$ (like for a random set).

Example: $A = \{n \in [N] : 0 \le \{n^2\sqrt{2}\} < \alpha\}. \longrightarrow \{x\} = x - \lfloor x \rfloor$

Fact (Fourier analysis is not enough)

There exist $A \subset [N]$, $\#A = \alpha N$ such that $\hat{1}_A(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4-term APs in A is not $\simeq \alpha^4 N^2/6$ (like for a random set).

Example: $A = \left\{ n \in [N] : 0 \le \left\{ n^2 \sqrt{2} \right\} < \alpha \right\}. \longrightarrow \left\{ x \right\} = x - \lfloor x \rfloor$

Higher order Fourier analysis

Fact (Fourier analysis is not enough)

There exist $A \subset [N]$, $\#A = \alpha N$ such that $\hat{1}_A(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4-term APs in A is not $\simeq \alpha^4 N^2/6$ (like for a random set).

Example: $A = \{n \in [N] : 0 \le \{n^2\sqrt{2}\} < \alpha\}. \longrightarrow \{x\} = x - \lfloor x \rfloor$

Higher order Fourier analysis

Definition (Gowers norm)

Fix $s \ge 1$. Let $f : [N] \to \mathbb{R}$. Then $||f||_{U^s[N]} \ge 0$ is defined by:

$$||f||_{U^{s}[N]}^{2^{s}} = \mathbb{E}\prod_{\mathbf{n}} \prod_{\omega \in \{0,1\}^{s}} f(n_{0} + \omega_{1}n_{1} + \dots \omega_{s}n_{s}),$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n} = (n_0, \ldots, n_s) \in \mathbb{Z}^{s+1}$ such that $n_0 + \omega_1 n_1 + \ldots \omega_s n_s \in [N]$ for all $\omega \in \{0, 1\}^s$.

 \longrightarrow for \mathbb{C} -valued functions: conjugate the terms with $\omega_1 + \omega_2 + \cdots + \omega_s$ odd

Fact (Fourier analysis is not enough)

There exist $A \subset [N]$, $\#A = \alpha N$ such that $\hat{1}_A(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4-term APs in A is not $\simeq \alpha^4 N^2/6$ (like for a random set).

Example: $A = \{n \in [N] : 0 \le \{n^2\sqrt{2}\} < \alpha\}. \longrightarrow \{x\} = x - \lfloor x \rfloor$

Higher order Fourier analysis

Definition (Gowers norm)

Fix $s \ge 1$. Let $f \colon [N] \to \mathbb{R}$. Then $\|f\|_{U^s[N]} \ge 0$ is defined by:

$$||f||_{U^{s}[N]}^{2^{s}} = \mathbb{E}\prod_{\mathbf{n}}\prod_{\omega\in\{0,1\}^{s}} f(n_{0}+\omega_{1}n_{1}+\ldots\omega_{s}n_{s}),$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n} = (n_0, \ldots, n_s) \in \mathbb{Z}^{s+1}$ such that $n_0 + \omega_1 n_1 + \ldots \omega_s n_s \in [N]$ for all $\omega \in \{0, 1\}^s$.

 \longrightarrow for \mathbb{C} -valued functions: conjugate the terms with $\omega_1 + \omega_2 + \cdots + \omega_s$ odd

Motto: A is uniform of order $s \iff ||1_A - \alpha 1_{[N]}||_{U^s[N]}$ is small

7/22

Facts:

- **0** $||f||_{U^s[N]}$ is well-defined for $s \ge 1$, i.e., the average on the RHS is ≥ 0
- **3** $||f||_{U^1[N]} \ll ||f||_{U^2[N]} \ll ||f||_{U^3[N]} \ll \dots$

Facts:

- ${\color{black} 0} ~ \|f\|_{U^s[N]}$ is well-defined for $s \geq 1,$ i.e., the average on the RHS is ≥ 0
- **3** $||f||_{U^1[N]} \ll ||f||_{U^2[N]} \ll ||f||_{U^3[N]} \ll \dots$
- $\|f + g\|_{U^s[N]} \le \|f\|_{U^s[N]} + \|g\|_{U^s[N]}$

Example

If
$$p \in \mathbb{R}[x]$$
, $f(n) = e(p(n))$, deg $p = s$ then $||f||_{U^s[N]} \simeq 0$ but $||f||_{U^{s+1}[N]} = 1$.
 \longrightarrow assume here that the leading coefficient of p is reasonable

