Uniform distribution mod 1, results and open problems

Jean-Marie De Koninck and Imre Kátai

6th International Conference on Uniform Distribution Theory

October 3, 2018

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

- I. The Vienna conference of 2016
- II. Old and recent results on regularly varying arithmetical functions
- III. The Chowla conjecture and normal numbers
- IV. Remarks on a theorem of Hedi Daboussi

Title : "New approaches in the construction of normal numbers"

available at :

www.jeanmariedekoninck.mat.ulaval.ca

1. Let \mathcal{M} be the semi-group generated by the integers 2 and 3. Let $m_1 < m_2 < \cdots$ be the list of all the elements of \mathcal{M} . Is it possible to construct a real number α such that the sequence $(y_n)_{n \in \mathbb{N}}$, where $y_n = \{m_n \alpha\}$, is uniformly distributed in the interval [0, 1)?

2. Is it possible to construct a real number β for which the corresponding sequence $(s_n)_{n \in \mathbb{N}}$, where $s_n = \{(\sqrt{2})^n \beta\}$, is uniformly distributed in the interval [0, 1)?

Conjectures formulated in 2016

3. Fix an integer $q \ge 3$ and let $1 = \ell_0 < \ell_1 < \cdots < \ell_{\varphi(q)-1}$ be the list of reduced residues modulo q.

Let
$$\wp_q = \{ p \in \wp : p \nmid q \} = \{ p_1, p_2, \ldots \}.$$

For each $p \in \wp_q$, let $h(p) = \nu$ if $p \equiv \ell_{\nu} \pmod{q}$.
Let $\alpha = 0.h(p_1) h(p_2) h(p_3) \ldots \qquad (\varphi(q)$ -ary expansion).

• Conjecture 1 : α is a $\varphi(q)$ -ary normal number.

Conjecture 2 : α is a φ(q)-ary normal number with weight 1/n, that is, for every positive integer k, given e₁...e_k, an arbitrary block of k digits in {0, 1, ..., φ(q) - 1}, we have

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{n\leq N\atop h(p_{n+1})\ldots h(p_{n+k})=e_1\ldots e_k}\frac{1}{n}=\frac{1}{\varphi(q)^k}$$

Detailed account of our results is available in : "Nineteen papers on normal numbers"

Accessible at :

www.jeanmariedekoninck.mat.ulaval.ca

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

· · · · · · · · ·

• If $f \in \mathcal{A}$ and $\Delta f(n) := f(n+1) - f(n) \rightarrow 0$ as $n \rightarrow \infty$, then $f(n) = c \log n$ (P. Erdős, 1946)

- If $f \in \mathcal{A}$ and $\Delta f(n) := f(n+1) f(n) \rightarrow 0$ as $n \rightarrow \infty$, then $f(n) = c \log n$ (P. Erdős, 1946)
- If f ∈ A and ¹/_x ∑_{n≤x} |Δf(n)| → 0 as x → ∞, then f(n) = c log n (conjectured by Erdős and proved by Kátai and Wirsing)

- If $f \in \mathcal{A}$ and $\Delta f(n) := f(n+1) f(n) \rightarrow 0$ as $n \rightarrow \infty$, then $f(n) = c \log n$ (P. Erdős, 1946)
- If f ∈ A and ¹/_x ∑_{n≤x} |Δf(n)| → 0 as x → ∞, then f(n) = c log n (conjectured by Erdős and proved by Kátai and Wirsing)
- If $f \in \mathcal{M}$ and $\Delta f(n) \to 0$ as $n \to \infty$, then $\lim_{n\to\infty} f(n) = 0$ or $f(n) = n^s$ (with $\Re(s) < 1$) (conjectured by Kátai and proved by Wirsing, Shao Pintsung and Tang Yuan Shang)

• • = • • = •

Two conjectures of Kátai :

Two conjectures of Kátai :

(a) If $f \in \mathcal{M}$ and $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} |\Delta f(n)| = 0$, then either $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} |f(n)| = 0$ or $f(n) = n^s$ (with $\Re(s) < 1$)

Two conjectures of Kátai :

(a) If $f \in \mathcal{M}$ and $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} |\Delta f(n)| = 0$, then either $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} |f(n)| = 0$ or $f(n) = n^s$ (with $\Re(s) < 1$)

(b) If $f \in \mathcal{M}$ and $\lim_{x\to\infty} \frac{1}{\log x} \sum_{n\leq x} \frac{|\Delta f(n)|}{n} = 0$, then either $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} |f(n)| = 0$ or $f(n) = n^s$ (with $\Re(s) < 1$)

Two conjectures of Kátai :

(a) If $f \in \mathcal{M}$ and $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} |\Delta f(n)| = 0$, then either $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} |f(n)| = 0$ or $f(n) = n^s$ (with $\Re(s) < 1$)

(b) If $f \in \mathcal{M}$ and $\lim_{x\to\infty} \frac{1}{\log x} \sum_{n\leq x} \frac{|\Delta f(n)|}{n} = 0$, then either $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} |f(n)| = 0$ or $f(n) = n^s$ (with $\Re(s) < 1$)

In 2017, Oleksiy Klurman proved the two conjectures (a) and (b).

