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Thue–Morse(–Prouhet) sequence t : N→ {+1,−1}

+−−+−++−−++−+−−+−++−+−−++−−+−++− . . .

The Thue–Morse sequence (discovered by Prouhet) can be seen in many ways:
1 Explicit formula:

t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),
−1 if n is odious (i.e., sum of binary digits is odd).

2 Recurrence:
t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

3 Automatic sequence:

+1start −1

0 0

1

1

4 2-Multiplicative sequence: t(2j) = −1 for all j, and

t(n+m) = t(n)t(m)

if digits of n and m do not overlap, i.e., 2i | n and m < 2i for some i.
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Uniformity of Thue–Morse (1/3)

Question (Mauduit & Sarközy (1998))

Is the Thue–Morse sequence uniform/pseudorandom in some meaningful sense?

No! At least in some ways.
1 Linear subword complexity: #

{
w ∈ {+1,−1}l : w appears in t

}
= O(l).

2 # {n < N : t(n) = t(n+ 1)} ' N/3 6= N/2. −→ t(n) = t(n+ 1) iff 2 - ν2(n+ 1)

3 # {n < N : t(n) = t(n+ 1) = t(n+ 2)} = 0. −→ in general: t is cube-free

But in other ways: Yes!

1 E
n<N

t(n) = O(1/N) (not very hard). −→ E
n<N

is shorthand for
1

N

N−1∑
n=0

2 E
n<N

t(an+ b) = O(N−c) with c > 0. −→ Gelfond (1968)

3 sup
α∈R

∣∣∣∣ E
n<N

t(n)e(nα)

∣∣∣∣ = O(N−c) with c > 0. −→ shorthand: e(θ) = e2πiθ
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Uniformity of Thue–Morse (2/3)
Gelfond problems

1 Thue-Morse does not correlate with the primes:

# {n < N : n is prime, t(n) = +1} =
1

2
π(N) +O(N1−c).

−→ π(N) = # primes ≤ N ; Prime Number Theorem: π(N) ∼ N/ logN
Proved by Mauduit & Rivat (2010).

2 If p(x) ∈ R[x], p(N) ⊂ N, then t does not correlate with the values of p:

# {n < N : t(p(n)) = +1} =
1

2
N +O(N1−c).

Proved by Mauduit & Rivat (2009) for p(n) = n2 (already known for deg p = 1).

Improved by Drmota, Mauduit & Rivat (2013): t(n2) is strongly normal, i.e.,

#
{
n < N : t((n+ i)2) = εi for 0 ≤ i < k

}
=

1

2k
N +O(N1−c)

for any k ∈ N and any εi ∈ {+1,−1} for 0 ≤ i < k.

For deg p ≥ 3 — open problem!
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Uniformity of Thue–Morse (3/3)
A problem that is not Gelfond’s −→ Drmota (2014)

3 Let α ∈ R \ Z; then

# {n < N : t(bnαc) = +1} =
1

2
N +O(N1−c).

Proved for α < 3/2 by Müllner & Spiegelhofer (2017).
Moreover, for such α, t(bnαc) is strongly normal.

For α > 3/2 — open problem!

Question
Fix k ∈ N. How many k-term arithmetic progressions n, n+m, . . . , n+ (k − 1)m
contained in {0, . . . , N − 1} are there such that t(n+ im) = 1 for 0 ≤ i < k?

More generally, is it the case that

#
{

(m,n) : n+ im < N and t(n+ im) = εi for 0 ≤ i < k
}
' N

(k − 1)2k+1

for any εi ∈ {+1,−1} (0 ≤ i < k)?
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Fourier analysis: first glance

Problem: Let A ⊂ [N ], #A = αN and k ∈ N. How many k-term arithmetic
progressions in A? Is there at least one?
−→ [N ] := {0, 1, . . . , N − 1}; we identify [N ] ' Z/NZ and assume N is prime.

