On BRS and S-NBRS for Sequences $(\{a_n\alpha\})_{n\geq 1}$

UDT 2018

Lisa Kaltenböck 02.10.2018 joint work with Gerhard Larcher

discrepancy function

Definition

For a sequence $(x_n)_{n\geq 1}$ in [0,1) and any subinterval $[a,b) \subseteq [0,1)$, let

$$D_N([a,b)) = \frac{\#\{1 \le n \le N : x_n \in [a,b)\}}{N} - (b-a)$$

be the (*N*-th) discrepancy function of [a, b).

Then, the (N-th) discrepancy of (x_n) is given by

$$D_N = \sup_{[a,b)} |D_N([a,b))|.$$

J⊻U

bounds for the discrepancy

Theorem (Schmidt, 1972)

There exists a constant c > 0 such that for any infinite sequence $(x_n)_{n\geq 1}$ in [0,1) it holds that

$$D_N \ge c \frac{\log N}{N}$$

for infinitely many N.

bounds for the discrepancy function

Theorem (Tijdeman, Wagner, 1980)

For every sequence $(x_n)_{n\geq 1}$ we have for almost all $b \in [0,1)$ that $1 \log N$

$$|D_N([0,b))| \ge \frac{1}{400} \frac{\log N}{N}$$

for infinitely many N.

bounded remainder sets

Definition

Let $(x_n)_{n\geq 1}$ be a sequence in [0,1) and let $[a,b) \subseteq [0,1)$. [a,b) is called bounded remainder set (BRS) if there exists some constant c such that

$$D_N([a,b))| \le c\frac{1}{N}$$

for all $N \in \mathbb{N}$.

For any sequence there are only countably many possible values for the lengths of BRS. (Schmidt, 1972)

J⊻U

BRS for $(\{n\alpha\})_{n\geq 1}$

Theorem (Kesten, 1966)

An interval $[a,b) \subseteq [0,1)$ is a BRS for the sequence $(\{n\alpha\})_{n\geq 1}$ if and only if

$$b - a = \{j\alpha\}$$

for some $j \in \mathbb{Z}$.

" *←* ": Hecke (1921), Ostrowski (1930)

J⊻U

BRS for $(\{n\alpha\})_{n\geq 1}$

Theorem (Kesten, 1966)

An interval $[a,b) \subseteq [0,1)$ is a BRS for the sequence $(\{n\alpha\})_{n\geq 1}$ if and only if

$$b - a = \{j\alpha\}$$

for some $j \in \mathbb{Z}$.

" *←* ": Hecke (1921), Ostrowski (1930)

• sequences of the form $(\{a_n\alpha\})_{n\geq 1}$?

J⊼∩

$$a_n = 2^n$$

$$a_n = 2^n$$

$$\{2^n\alpha\} = \sum_{i=1}^{\infty} \alpha_{n+i} \frac{1}{2^i}$$

$$a_n = 2^n$$

$$\{2^n\alpha\} = \sum_{i=1}^{\infty} \alpha_{n+i} \frac{1}{2^i}$$

 \Rightarrow arbitrarily many successive elements of $(\{2^n\alpha\})$ are contained in [0, b) or not contained in $[a, b), a \neq 0$

$$a_n = 2^n$$

$$\{2^n\alpha\} = \sum_{i=1}^{\infty} \alpha_{n+i} \frac{1}{2^i}$$

 \Rightarrow arbitrarily many successive elements of $(\{2^n\alpha\})$ are contained in [0, b) or not contained in $[a, b), a \neq 0$

 $\Rightarrow (\{2^n \alpha\})$ does not have any non-trivial BRS

J⊼∩

$$a_n = \beta^n$$

More general, let $\beta > 1$ be a Pisot number and let $\alpha < 1$,

$$\alpha = \sum_{i=1}^{\infty} \alpha_i \beta^{-i},$$

where $\alpha_i \in \{0, 1, \dots, \lceil \beta \rceil - 1\}$ and such that $\sum_{i>j} \alpha_i \beta^{-i} < \beta^{-j}$ for all $j \ge 0$. Then

$$a_n = \beta^n$$

More general, let $\beta > 1$ be a Pisot number and let $\alpha < 1$,

$$\alpha = \sum_{i=1}^{\infty} \alpha_i \beta^{-i},$$

where $\alpha_i \in \{0, 1, \dots, \lceil \beta \rceil - 1\}$ and such that $\sum_{i>j} \alpha_i \beta^{-i} < \beta^{-j}$ for all $j \ge 0$. Then