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

· · · · · · · · ·

Consider the set \mathcal{M}_1 of multiplicative functions $f : \mathbb{N} \to T := \{z : |z| = 1\}$ and let S(f) stand for the set of limit points of $\{f(n) : n \in \mathbb{N}\}$. Consider the set \mathcal{M}_1 of multiplicative functions $f : \mathbb{N} \to \mathcal{T} := \{z : |z| = 1\}$ and let S(f) stand for the set of limit points of $\{f(n) : n \in \mathbb{N}\}$.

Kátai's conjecture (Quebec Number Theory Conference, 1987) :

Let $f \in \mathcal{M}_1$ be such that S(f) = T. Then,

$$S({f(n+1)\overline{f(n)}:n\in\mathbb{N}})=T,$$

except when $f(n) = n^{i\tau}g(n)$ and $g^k(n) = 1$ for all $n \in \mathbb{N}$ for some positive integer k.

Consider the set \mathcal{M}_1 of multiplicative functions $f : \mathbb{N} \to T := \{z : |z| = 1\}$ and let S(f) stand for the set of limit points of $\{f(n) : n \in \mathbb{N}\}$.

Kátai's conjecture (Quebec Number Theory Conference, 1987) :

Let $f \in \mathcal{M}_1$ be such that S(f) = T. Then,

$$S({f(n+1)\overline{f(n)}:n\in\mathbb{N}})=T,$$

except when $f(n) = n^{i\tau}g(n)$ and $g^k(n) = 1$ for all $n \in \mathbb{N}$ for some positive integer k.

In 2017, Oleksiy Klurman and Alexander Mangerel proved Kátai's conjecture.

As a consequence of Klurman's result, the following could be proved :

As a consequence of Klurman's result, the following could be proved :

(A) (Indlekofer, Kátai, Bui Minh Phong) If $f \in \mathcal{M}^*$ and $\sum_{n \leq x} \frac{|\Delta f(n)|}{n} = O(\log x)$, then either $\sum_{n \leq x} \frac{|f(n)|}{n} = O(\log x)$ or $f(n) = n^{\sigma+it}$ for some $\sigma \in (0, 1)$.

As a consequence of Klurman's result, the following could be proved :

(A) (Indlekofer, Kátai, Bui Minh Phong) If $f \in \mathcal{M}^*$ and $\sum_{n \leq x} \frac{|\Delta f(n)|}{n} = O(\log x)$, then either $\sum_{n \leq x} \frac{|f(n)|}{n} = O(\log x)$ or $f(n) = n^{\sigma+it}$ for some $\sigma \in (0, 1)$.

(B) (Indlekofer, Kátai, Bui Minh Phong) If $f \in \mathcal{M}^*$ and $\limsup_{x\to\infty} \frac{1}{\log x} \sum_{n\leq x} \frac{|f(n+k)-f(n)|}{n} < \infty$, then either $\sum_{n\leq x} \frac{|f(n)|}{n} = O(\log x)$ or $f(n) = n^{\sigma+it}\chi$, where χ is a Dirichlet character mod k.

As a consequence of Klurman's result, the following could be proved :

(A) (Indlekofer, Kátai, Bui Minh Phong) If $f \in \mathcal{M}^*$ and $\sum_{n \leq x} \frac{|\Delta f(n)|}{n} = O(\log x)$, then either $\sum_{n \leq x} \frac{|f(n)|}{n} = O(\log x)$ or $f(n) = n^{\sigma+it}$ for some $\sigma \in (0, 1)$.

(B) (Indlekofer, Kátai, Bui Minh Phong) If $f \in \mathcal{M}^*$ and $\limsup_{x\to\infty} \frac{1}{\log x} \sum_{n\leq x} \frac{|f(n+k)-f(n)|}{n} < \infty$, then either $\sum_{n\leq x} \frac{|f(n)|}{n} = O(\log x)$ or $f(n) = n^{\sigma+it}\chi$, where χ is a Dirichlet character mod k.