Fourier expansion:

1A(n) =
∑
ξ<N

1̂A(ξ)e

(
ξn

N

)
, where 1̂A(ξ) = E

n<N

1A(n)e

(
−ξn
N

)

Note that 1̂A(0) = α.

Motto: A is random ⇐⇒ 1̂A(ξ) are small for ξ 6= 0.

Lemma

Suppose that
∣∣1̂A(ξ)

∣∣ < ε for all ξ 6= 0. Then

#
{

(n,m) ∈ [N ]2 : n, n+m,n+ 2m ∈ A
}

=
α3

4
N2 +O(εN2).

Corollary: The number of 3-term APs in {n ∈ [N ] : t(n) = +1} is ∼ N2/32.

6 / 22



Fourier analysis: first glance

Problem: Let A ⊂ [N ], #A = αN and k ∈ N. How many k-term arithmetic
progressions in A? Is there at least one?
−→ [N ] := {0, 1, . . . , N − 1}; we identify [N ] ' Z/NZ and assume N is prime.

Fourier expansion:

1A(n) =
∑
ξ<N

1̂A(ξ)e

(
ξn

N

)
, where 1̂A(ξ) = E

n<N

1A(n)e

(
−ξn
N

)

Note that 1̂A(0) = α.

Motto: A is random ⇐⇒ 1̂A(ξ) are small for ξ 6= 0.

Lemma

Suppose that
∣∣1̂A(ξ)

∣∣ < ε for all ξ 6= 0. Then

#
{

(n,m) ∈ [N ]2 : n, n+m,n+ 2m ∈ A
}

=
α3

4
N2 +O(εN2).

Corollary: The number of 3-term APs in {n ∈ [N ] : t(n) = +1} is ∼ N2/32.

6 / 22



Fourier analysis: first glance

Problem: Let A ⊂ [N ], #A = αN and k ∈ N. How many k-term arithmetic
progressions in A? Is there at least one?
−→ [N ] := {0, 1, . . . , N − 1}; we identify [N ] ' Z/NZ and assume N is prime.

Fourier expansion:

1A(n) =
∑
ξ<N

1̂A(ξ)e

(
ξn

N

)
, where 1̂A(ξ) = E

n<N

1A(n)e

(
−ξn
N

)

Note that 1̂A(0) = α.

Motto: A is random ⇐⇒ 1̂A(ξ) are small for ξ 6= 0.

Lemma

Suppose that
∣∣1̂A(ξ)

∣∣ < ε for all ξ 6= 0. Then

#
{

(n,m) ∈ [N ]2 : n, n+m,n+ 2m ∈ A
}

=
α3

4
N2 +O(εN2).

Corollary: The number of 3-term APs in {n ∈ [N ] : t(n) = +1} is ∼ N2/32.

6 / 22



Fourier analysis: first glance

Problem: Let A ⊂ [N ], #A = αN and k ∈ N. How many k-term arithmetic
progressions in A? Is there at least one?
−→ [N ] := {0, 1, . . . , N − 1}; we identify [N ] ' Z/NZ and assume N is prime.

Fourier expansion:

1A(n) =
∑
ξ<N

1̂A(ξ)e

(
ξn

N

)
, where 1̂A(ξ) = E

n<N

1A(n)e

(
−ξn
N

)

Note that 1̂A(0) = α.

Motto: A is random ⇐⇒ 1̂A(ξ) are small for ξ 6= 0.

Lemma

Suppose that
∣∣1̂A(ξ)

∣∣ < ε for all ξ 6= 0. Then

#
{

(n,m) ∈ [N ]2 : n, n+m,n+ 2m ∈ A
}

=
α3

4
N2 +O(εN2).

Corollary: The number of 3-term APs in {n ∈ [N ] : t(n) = +1} is ∼ N2/32.