Facts:

- ${\color{black} 0} ~ \|f\|_{U^s[N]}$ is well-defined for $s \geq 1,$ i.e., the average on the RHS is ≥ 0
- **3** $||f||_{U^1[N]} \ll ||f||_{U^2[N]} \ll ||f||_{U^3[N]} \ll \dots$
- $\|f+g\|_{U^{s}[N]} \leq \|f\|_{U^{s}[N]} + \|g\|_{U^{s}[N]}$

Example

If $p \in \mathbb{R}[x]$, f(n) = e(p(n)), deg p = s then $||f||_{U^s[N]} \simeq 0$ but $||f||_{U^{s+1}[N]} = 1$. \longrightarrow assume here that the leading coefficient of p is reasonable

Theorem (Generalised von Neumann Theorem)

Fix $s \ge 1$. If $A \subset [N]$, $\#A = \alpha N$ and $\|1_A - \alpha 1_{[N]}\|_{U^s[N]} \le \varepsilon$, then A contains as many (s+1)-term APs as a random set of the same size, up to an error of size ε :

$$\#\{(n,m) \in [N]^2 : n, n+m, \dots, n+sm \in A\} = \alpha^s N^2/2s + O(\varepsilon N^2).$$

Gowers uniform sequences

Let μ denote the Möbius function

$$\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 \dots p_k \text{ where } p_1, \dots, p_k \text{ are distinct primes,} \\ 0 & \text{if } n \text{ is divisible by a square.} \end{cases}$$

Recall that μ is *multiplicative*, meaning that $\mu(mn) = \mu(m)\mu(n)$ if gcd(m, n) = 1.

Gowers uniform sequences

Let μ denote the Möbius function

 $\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 \dots p_k \text{ where } p_1, \dots, p_k \text{ are distinct primes,} \\ 0 & \text{if } n \text{ is divisible by a square.} \end{cases}$

Recall that μ is *multiplicative*, meaning that $\mu(mn) = \mu(m)\mu(n)$ if gcd(m, n) = 1.

Theorem (Green & Tao (2008+2012))

Fix $s \ge 2$. The Möbius function is Gowers uniform of order s:

 $\|\mu\|_{U^s[N]} \to 0 \text{ as } N \to \infty.$

Hence, the primes contain many arithmetic progressions of length s + 1. \rightarrow Vast over-simplification, quantitative bounds needed and "hence" is an Annals paper!

Gowers uniform sequences

Let μ denote the Möbius function

 $\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 \dots p_k \text{ where } p_1, \dots, p_k \text{ are distinct primes,} \\ 0 & \text{if } n \text{ is divisible by a square.} \end{cases}$

Recall that μ is *multiplicative*, meaning that $\mu(mn) = \mu(m)\mu(n)$ if gcd(m, n) = 1.

Theorem (Green & Tao (2008+2012))

Fix $s \ge 2$. The Möbius function is Gowers uniform of order s:

 $\|\mu\|_{U^s[N]} \to 0 \text{ as } N \to \infty.$

Hence, the primes contain many arithmetic progressions of length s + 1. \rightarrow Vast over-simplification, quantitative bounds needed and "hence" is an Annals paper!

Theorem (Frantzikinakis & Host (2017)) Let ν be a (bounded) multiplicative function and $s \ge 2$. Then $\|\nu\|_{U^s[N]} \to 0$ as $N \to \infty$ if and only if $\|\nu\|_{U^2[N]} \to 0$ as $N \to \infty$.

9/22

Higher order Fourier analysis meets Thue–Morse

Recall: $t(n) = \begin{cases} +1 \text{ if the sum of binary digits of } n \text{ is even,} \\ -1 \text{ if the sum of binary digits of } n \text{ is odd.} \end{cases}$

Higher order Fourier analysis meets Thue–Morse

Recall: $t(n) = \begin{cases} +1 \text{ if the sum of binary digits of } n \text{ is even,} \\ -1 \text{ if the sum of binary digits of } n \text{ is odd.} \end{cases}$

Theorem (K.)

Fix $s \ge 1$. There exists $c = c_s > 0$ such that $||t||_{U^s[N]} \ll N^{-c}$.

Key ideas: Write a recursive formula for $||t||_{U^{s}[2^{L}]}^{2^{s}}$.

