# Large values of short character sums

# Alexander Kalmynin\*

\*National Research University Higher School of Economics, Moscow, Russia

# Uniform Distribution Theory – 2018 5 October 2018

A. Kalmynin Large values of short character sums

3

A B > A B >

Let  $\chi$  be a Dirichlet character, i.e. completely multiplicative function, which is periodic with some period q and satisfies a condition  $\chi(n) = 0$  if (n, q) > 1.

Let  $\chi$  be a Dirichlet character, i.e. completely multiplicative function, which is periodic with some period q and satisfies a condition  $\chi(n) = 0$  if (n, q) > 1.

Let us also assume that  $\chi$  is primitive i.e. it is not induced by any other Dirichlet character.

Let  $\chi$  be a Dirichlet character, i.e. completely multiplicative function, which is periodic with some period q and satisfies a condition  $\chi(n) = 0$  if (n, q) > 1.

Let us also assume that  $\chi$  is primitive i.e. it is not induced by any other Dirichlet character. In number theory, the estimates for the quantity

$$\sum_{M < n \le N+M} \chi(n)$$

are often very useful.

Let  $\chi$  be a Dirichlet character, i.e. completely multiplicative function, which is periodic with some period q and satisfies a condition  $\chi(n) = 0$  if (n, q) > 1.

Let us also assume that  $\chi$  is primitive i.e. it is not induced by any other Dirichlet character. In number theory, the estimates for the quantity

$$\sum_{M < n \le N+M} \chi(n)$$

are often very useful. The Polya-Vinogradov inequality states that sum over any interval is  $O(\sqrt{q} \ln q)$  and Burgess's bound gives a nontrivial estimate  $O(Np^{-c(\varepsilon)})$  provided  $N \ge p^{1/4+\varepsilon}$ .

If we consider sums only over initial interval

$$\sum_{n \le x} \chi(n)$$

then there are also certain conditional results.



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

If we consider sums only over initial interval

$$\sum_{n \le x} \chi(n)$$

then there are also certain conditional results. If Generalized Riemann Hypothesis is true, then for any  $\varepsilon > 0$  we have

$$\sum_{n \le x} \chi(n) \ll \sqrt{x} q^{\varepsilon}$$

3

A = 
 A = 
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If we consider sums only over initial interval

$$\sum_{n \le x} \chi(n)$$

then there are also certain conditional results. If Generalized Riemann Hypothesis is true, then for any  $\varepsilon > 0$  we have

$$\sum_{n \le x} \chi(n) \ll \sqrt{x} q^{\varepsilon}$$

and some heuristics also show that  $q^{\varepsilon}$  can be replaced by

$$\exp\left(O\left(\sqrt{\frac{\ln q}{\ln\ln q}}\right)\right)$$

3

A = 
 A = 
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lets restrict ourselves to the case when our character is quadratic ( $\chi^2$  is principal).

레이 소문이 소문이 문

Lets restrict ourselves to the case when our character is quadratic ( $\chi^2$  is principal). For example, if p is a prime number then one can consider the following character

Lets restrict ourselves to the case when our character is quadratic ( $\chi^2$  is principal).

For example, if p is a prime number then one can consider the following character

$$\left(\frac{n}{p}\right) = \begin{cases} +1 \text{ if } n \text{ is quadratic residue mod } p \\ -1 \text{ if } n \text{ is nonresidue} \\ 0 \text{ if } n \text{ is divisible by } p \end{cases}$$

More generally, every primitive quadratic character can be written as  $\left(\frac{D}{n}\right)$  where D is a fundamental discriminant.

It turns out that conditional bound that we mentioned before can be substantially improved:

## Theorem 1 (Granville, Soundararajan, 2001)

Let  $\omega(q)$  be any function that tends to infinity for  $q \to +\infty$ . If Generalized Riemann Hypothesis is true then

$$\sum_{n \le x} \chi(n) = o(x)$$

for all primitive characters to the modulus q and  $x = (\ln q)^{\omega(q)}$ .

A B M A B M

It turns out that conditional bound that we mentioned before can be substantially improved:

## Theorem 1 (Granville, Soundararajan, 2001)

Let  $\omega(q)$  be any function that tends to infinity for  $q \to +\infty$ . If Generalized Riemann Hypothesis is true then

$$\sum_{n \le x} \chi(n) = o(x)$$

for all primitive characters to the modulus q and  $x = (\ln q)^{\omega(q)}$ .