6 / 22



Higher order Fourier analysis (1/2)

Fact (Fourier analysis is not enough)

There exist A ⊂ [N ], #A = αN such that 1̂A(ξ) ' 0 for ξ 6= 0 but the number of
4-term APs in A is not ' α4N2/6 (like for a random set).

Example: A =
{
n ∈ [N ] : 0 ≤

{
n2
√

2
}
< α

}
. −→ {x} = x− bxc

Higher order Fourier analysis

Definition (Gowers norm)

Fix s ≥ 1. Let f : [N ]→ R. Then ‖f‖Us[N ] ≥ 0 is defined by:

‖f‖2
s

Us[N ] = E
n

∏
ω∈{0,1}s

f (n0 + ω1n1 + . . . ωsns) ,

where the average is taken over all parallelepipeds in [N ], i.e., over all
n = (n0, . . . , ns) ∈ Zs+1 such that n0 + ω1n1 + . . . ωsns ∈ [N ] for all ω ∈ {0, 1}s.

−→ for C-valued functions: conjugate the terms with ω1 + ω2 + · · ·+ ωs odd

Motto: A is uniform of order s ⇐⇒ ‖1A − α1[N ]‖Us[N ] is small
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Higher order Fourier analysis (2/2)

Facts:

1 ‖f‖Us[N ] is well-defined for s ≥ 1, i.e., the average on the RHS is ≥ 0

2 ‖f‖U1[N ] = |Enf(n)| and ‖f‖U2[N ]
.
= ‖f̂‖`4 −→ true in Z/NZ rather than [N ]

3 ‖f‖U1[N ] � ‖f‖U2[N ] � ‖f‖U3[N ] � . . .

4 ‖f + g‖Us[N ] ≤ ‖f‖Us[N ] + ‖g‖Us[N ]

Example
If p ∈ R[x], f(n) = e(p(n)), deg p = s then ‖f‖Us[N ] ' 0 but ‖f‖Us+1[N ] = 1.
−→ assume here that the leading coefficient of p is reasonable

Theorem (Generalised von Neumann Theorem)

Fix s ≥ 1. If A ⊂ [N ], #A = αN and ‖1A − α1[N ]‖Us[N ] ≤ ε, then A contains as
many (s+ 1)-term APs as a random set of the same size, up to an error of size ε:

#
{

(n,m) ∈ [N ]2 : n, n+m, . . . , n+ sm ∈ A
}

= αsN2/2s+O(εN2).
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Higher order Fourier analysis (2/2)

Facts:

1 ‖f‖Us[N ] is well-defined for s ≥ 1, i.e., the average on the RHS is ≥ 0

2 ‖f‖U1[N ] = |Enf(n)| and ‖f‖U2[N ]
.
= ‖f̂‖`4 −→ true in Z/NZ rather than [N ]

3 ‖f‖U1[N ] � ‖f‖U2[N ] � ‖f‖U3[N ] � . . .

4 ‖f + g‖Us[N ] ≤ ‖f‖Us[N ] + ‖g‖Us[N ]

Example
If p ∈ R[x], f(n) = e(p(n)), deg p = s then ‖f‖Us[N ] ' 0 but ‖f‖Us+1[N ] = 1.
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Gowers uniform sequences
Let µ denote the Möbius function

µ(n) =

{
(−1)k if n = p1 . . . pk where p1, . . . , pk are distinct primes,
0 if n is divisible by a square.

Recall that µ is multiplicative, meaning that µ(mn) = µ(m)µ(n) if gcd(m,n) = 1.

Theorem (Green & Tao (2008+2012))
Fix s ≥ 2. The Möbius function is Gowers uniform of order s:

‖µ‖Us[N ] → 0 as N →∞.

Hence, the primes contain many arithmetic progressions of length s+ 1.
−→ Vast over-simplification, quantitative bounds needed and “hence” is an Annals paper!