Higher order Fourier analysis meets Thue–Morse

Recall: $t(n) = \begin{cases} +1 \text{ if the sum of binary digits of } n \text{ is even,} \\ -1 \text{ if the sum of binary digits of } n \text{ is odd.} \end{cases}$

Theorem (K.)

Fix $s \ge 1$. There exists $c = c_s > 0$ such that $||t||_{U^s[N]} \ll N^{-c}$.

Key ideas: Write a recursive formula for $||t||_{U^s[2^L]}^{2^s}$.

Corollary

Fix $s \ge 1$ and let $c = c_s$ be as above. Then for any $\epsilon_i \in \{+1, -1\}, (0 \le i \le s)$

 $\#\{(n,m) : n + im < N \text{ and } t(n + im) = \epsilon_i \text{ for } 0 \le i \le s\} = \frac{N^2}{2^{s+2}s} + O(N^{2-c}).$

In particular, the number of (s + 1)-term arithmetic progressions contained in the set $\{n < N : t(n) = +1\}$ is $N^2/2^{s+2}s + O(N^{2-c})$.

Higher order Fourier analysis meets k-multiplicative sequences

Definition

Fix $k \geq 2$. A sequence $f \colon \mathbb{N} \to \mathbb{C}$ is k-multiplicative if

f(n+m) = f(n)f(m) for all $n, m \ge 0$ such that $m < k^i, k^i | n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

11/22

Higher order Fourier analysis meets k-multiplicative sequences

Definition

Fix $k \geq 2$. A sequence $f \colon \mathbb{N} \to \mathbb{C}$ is k-multiplicative if

f(n+m) = f(n)f(m) for all $n, m \ge 0$ such that $m < k^i, k^i | n$.

Example

Recall that t(n) is 2-multiplicative. More generally: Let

 $s_k(n) =$ sum of digits of digits of n in base k.

Then $e(\alpha s_k(n))$ is k-multiplicative for any $\alpha \in \mathbb{R}$.

 $\longrightarrow e(\theta) = e^{2\pi i \theta}$

Higher order Fourier analysis meets k-multiplicative sequences

Definition

Fix $k \geq 2$. A sequence $f \colon \mathbb{N} \to \mathbb{C}$ is k-multiplicative if

f(n+m) = f(n)f(m) for all $n, m \ge 0$ such that $m < k^i, k^i | n$.

Example

Recall that t(n) is 2-multiplicative. More generally: Let

 $s_k(n) =$ sum of digits of digits of n in base k.

Then $e(\alpha s_k(n))$ is k-multiplicative for any $\alpha \in \mathbb{R}$.

 $\longrightarrow e(\theta) = e^{2\pi i \theta}$

Theorem (Fan & K.)

Let f be a (bounded) k-multiplicative function and $s \ge 2$. Then

 $\|f\|_{U^s[N]} \to 0 \text{ as } N \to \infty \text{ if and only if } \|f\|_{U^2[N]} \to 0 \text{ as } N \to \infty.$

> ◆□ → < 部 → < 書 → < 書 → 書 → ○ < ? 12 / 22

1 Explicit formula:

 $r(n) = \begin{cases} -1 \text{ if } 11 \text{ appears an odd number of times in the binary expansion of } n, \\ +1 \text{ if } 11 \text{ appears an even number of times in the binary expansion of } n. \end{cases}$

1 Explicit formula:

 $r(n) = \begin{cases} -1 \text{ if } 11 \text{ appears an odd number of times in the binary expansion of } n, \\ +1 \text{ if } 11 \text{ appears an even number of times in the binary expansion of } n. \end{cases}$

12/22

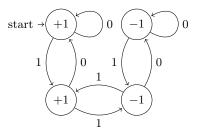
2 Recurrence: r(0) = +1, r(2n) = r(n), $r(2n+1) = (-1)^n r(n)$.

1 Explicit formula:

 $r(n) = \begin{cases} -1 \text{ if } 11 \text{ appears an odd number of times in the binary expansion of } n, \\ +1 \text{ if } 11 \text{ appears an even number of times in the binary expansion of } n. \end{cases}$

2 Recurrence: r(0) = +1, r(2n) = r(n), $r(2n+1) = (-1)^n r(n)$.

3 Automaton:

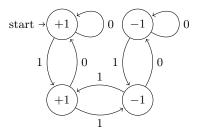


1 Explicit formula:

 $r(n) = \begin{cases} -1 \text{ if } 11 \text{ appears an odd number of times in the binary expansion of } n, \\ +1 \text{ if } 11 \text{ appears an even number of times in the binary expansion of } n. \end{cases}$

2 Recurrence: r(0) = +1, r(2n) = r(n), $r(2n+1) = (-1)^n r(n)$.

3 Automaton:



Theorem (K.)