#### Theorem 2 (Granville, Soundararajan, 2001)

For all sufficiently large q and any A > 0 there exists a fundamental discriminant D with  $q \leq |D| \leq 2q$  such that the inequality

$$\sum_{n \le x} \left(\frac{D}{n}\right) \gg x$$

holds, where  $x = (\frac{1}{3} \ln q)^A$ .

# 3. The case of prime conductor

It is interesting to show that Theorem 2 holds for some smaller sets of discriminants.

★ 문 ▶ ★ 문 ▶ ... 문

It is interesting to show that Theorem 2 holds for some smaller sets of discriminants.

Theorem 3 (Kalmynin, 2017)

Let  $A \ge 1$  be an arbitrarily large fixed number,  $x \ge x_0(A)$  and  $y = (\ln x)^A$ . Then there exists a prime number p with x such that

$$\sum_{n \le y} \left(\frac{n}{p}\right) \gg y$$

It is interesting to show that Theorem 2 holds for some smaller sets of discriminants.

Theorem 3 (Kalmynin, 2017)

Let  $A \ge 1$  be an arbitrarily large fixed number,  $x \ge x_0(A)$  and  $y = (\ln x)^A$ . Then there exists a prime number p with x such that

$$\sum_{n \le y} \left(\frac{n}{p}\right) \gg y$$

So, sums of Legendre characters of length  $(\ln p)^A$  are not  $o((\ln p)^A)$ .

It is interesting to show that Theorem 2 holds for some smaller sets of discriminants.

Theorem 3 (Kalmynin, 2017)

Let  $A \ge 1$  be an arbitrarily large fixed number,  $x \ge x_0(A)$  and  $y = (\ln x)^A$ . Then there exists a prime number p with x such that

$$\sum_{n \le y} \left(\frac{n}{p}\right) \gg y$$

So, sums of Legendre characters of length  $(\ln p)^A$  are not  $o((\ln p)^A)$ . Proof of this result uses some properties of Siegel zeros of Dirichlet *L*-functions.

# 4. Ideas of proof

Let us denote  $S(p, y) = \sum_{n \leq y} \left(\frac{n}{p}\right)$ . One might try to compute the average value of S(p, y) over primes and hope to get something large, but it turns out that it is much smaller than y (it is of order  $\sqrt{y}$  by Siegel-Walfisz theorem).

# 4. Ideas of proof

Let us denote  $S(p, y) = \sum_{n \leq y} \left(\frac{n}{p}\right)$ . One might try to compute the average value of S(p, y) over primes and hope to get something large, but it turns out that it is much smaller than y (it is of order  $\sqrt{y}$  by Siegel-Walfisz theorem).

So, our main idea is to introduce some weights  $w_p$  that are very biased towards large values of S(p, y).

# 4. Ideas of proof

Let us denote  $S(p, y) = \sum_{n \leq y} \left(\frac{n}{p}\right)$ . One might try to compute the average value of S(p, y) over primes and hope to get something large, but it turns out that it is much smaller than y (it is of order  $\sqrt{y}$  by Siegel-Walfisz theorem).

So, our main idea is to introduce some weights  $w_p$  that are very biased towards large values of S(p, y). My choice of  $w_p$  is as follows:

$$w_p = \prod_{q \le M} \left( 1 + \left(\frac{q}{p}\right) \right) = \begin{cases} 2^{\pi(M)} \text{ if for all primes } q \le M \text{ we have } \left(\frac{q}{p}\right) = 1\\ 0 \text{ everywhere else} \end{cases}$$

Here  $M = (\ln x)^{1/3}$ .

So, the main goal is to prove that

$$\frac{\sum\limits_{x$$

A. Kalmynin Large values of short character sums

(ロ) (四) (E) (E) (E) (E)

So, the main goal is to prove that

$$\frac{\sum\limits_{x$$

Let us denote the numerator and denominator of this expression  $S_0(x)$  and  $S_1(x, A)$ .

So, the main goal is to prove that

$$\frac{\sum\limits_{x$$

Let us denote the numerator and denominator of this expression  $S_0(x)$  and  $S_1(x, A)$ .