Theorem (Frantzikinakis & Host (2017))

Let ν be a (bounded) multiplicative function and s ≥ 2. Then

‖ν‖Us[N ] → 0 as N →∞ if and only if ‖ν‖U2[N ] → 0 as N →∞.
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Higher order Fourier analysis meets Thue–Morse

Recall: t(n) =

{
+1 if the sum of binary digits of n is even,
−1 if the sum of binary digits of n is odd.

.

Theorem (K.)

Fix s ≥ 1. There exists c = cs > 0 such that ‖t‖Us[N ] � N−c.

Key ideas: Write a recursive formula for ‖t‖2
s

Us[2L].

Corollary
Fix s ≥ 1 and let c = cs be as above. Then for any εi ∈ {+1,−1}, (0 ≤ i ≤ s)

#
{

(n,m) : n+ im < N and t(n+ im) = εi for 0 ≤ i ≤ s
}

=
N2

2s+2s
+O(N2−c).

In particular, the number of (s+ 1)-term arithmetic progressions contained in the set
{n < N : t(n) = +1} is N2/2s+2s+O(N2−c).
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Higher order Fourier analysis meets k-multiplicative sequences

Definition
Fix k ≥ 2. A sequence f : N→ C is k-multiplicative if

f(n+m) = f(n)f(m) for all n,m ≥ 0 such that m < ki, ki|n.

Example
Recall that t(n) is 2-multiplicative. More generally: Let

sk(n) = sum of digits of digits of n in base k.

Then e(αsk(n)) is k-multiplicative for any α ∈ R. −→ e(θ) = e2πiθ

Theorem (Fan & K.)

Let f be a (bounded) k-multiplicative function and s ≥ 2. Then

‖f‖Us[N ] → 0 as N →∞ if and only if ‖f‖U2[N ] → 0 as N →∞.
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Higher order Fourier analysis meets Rudin–Shapiro
Rudin–Shapiro sequence: r : N→ {−1,+1}.

1 Explicit formula:

r(n) =

{
−1 if 11 appears an odd number of times in the binary expansion of n,
+1 if 11 appears an even number of times in the binary expansion of n.

.

2 Recurrence: r(0) = +1, r(2n) = r(n), r(2n+ 1) = (−1)nr(n).
3 Automaton:

+1start

+1 −1

−1

1

1 10 0
1

00

Theorem (K.)

Fix s ≥ 1. There exists c = cs > 0 such that ‖r‖Us[N ] � N−c.
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Automatic sequences

A sequence f : N0 → Ω is k-automatic if and only if. . .

1 . . . it is produced by a finite k-automaton A = (S, s0, δ, τ).
I S — a finite set of states, s0 ∈ S — initial state;
I δ : S × [k]→ S — transition function; uniquely extending to a map
δ : S × [k]∗ → S such that δ(s, uv) = δ(δ(s, u), v) for all u, v ∈ [k]∗;

−→ [k]∗ = words over the alphabet [k] = {0, . . . , k − 1}
I τ : S → Ω — output function.
A computes the sequence fA(n) := τ(δ(s, (n)k). −→ (n)k = digits of n in base k

2 . . . it is given by a base k recurrence, i.e., the k-kernel Nk(f) is finite, where

Nk(f) =
{
f(ktn+ r) : t ∈ N, 0 ≤ r < kt

}
.

3 . . . it is the letter-to-letter coding of a fixed point of a k-uniform morphism on
the monoid of words over some finite alphabet.

Motto: Automatic ⇐⇒ Computable by a finite device.
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Higher order Fourier analysis meets automatic sequences

Question
Which among k-automatic sequences are Gowers uniform?
If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Example
The following sequences are 2-automatic and not Gowers uniform:

1 slowly varying sequences like blog2(n)c mod 2;
2 periodic sequences like n mod 3;
3 almost periodic sequences like ν2(n) mod 2.