Fix $s \ge 1$. There exists $c = c_s > 0$ such that $||r||_{U^s[N]} \ll N^{-c}$.

Automatic sequences

A sequence $f \colon \mathbb{N}_0 \to \Omega$ is k-automatic if and only if...

1 ... it is produced by a finite k-automaton $\mathcal{A} = (S, s_0, \delta, \tau)$.

- S a finite set of states, s₀ ∈ S initial state;
 δ: S × [k] → S transition function; uniquely extending to a map δ: S × [k]* → S such that δ(s, uv) = δ(δ(s, u), v) for all u, v ∈ [k]*; → [k]* = words over the alphabet [k] = {0,...,k-1}
- ▶ $\tau: S \to \Omega$ output function.

 \mathcal{A} computes the sequence $f_{\mathcal{A}}(n) := \tau(\delta(s, (n)_k))$. $\longrightarrow (n)_k = \text{digits of } n \text{ in base } k$

2... it is given by a base k recurrence, i.e., the k-kernel $\mathcal{N}_k(f)$ is finite, where

$$\mathcal{N}_k(f) = \left\{ f(k^t n + r) : t \in \mathbb{N}, \ 0 \le r < k^t \right\}.$$

0 ... it is the letter-to-letter coding of a fixed point of a k-uniform morphism on the monoid of words over some finite alphabet.

Automatic sequences

A sequence $f \colon \mathbb{N}_0 \to \Omega$ is k-automatic if and only if...

1 ... it is produced by a finite k-automaton $\mathcal{A} = (S, s_0, \delta, \tau)$.

S — a finite set of states, s₀ ∈ S — initial state;
δ: S × [k] → S — transition function; uniquely extending to a map δ: S × [k]* → S such that δ(s, uv) = δ(δ(s, u), v) for all u, v ∈ [k]*; → [k]* = words over the alphabet [k] = {0,...,k-1}

▶ $\tau: S \to \Omega$ — output function.

 \mathcal{A} computes the sequence $f_{\mathcal{A}}(n) := \tau(\delta(s, (n)_k))$. $\longrightarrow (n)_k = \text{digits of } n \text{ in base } k$

2... it is given by a base k recurrence, i.e., the k-kernel $\mathcal{N}_k(f)$ is finite, where

$$\mathcal{N}_k(f) = \{ f(k^t n + r) : t \in \mathbb{N}, \ 0 \le r < k^t \}.$$

0 ... it is the letter-to-letter coding of a fixed point of a k-uniform morphism on the monoid of words over some finite alphabet.

Motto: Automatic \iff Computable by a finite device.

Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform? If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform? If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:

- $\bullet \text{ slowly varying sequences like } \lfloor \log_2(n) \rfloor \mod 2;$
- 2 periodic sequences like $n \mod 3$;
- \Im almost periodic sequences like $\nu_2(n) \mod 2$.

Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform? If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:

- **1** slowly varying sequences like $\lfloor \log_2(n) \rfloor \mod 2$;
- 2 periodic sequences like $n \mod 3$;
- \Im almost periodic sequences like $\nu_2(n) \mod 2$.

Conjecture (Byszewski, K. & Müllner)

Any k-automatic sequence has a decomposition $a = a_{str} + a_{uni}$, where

$$||a_{\text{uni}}||_{U^s[N]} \ll N^{-c_s}$$

for any $s \ge 1$, and $a_{\rm str}$ is a "combination of sequences of the above type".

Obstructions to Gowers uniformity

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Fix $s\geq 1.$ Let $f\colon [N]\to \mathbb{C}$ be a 1-bounded sequence. Then the following conditions are equivalent:

(1)

 $||f||_{U^s[N]} \ge \delta$ for certain $\delta > 0$.

(2) there exists a 1-bounded (s-1)-step nilsequence φ with complexity $\leq C$ s. t.