Remark. Perhaps similar theorems can be proved if one replaces $\Delta_k f(n) := f(n+k) - f(n)$ by $P(E)f(n) := a_0 f(n) + \cdots + a_k f(n+k)$.

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

· · · · · · · · ·

(C) (Kátai and Bui Minh Phong) Given $k \in \{1, 2, 3\}$ and assuming that $\sum_{n \leq x} \frac{P(E)f(n)|}{n} = O(\log x)$, then either $\sum_{n \leq x} \frac{|f(n)|}{n} = O(\log x)$ or $f(n) = n^s F(n)$ with P(E)F(n) = 0.

(C) (Kátai and Bui Minh Phong) Given $k \in \{1, 2, 3\}$ and assuming that $\sum_{n \leq x} \frac{P(E)f(n)|}{n} = O(\log x)$, then either $\sum_{n \leq x} \frac{|f(n)|}{n} = O(\log x)$ or $f(n) = n^s F(n)$ with P(E)F(n) = 0.

(D) From the theorem of Klurman and Mangerel, one can prove the following.

Given an additive function f and $\tau_1, \tau_2 \in \mathbb{R}$ such that $\tau_2/\tau_1 \in \mathbb{R} \setminus \mathbb{Q}$. Then, if

$$\lim_{x\to\infty}\frac{1}{\log x}\sum_{n\leq x}\frac{\|\tau_i\cdot\Delta f(n)\|}{n}=0\qquad(i=1,2),$$

we have $f(n) = c \log n$.

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

According to the Chowla conjecture, if $\lambda(n)$ stands for the Liouville function,

$$\frac{1}{x}\sum_{n\leq x}\lambda(a_1n+b_1)\cdots\lambda(a_kn+b_k)\to 0 \text{ as } x\to\infty,$$

provided that $a_i b_j \neq b_i a_j$ for all $1 \leq i \neq j \leq k$.

According to the Chowla conjecture, if $\lambda(n)$ stands for the Liouville function,

$$\frac{1}{x}\sum_{n\leq x}\lambda(a_1n+b_1)\cdots\lambda(a_kn+b_k)\to 0 \text{ as } x\to\infty,$$

provided that $a_i b_j \neq b_i a_j$ for all $1 \leq i \neq j \leq k$.

Hence, setting $\varepsilon_n = \frac{\lambda(n)+1}{2}$ for each $n \in \mathbb{N}$ and assuming the Chowla conjecture, each number

$$\xi_{k,\ell} := 0.\varepsilon_{k+\ell}\varepsilon_{2k+\ell}\varepsilon_{3k+\ell}\dots$$

is a binary normal number for all integers $k \ge 1$ and $\ell \ge 0$.

According to the Chowla conjecture, if $\lambda(n)$ stands for the Liouville function,

$$\frac{1}{x}\sum_{n\leq x}\lambda(a_1n+b_1)\cdots\lambda(a_kn+b_k)\to 0 \text{ as } x\to\infty,$$

provided that $a_i b_j \neq b_i a_j$ for all $1 \leq i \neq j \leq k$.

Hence, setting $\varepsilon_n = \frac{\lambda(n)+1}{2}$ for each $n \in \mathbb{N}$ and assuming the Chowla conjecture, each number

$$\xi_{k,\ell} := 0.\varepsilon_{k+\ell}\varepsilon_{2k+\ell}\varepsilon_{3k+\ell}\ldots$$

is a binary normal number for all integers $k \ge 1$ and $\ell \ge 0$.

Problem. Construct such a sequence $\varepsilon_n \in \{0, 1\}$ for which the corresponding numbers $\xi_{k,\ell}$ represent binary normal numbers.

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

> < 3 > < 3 >

Daboussi (1974) : Given any irrational number α and any complex-valued multiplicative function f such that $|f(n)| \le 1$, one has

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)e(\alpha n)=0.$$

Daboussi (1974) : Given any irrational number α and any complex-valued multiplicative function f such that $|f(n)| \le 1$, one has

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)e(\alpha n)=0.$$

Kátai : Let $\widetilde{\wp}$ be a set of primes satisfying $\sum_{p \in \widetilde{\wp}} 1/p = +\infty$ and let $f : \mathbb{N} \to \mathbb{C}$ and $u : \mathbb{N} \to \mathbb{C}$ be two functions satisfying $|f(n)| \leq 1$ and $|u(n)| \leq 1$ for all $n \in \mathbb{N}$. If

(1)
$$\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} u(p_1 n) \overline{u(p_2 n)} = 0$$
 for every $p_1 \neq p_2 \in \widetilde{\wp}$,

(2)
$$f(pm) = f(p)f(m)$$
 for all $p \in \widetilde{\wp}$ and $m \in \mathbb{N}$,
then, $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leq x} f(n)u(n) = 0$.