$$\sum_{n \ge 1} \|\beta^n\| < c,$$

for some constant c and

$$a_n = \beta^n$$

More general, let $\beta > 1$ be a Pisot number and let $\alpha < 1$,

$$\alpha = \sum_{i=1}^{\infty} \alpha_i \beta^{-i},$$

where $\alpha_i \in \{0, 1, \dots, \lceil \beta \rceil - 1\}$ and such that $\sum_{i>j} \alpha_i \beta^{-i} < \beta^{-j}$ for all $j \ge 0$. Then

$$\sum_{n \ge 1} \|\beta^n\| < c,$$

for some constant c and

 α has normal β -expansion $\Rightarrow (\{\beta^n \alpha\})_{n \ge 1}$ is u.d.

$$a_n = \beta^n$$

For any interval $[a,b) \subset [0,1)$ with $a \neq 0$ and $b \neq 1$ there exist arbitrarily many successive elements of $(\{\beta^n \alpha\})_{n \geq 1}$ which are not contained in [a,b).

Theorem (K., Larcher)

Let $\beta > 1$ be a Pisot number and let α be normal to base β . Then the sequence $(\{\beta^n \alpha\})_{n \ge 1}$ does not have non-trivial bounded remainder sets.

strongly non-bounded remainder sets

Definition

Let $(x_n)_{n\geq 1}$ be a sequence in [0,1). An interval $[a,b) \subseteq [0,1)$ is said to be a *strongly non-bounded remainder set (S-NBRS)* if for all $K \in \mathbb{N}$ there are K successive elements of $(x_n)_{n\geq 1}$ which all are contained in [a,b) or which all are not contained in [a,b).

strongly non-bounded remainder sets

Definition

Let $(x_n)_{n\geq 1}$ be a sequence in [0,1). An interval $[a,b) \subseteq [0,1)$ is said to be a *strongly non-bounded remainder set (S-NBRS)* if for all $K \in \mathbb{N}$ there are K successive elements of $(x_n)_{n\geq 1}$ which all are contained in [a,b) or which all are not contained in [a,b).

If $(x_n)_{n\geq 1}$ has a dense collection of BRS, then there do not exist any S-NBRS.

J⊻U

Consider $J := [\{k_1\alpha\}, \{k_2\alpha\}), \{k_1\alpha\} < \{k_2\alpha\}$ which is a BRS for $(\{n\alpha\})_{n>1}$. There exists $k \in \mathbb{N}$ such that

$$\{a_n\alpha\} \in J \Leftrightarrow \{n\alpha\} \in J \quad \text{for all } n \ge k,$$

where $a_n = q_n + n$, because

Consider $J := [\{k_1\alpha\}, \{k_2\alpha\}), \{k_1\alpha\} < \{k_2\alpha\}$ which is a BRS for $(\{n\alpha\})_{n>1}$. There exists $k \in \mathbb{N}$ such that

$$\{a_n\alpha\} \in J \Leftrightarrow \{n\alpha\} \in J \quad \text{for all } n \ge k,$$

where $a_n = q_n + n$, because

$$\{n\alpha\} - \{a_n\alpha\} \mod 1 = ||q_n\alpha||,$$

Consider $J := [\{k_1\alpha\}, \{k_2\alpha\}), \{k_1\alpha\} < \{k_2\alpha\}$ which is a BRS for $(\{n\alpha\})_{n>1}$. There exists $k \in \mathbb{N}$ such that

$$\{a_n\alpha\} \in J \Leftrightarrow \{n\alpha\} \in J \qquad \text{for all } n \ge k,$$

where $a_n = q_n + n$, because

$$\{n\alpha\} - \{a_n\alpha\} \mod 1 = \|q_n\alpha\|,$$

and if $n \geq k_1, k_2$,

$$\{n\alpha\} - \{k_i\alpha\} \mod 1 \ge \min_{1 \le l \le n} \|l\alpha\|.$$

J⊼∩

Consider $J := [\{k_1\alpha\}, \{k_2\alpha\}), \{k_1\alpha\} < \{k_2\alpha\}$ which is a BRS for $(\{n\alpha\})_{n>1}$. There exists $k \in \mathbb{N}$ such that

$$\{a_n\alpha\} \in J \Leftrightarrow \{n\alpha\} \in J \qquad \text{for all } n \ge k,$$

where $a_n = q_n + n$, because

$$\{n\alpha\} - \{a_n\alpha\} \mod 1 = \|q_n\alpha\|,$$

and if $n \geq k_1, k_2$,

$$\{n\alpha\} - \{k_i\alpha\} \mod 1 \ge \min_{1 \le l \le n} ||l\alpha||.$$

 $\Rightarrow J$ is a BRS for $(\{a_n\alpha\})_{n\geq 1}$

J⊼∩

$$a_n = n + q_n$$

Theorem (K., Larcher)