 $\mathop{\mathbb{E}}_{n < N} f(n)\varphi(n) \geq \eta \text{ for certain } \eta > 0.$

More precisely, if (1) holds for a given value of δ then there exist C and η , dependent on δ and s only (but not on N and f), such that (2) holds. Conversely, if (2) holds for given values of C and η then there exists δ , dependent on C, η and s (but not on N and f), such that (1) holds.

 \rightarrow Strictly speaking, Inverse Theorem is (1) \Rightarrow (2); the implication (2) \Rightarrow (1) is "easy".

Obstructions to Gowers uniformity

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Fix $s \ge 1$. Let $f : [N] \to \mathbb{C}$ be a 1-bounded sequence. Then the following conditions are equivalent:

(1)

 $||f||_{U^s[N]} \ge \delta$ for certain $\delta > 0$.

(2) there exists a 1-bounded (s-1)-step nilsequence φ with complexity $\leq C$ s. t.

 $\mathop{\mathbb{E}}_{n < N} f(n)\varphi(n) \ge \eta \text{ for certain } \eta > 0.$

More precisely, if (1) holds for a given value of δ then there exist C and η , dependent on δ and s only (but not on N and f), such that (2) holds. Conversely, if (2) holds for given values of C and η then there exists δ , dependent on C, η and s (but not on N and f), such that (1) holds.

 \rightarrow Strictly speaking, Inverse Theorem is (1) \Rightarrow (2); the implication (2) \Rightarrow (1) is "easy".

Motto: Obstructions to uniformity \iff Nilsequences (of bounded complexity).

Definition

A nilsequence $g: \mathbb{N} \to \mathbb{R}$ is a sequence such that there exists a nilsystem (X, T), a point $x_0 \in X$ and a continuous map $F: X \to \mathbb{R}$ such that $g(n) = F(T^n x_0)$.

Definition

A nilsequence $g: \mathbb{N} \to \mathbb{R}$ is a sequence such that there exists a nilsystem (X, T), a point $x_0 \in X$ and a continuous map $F: X \to \mathbb{R}$ such that $g(n) = F(T^n x_0)$.

Definition

The generalised polynomial maps $\mathbb{Z} \to \mathbb{R}$ (denoted GP) are the smallest family such that $\mathbb{R}[x] \subset \text{GP}$ and if $g, h \in \text{GP}$ then also $g + h \in \text{GP}$, $g \cdot h \in \text{GP}$, $\lfloor g \rfloor \in \text{GP}$. \longrightarrow we use the convention $\lfloor g \rfloor(n) = \lfloor g(n) \rfloor$

Example: $f(n) = \{\sqrt{3}\lfloor\sqrt{2}n^2 + 1/7\rfloor^2 + n\lfloor n^3 + \pi\rfloor\}.$

Definition

A nilsequence $g: \mathbb{N} \to \mathbb{R}$ is a sequence such that there exists a nilsystem (X, T), a point $x_0 \in X$ and a continuous map $F: X \to \mathbb{R}$ such that $g(n) = F(T^n x_0)$.

Definition

The generalised polynomial maps $\mathbb{Z} \to \mathbb{R}$ (denoted GP) are the smallest family such that $\mathbb{R}[x] \subset \text{GP}$ and if $g, h \in \text{GP}$ then also $g + h \in \text{GP}$, $g \cdot h \in \text{GP}$, $\lfloor g \rfloor \in \text{GP}$. \longrightarrow we use the convention $\lfloor g \rfloor(n) = \lfloor g(n) \rfloor$

Example: $f(n) = \{\sqrt{3}\lfloor\sqrt{2}n^2 + 1/7\rfloor^2 + n\lfloor n^3 + \pi\rfloor\}.$

Theorem (Bergelson & Leibman (2007))

A bounded sequence $g: \mathbb{Z} \to \mathbb{R}$ is a generalised polynomial if and only if there exists a nilsystem (X,T), a point $x_0 \in X$ and a piecewise polynomial map $F: X \to \mathbb{R}$ such that $g(n) = F(T^n x_0)$. \longrightarrow Again, we over-simplify!

Definition

A nilsequence $g: \mathbb{N} \to \mathbb{R}$ is a sequence such that there exists a nilsystem (X, T), a point $x_0 \in X$ and a continuous map $F: X \to \mathbb{R}$ such that $g(n) = F(T^n x_0)$.