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

> < 3 > < 3 >

Kátai : Let $\widetilde{\wp}$ be a set of primes satisfying $\sum_{p \in \widetilde{\wp}} 1/p = +\infty$ and let $f : \mathbb{N} \to \mathbb{C}$ and $u : \mathbb{N} \to \mathbb{C}$ be two functions satisfying $|f(n)| \le 1$ and $|u(n)| \le 1 \ \forall n \in \mathbb{N}$. If (1) $\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} u(p_1 n) \overline{u(p_2 n)} = 0$ for every $p_1 \neq p_2 \in \widetilde{\wp}$, (2) f(pm) = f(p)f(m) for all $p \in \widetilde{\wp}$ and $m \in \mathbb{N}$, then,

(*)
$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)u(n)=0.$$

Kátai : Let
$$\widetilde{\wp}$$
 be a set of primes satisfying $\sum_{p \in \widetilde{\wp}} 1/p = +\infty$ and let $f : \mathbb{N} \to \mathbb{C}$ and $u : \mathbb{N} \to \mathbb{C}$ be two functions satisfying $|f(n)| \le 1$ and $|u(n)| \le 1 \ \forall n \in \mathbb{N}$. If
(1) $\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} u(p_1 n) \overline{u(p_2 n)} = 0$ for every $p_1 \neq p_2 \in \widetilde{\wp}$,
(2) $f(pm) = f(p)f(m)$ for all $p \in \widetilde{\wp}$ and $m \in \mathbb{N}$, then,

(*)
$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)u(n)=0.$$

Remark. More is true. Let $\tilde{\wp}$ and u be as above. Then (*) holds uniformly for every f satisfying the above condition (2) as well as the condition $|f(n)| \le 1$ for all $n \in \mathbb{N}$.

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

く伺き くまき くまき

Let \wp^* be a set of primes satisfying $\sum_{p \leq x, p \in \wp^*} \log p = \tau x + O(x/\log^A x)$ for some positive τ and A. Further set $\mathcal{N}(\wp^*) := \{n \in \mathbb{N} : p \mid n \Longrightarrow p \in \wp^*\}$ and $N_{\wp^*}(x) := \#\{n \leq x : n \in \mathcal{N}(\wp^*)\}$. Let $\wp^{**} \subset \wp^*$ be such that $\sum_{p \in \wp^{**}} 1/p = +\infty$. We can prove the following.

Let \wp^* be a set of primes satisfying $\sum_{p \leq x, p \in \wp^*} \log p = \tau x + O(x/\log^A x)$ for some positive τ and A. Further set $\mathcal{N}(\wp^*) := \{n \in \mathbb{N} : p \mid n \Longrightarrow p \in \wp^*\}$ and $N_{\wp^*}(x) := \#\{n \leq x : n \in \mathcal{N}(\wp^*)\}$. Let $\wp^{**} \subset \wp^*$ be such that $\sum_{p \in \wp^{**}} 1/p = +\infty$. We can prove the following.

Given $f : \mathcal{N}(\wp^*) \to \mathbb{C}$ satisfying $f(pm) = f(p)f(m) \forall p \in \wp^{**}$ and $m \in \mathcal{N}(\wp^*)$ and such that $|f(n)| \leq 1 \forall n \in \mathcal{N}(\wp^*)$, then, for all functions $u : \mathcal{N}(\wp^*) \to \mathbb{C}$ such that $|u(n)| \leq 1 \forall n \in \mathcal{N}(\wp^*)$ and such that

$$\lim_{x\to\infty}\frac{1}{x}\sum_{m\in\mathcal{N}(\wp^*)\atop m\in\mathcal{N}(\wp^*)}u(p_1m)\overline{u(p_2m)}=0\quad \text{for all }p_1\neq p_2\in\wp^{**},$$

we have

 $\lim_{x\to\infty}\frac{1}{x}\sum_{n\in\mathcal{N}(n^*)}f(n)u(n)=0.$

★ Ξ ► ★ Ξ ► Ξ

Open problem

Is it true or not that, for every irrational number α ,

$$\lim_{x\to\infty}\frac{1}{N_{\wp^*}(x)}\sum_{n\leq x\atop n\in\mathcal{N}(\wp^*)}e(n\alpha)=0$$
?

Jean-Marie De Koninck and Im Uniform distribution mod 1, results and open problems

Food for thought...

Thank you!

katai@inf.elte.hu