Conjecture (Byszewski, K. & Müllner)
Any k-automatic sequence has a decomposition a = astr + auni, where

‖auni‖Us[N ] � N−cs

for any s ≥ 1, and astr is a “combination of sequences of the above type”.
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Obstructions to Gowers uniformity

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Fix s ≥ 1. Let f : [N ]→ C be a 1-bounded sequence. Then the following conditions
are equivalent:

(1)
‖f‖Us[N ] ≥ δ for certain δ > 0.

(2) there exists a 1-bounded (s− 1)-step nilsequence ϕ with complexity ≤ C s. t.

E
n<N

f(n)ϕ(n) ≥ η for certain η > 0.

More precisely, if (1) holds for a given value of δ then there exist C and η, dependent
on δ and s only (but not on N and f), such that (2) holds.
Conversely, if (2) holds for given values of C and η then there exists δ, dependent on
C, η and s (but not on N and f), such that (1) holds.

−→ Strictly speaking, Inverse Theorem is (1) ⇒ (2); the implication (2) ⇒ (1) is “easy”.

Motto: Obstructions to uniformity ⇐⇒ Nilsequences (of bounded complexity).
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What are nilsequences?

Definition
A nilsequence g : N→ R is a sequence such that there exists a nilsystem (X,T ), a
point x0 ∈ X and a continuous map F : X → R such that g(n) = F (Tnx0).

Definition
The generalised polynomial maps Z→ R (denoted GP) are the smallest family such
that R[x] ⊂ GP and if g, h ∈ GP then also g + h ∈ GP, g · h ∈ GP, bgc ∈ GP.
−→ we use the convention bgc(n) = bg(n)c

Example: f(n) = {
√

3b
√

2n2 + 1/7c2 + nbn3 + πc}.

Theorem (Bergelson & Leibman (2007))
A bounded sequence g : Z→ R is a generalised polynomial if and only if there exists a
nilsystem (X,T ), a point x0 ∈ X and a piecewise polynomial map F : X → R such
that g(n) = F (Tnx0). −→ Again, we over-simplify!

Motto: Obstructions to uniformity ⇐⇒ Nilsequences ⇐⇒ Generalised polynomials.
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Can generalised polynomials be automatic?

Question
If f is both k-automatic and generalised polynomial, must f be ultimately periodic?

−→ A close cousin of previously mentioned question, but neither implies the other.

Proposition (Allouche & Shallit (2003))

The sequence f(n) = bαn+ βc mod m is automatic iff α ∈ Q. (α, β ∈ R, m ∈ N≥2)

Ideas from Allouche & Shallit (implicit: circle rotation by α) combined with
Bergelson & Leibman representation (rotations on nilmanifolds) lead to:

Proposition (Byszewski & K.)
If f is both k-automatic and generalised polynomial, then there exists a periodic
sequence p and a set Z ⊂ N with d∗(Z) = 0 such that f(n) = p(n) for all n ∈ N \ Z.

−→ d∗ is the Banach density: d∗(A) = lim sup
N→∞

max
M

#A ∩ [M,M +N)

N
.
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Sparse generalised polynomials
A set A ⊂ N is GP, k-automatic, etc. iff the sequence 1A is GP, k-automatic, etc.

Example
1 The set of Fibonacci numbers {1, 2, 3, 5, 8, 13, . . . } is GP;
2 The set of ‘Tribonacci’ numbers is GP (Ti+3 = Ti+2 + Ti+1 + Ti);
3 Nothing is known for linear recursive sequences of order ≥ 4.

Proposition

If A = {a1, a2, . . . } ⊂ N and lim inf
i→∞

log ai+1

log ai
> 1, then A is GP.

Theorem (Byszewski & K.)
Fix k ≥ 2. Then, one of the following holds:

1 Any k-automatic generalised polynomial sequence is eventually periodic;
2 The characteristic function of the set

{
ki : i ∈ N

}
is a generalised polynomial.

Question: Which is it?
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Thank you for your attention!
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