Definition

The generalised polynomial maps $\mathbb{Z} \to \mathbb{R}$ (denoted GP) are the smallest family such that $\mathbb{R}[x] \subset \text{GP}$ and if $g, h \in \text{GP}$ then also $g + h \in \text{GP}$, $g \cdot h \in \text{GP}$, $\lfloor g \rfloor \in \text{GP}$. \longrightarrow we use the convention $\lfloor g \rfloor(n) = \lfloor g(n) \rfloor$

Example: $f(n) = \{\sqrt{3}\lfloor\sqrt{2}n^2 + 1/7\rfloor^2 + n\lfloor n^3 + \pi\rfloor\}.$

Theorem (Bergelson & Leibman (2007))

A bounded sequence $g: \mathbb{Z} \to \mathbb{R}$ is a generalised polynomial if and only if there exists a nilsystem (X,T), a point $x_0 \in X$ and a piecewise polynomial map $F: X \to \mathbb{R}$ such that $g(n) = F(T^n x_0)$. \longrightarrow Again, we over-simplify!

Motto: Obstructions to uniformity \iff Nilsequences \iff Generalised polynomials.

Can generalised polynomials be automatic?

Question

If f is both k-automatic and generalised polynomial, must f be ultimately periodic?

イロト イロト イヨト イヨト 三日

 \longrightarrow A close cousin of previously mentioned question, but neither implies the other.

Can generalised polynomials be automatic?

Question

If f is both k-automatic and generalised polynomial, must f be ultimately periodic?

 \longrightarrow A close cousin of previously mentioned question, but neither implies the other.

Proposition (Allouche & Shallit (2003))

The sequence $f(n) = \lfloor \alpha n + \beta \rfloor \mod m$ is automatic iff $\alpha \in \mathbb{Q}$. $(\alpha, \beta \in \mathbb{R}, m \in \mathbb{N}_{\geq 2})$

Can generalised polynomials be automatic?

Question

If f is both k-automatic and generalised polynomial, must f be ultimately periodic?

 \longrightarrow A close cousin of previously mentioned question, but neither implies the other.

Proposition (Allouche & Shallit (2003))

The sequence $f(n) = \lfloor \alpha n + \beta \rfloor \mod m$ is automatic iff $\alpha \in \mathbb{Q}$. $(\alpha, \beta \in \mathbb{R}, m \in \mathbb{N}_{\geq 2})$

Ideas from Allouche & Shallit (implicit: circle rotation by α) combined with Bergelson & Leibman representation (rotations on nilmanifolds) lead to:

Proposition (Byszewski & K.)

If f is both k-automatic and generalised polynomial, then there exists a periodic sequence p and a set $Z \subset \mathbb{N}$ with $d^*(Z) = 0$ such that f(n) = p(n) for all $n \in \mathbb{N} \setminus Z$.

 $\longrightarrow d^*$ is the Banach density: $d^*(A) = \limsup_{N \to \infty} \max_M \frac{\#A \cap [M, M+N)}{N}$.

A set $A \subset \mathbb{N}$ is GP, k-automatic, etc. iff the sequence 1_A is GP, k-automatic, etc.

A set $A \subset \mathbb{N}$ is GP, k-automatic, etc. iff the sequence 1_A is GP, k-automatic, etc.

Example

- **①** The set of Fibonacci numbers $\{1, 2, 3, 5, 8, 13, \dots\}$ is GP;
- **2** The set of 'Tribonacci' numbers is GP $(T_{i+3} = T_{i+2} + T_{i+1} + T_i);$
- **③** Nothing is known for linear recursive sequences of order ≥ 4 .

A set $A \subset \mathbb{N}$ is GP, k-automatic, etc. iff the sequence 1_A is GP, k-automatic, etc.

Example

- **①** The set of Fibonacci numbers $\{1, 2, 3, 5, 8, 13, ...\}$ is GP;
- **2** The set of 'Tribonacci' numbers is GP $(T_{i+3} = T_{i+2} + T_{i+1} + T_i);$
- **3** Nothing is known for linear recursive sequences of order ≥ 4 .

Proposition

If
$$A = \{a_1, a_2, \dots\} \subset \mathbb{N}$$
 and $\liminf_{i \to \infty} \frac{\log a_{i+1}}{\log a_i} > 1$, then A is GP.

A set $A \subset \mathbb{N}$ is GP, k-automatic, etc. iff the sequence 1_A is GP, k-automatic, etc.