 Let α be irrational and let q_n be the n-th convergent from the continued fraction expansion of α. Then every interval of the form [{k₁α}, {k₂α}) with k₁, k₂ ∈ N and {k₁α} < {k₂α} is a BRS for the uniformly distributed sequence ({(q_n + n)α})_{n>1}.

$$a_n = n + q_n$$

Theorem (K., Larcher)

- Let α be irrational and let q_n be the n-th convergent from the continued fraction expansion of α. Then every interval of the form [{k₁α}, {k₂α}) with k₁, k₂ ∈ N and {k₁α} < {k₂α} is a BRS for the uniformly distributed sequence ({(q_n + n)α})_{n≥1}.
- 2. In general the sequence $(\{(q_n + n)\alpha\})_{n\geq 1}$ does not have the same collection of BRS as the sequence $(\{n\alpha\})_{n\geq 1}$.

• a_n grows slower than linearly \Rightarrow no BRS

Let $(a_n)_{n\geq 1}$ be an increasing sequence of integers and let $(\{a_n\alpha\})_{n\geq 1}$ be uniformly distributed. If

$$\lim_{n \to \infty} \frac{a_n}{n} = 0,$$

then every interval $[a,b) \subset [0,1)$ of positive measure is a S-NBRS.

• every other growth rate \Rightarrow dense collection of BRS

strictly increasing sequence $\varphi(n) \ge 2n$ for all $n \in \mathbb{N}$

 α irrational with bounded continued fraction coefficients

• every other growth rate \Rightarrow dense collection of BRS

strictly increasing sequence $\varphi(n) \geq 2n$ for all $n \in \mathbb{N}$

 α irrational with bounded continued fraction coefficients

 \Rightarrow there exists a strictly increasing sequence of integers $(a_n)_{n\geq 1}$, with

$$\varphi(n) \le a_n \le L\varphi(n)$$

for all $n \ge 1$ such that $(\{a_n \alpha\})_{n \ge 1}$ has a dense collection of BRS and is u. d.

J⊼∩

an extension

 $\ensuremath{\mathcal{A}}$ is a countable set of irrational numbers

 \Rightarrow there is a lacunary sequence $(a_n)_{n\geq 1}$ of integers,

$$a_n = n + q'_n$$

such that $(\{a_n\alpha\})_{n\geq 1}$ has a dense collection of BRS for all $\alpha \in \mathcal{A}$ and each of those sequences is u. d.

$$a_n = f(n)$$

BRS for $(\{n^2\alpha\})_{n\geq 1}$?

BRS for $(\{f(n)\alpha\})_{n\geq 1}$ with $f(x) \in \mathbb{Z}[x]$?

$$a_n = f(n)$$

■ BRS for
$$(\{n^2\alpha\})_{n\geq 1}$$
?

BRS for $(\{f(n)\alpha\})_{n\geq 1}$ with $f(x) \in \mathbb{Z}[x]$?

Theorem (Liardet, 1978)

Let $p(x) \in \mathbb{R}[x]$ with degree $d \geq 2$ and an irrational leading coefficient. Then the only BRS of the sequence $(\{p(n)\})_{n\geq 1}$ are the empty set and [0, 1).

J⊻U

$$a_n = f(n)$$

■ BRS for
$$(\{n^2\alpha\})_{n\geq 1}$$
?

BRS for $(\{f(n)\alpha\})_{n\geq 1}$ with $f(x) \in \mathbb{Z}[x]$?

Theorem (Liardet, 1978)

Let $p(x) \in \mathbb{R}[x]$ with degree $d \ge 2$ and an irrational leading coefficient. Then the only BRS of the sequence $(\{p(n)\})_{n\ge 1}$ are the empty set and [0, 1).

elementary proof?

J⊻U

 $a_n = f(n)$

elementary proof?

Theorem (K., Larcher)

Let $p(n) = (p^{(1)}(n), p^{(2)}(n), \dots, p^{(s)}(n))$, where all $p^{(i)}(n)$, $i \leq s$ are real polynomials with the property, that for each point $h \in \mathbb{Z}^s$, $h \neq 0$, the polynomial $\langle h, p(n) \rangle$ has at least one non-constant term with irrational coefficient. Then the sequence $(\{p(n)\})_{n\geq 1}$ does not have any *S*-NBRS.

J⊼∩