Example

- **①** The set of Fibonacci numbers $\{1, 2, 3, 5, 8, 13, ...\}$ is GP;
- **2** The set of 'Tribonacci' numbers is GP $(T_{i+3} = T_{i+2} + T_{i+1} + T_i);$
- **③** Nothing is known for linear recursive sequences of order ≥ 4 .

Proposition

If
$$A = \{a_1, a_2, \dots\} \subset \mathbb{N}$$
 and $\liminf_{i \to \infty} \frac{\log a_{i+1}}{\log a_i} > 1$, then A is GP.

Theorem (Byszewski & K.)

Fix $k \geq 2$. Then, one of the following holds:

1 Any k-automatic generalised polynomial sequence is eventually periodic;

2 The characteristic function of the set $\{k^i : i \in \mathbb{N}\}$ is a generalised polynomial.

A set $A \subset \mathbb{N}$ is GP, k-automatic, etc. iff the sequence 1_A is GP, k-automatic, etc.

Example

- **①** The set of Fibonacci numbers $\{1, 2, 3, 5, 8, 13, ...\}$ is GP;
- **2** The set of 'Tribonacci' numbers is GP $(T_{i+3} = T_{i+2} + T_{i+1} + T_i);$
- **③** Nothing is known for linear recursive sequences of order ≥ 4 .

Proposition

If
$$A = \{a_1, a_2, \dots\} \subset \mathbb{N}$$
 and $\liminf_{i \to \infty} \frac{\log a_{i+1}}{\log a_i} > 1$, then A is GP.

Theorem (Byszewski & K.)

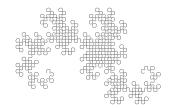
Fix $k \geq 2$. Then, one of the following holds:

1 Any k-automatic generalised polynomial sequence is eventually periodic;

2 The characteristic function of the set $\{k^i : i \in \mathbb{N}\}$ is a generalised polynomial.

Question: Which is it?

THANK YOU FOR YOUR ATTENTION!



Bibliography I

- Jean-Paul Allouche and Jeffrey Shallit. The ring of k-regular sequences. II. Theoret. Comput. Sci., 307(1):3–29, 2003.
- Vitaly Bergelson and Alexander Leibman. Distribution of values of bounded generalized polynomials. *Acta Math.*, 198(2):155–230, 2007.
- Jakub Byszewski and Jakub Konieczny.
 - Factors of generalised polynomials and automatic sequences. Indag. Math. (N.S.), 29(3):981–985, 2018.
 - Jakub Byszewski and Jakub Konieczny. Sparse generalised polynomials. Trans. Amer. Math. Soc., 370(11):8081–8109, 2018.

Michael Drmota.

Subsequences of automatic sequences and uniform distribution.

In Uniform distribution and quasi-Monte Carlo methods, volume 15 of Radon Ser. Comput. Appl. Math., pages 87–104. De Gruyter, Berlin, 2014.

Bibliography II

Nikos Frantzikinakis and Bernard Host.

Higher order Fourier analysis of multiplicative functions and applications. J. Amer. Math. Soc., 30(1):67-157, 2017.

A. O. Gel'fond.

Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith., 13:259–265, 1967/1968.

Ben Green and Terence Tao.

The primes contain arbitrarily long arithmetic progressions. Ann. of Math. (2), 167(2):481-547, 2008.

Ben Green and Terence Tao.

The Möbius function is strongly orthogonal to nilsequences. Ann. of Math. (2), 175(2):541-566, 2012.

Ben Green, Terence Tao, and Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$ -norm. Ann. of Math. (2), 176(2):1231–1372, 2012.

Bibliography III

Christian Mauduit and Joël Rivat.

Sur un problème de Gelfond: la somme des chiffres des nombres premiers. Ann. of Math. (2), 171(3):1591–1646, 2010.

Christian Mauduit and András Sárközy.

On finite pseudorandom binary sequences. II. The Champernowne, Rudin-Shapiro, and Thue-Morse sequences, a further construction.

イロト イヨト イヨト イヨト 三日

J. Number Theory, 73(2):256-276, 1998.

Clemens Müllner and Lukas Spiegelhofer.

Normality of the Thue-Morse sequence along Piatetski-Shapiro sequences, II. Israel J. Math., 220(2):691–738, 2017.