To provide an asymptotic formulas for  $S_0$  and  $S_1$  we need to deal with zeros of some Dirichlet *L*-functions

$$L(s,\chi) = \sum_{n=1}^{+\infty} \chi(n) n^{-s}$$

3

We will use the following two classical theorems

A. Kalmynin Large values of short character sums

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

We will use the following two classical theorems

#### Theorem 4

For some constants c and  $c_1 > 0$  and any nonprincipal character  $\chi$  to the modulus  $q \leq e^{c_1 \sqrt{\ln x}}$  we have

$$\sum_{p \le x} \chi(p) \ln p = -\delta \frac{x^{\beta}}{\beta} + O\left(x e^{-c_1 \sqrt{\ln x}}\right).$$

Where  $\delta = 1$  if  $L(s, \chi)$  has a real zero  $\beta$  with  $\beta > 1 - \frac{c}{\ln q}$  and  $\delta = 0$  otherwise.

We will use the following two classical theorems

#### Theorem 4

For some constants c and  $c_1 > 0$  and any nonprincipal character  $\chi$  to the modulus  $q \leq e^{c_1 \sqrt{\ln x}}$  we have

$$\sum_{p \le x} \chi(p) \ln p = -\delta \frac{x^{\beta}}{\beta} + O\left(x e^{-c_1 \sqrt{\ln x}}\right).$$

Where  $\delta = 1$  if  $L(s, \chi)$  has a real zero  $\beta$  with  $\beta > 1 - \frac{c}{\ln q}$  and  $\delta = 0$  otherwise.

These exceptional real zeros are called Siegel zeros.

#### Theorem 5

Let  $\chi_1$  and  $\chi_2$  be two different real characters to the moduli  $q_1$  and  $q_2$ . Let  $\beta_1$  and  $\beta_2$  be a real zeros of  $L(s, \chi_1)$  and  $L(s, \chi_2)$  repectively. Then we have

$$\max\{\beta_1, \beta_2\} \le 1 - \frac{c_2}{\sqrt{\max\{q_1, q_2\}}}$$

and

$$\min\{\beta_1, \beta_2\} \le 1 - \frac{c_3}{\ln(q_1 q_2)}$$

So, Siegel zeros cannot be too large and they are quite rare.

#### Theorem 5

Let  $\chi_1$  and  $\chi_2$  be two different real characters to the moduli  $q_1$  and  $q_2$ . Let  $\beta_1$  and  $\beta_2$  be a real zeros of  $L(s, \chi_1)$  and  $L(s, \chi_2)$  repectively. Then we have

$$\max\{\beta_1, \beta_2\} \le 1 - \frac{c_2}{\sqrt{\max\{q_1, q_2\}}}$$

and

$$\min\{\beta_1, \beta_2\} \le 1 - \frac{c_3}{\ln(q_1 q_2)}$$

So, Siegel zeros cannot be too large and they are quite rare. In particular, one can show that a family of *L*-functions  $L(s, \left(\frac{f}{\cdot}\right))$ , where  $f \leq e^{2M}$  is squarefree can have at most one really large exceptional zero.

#### Theorem 5

Let  $\chi_1$  and  $\chi_2$  be two different real characters to the moduli  $q_1$  and  $q_2$ . Let  $\beta_1$  and  $\beta_2$  be a real zeros of  $L(s, \chi_1)$  and  $L(s, \chi_2)$  repectively. Then we have

$$\max\{\beta_1, \beta_2\} \le 1 - \frac{c_2}{\sqrt{\max\{q_1, q_2\}}}$$

and

$$\min\{\beta_1, \beta_2\} \le 1 - \frac{c_3}{\ln(q_1 q_2)}$$

So, Siegel zeros cannot be too large and they are quite rare. In particular, one can show that a family of *L*-functions  $L(s, \left(\frac{f}{\cdot}\right))$ , where  $f \leq e^{2M}$  is squarefree can have at most one really large exceptional zero. We denote the corresponding squarefree integer by f and the real zero

by  $\beta_f$ .

Using Theorems 4 and 5 one can obtain the following asymptotic formulas:

$$S_0(x) \sim x - \delta_1 \frac{(2x)^{\beta_f} - x^{\beta_f}}{\beta_f}$$

where  $\delta_1 = 1$  if exceptional modulus f exists and divides P(M) and 0 otherwise

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Using Theorems 4 and 5 one can obtain the following asymptotic formulas:

$$S_0(x) \sim x - \delta_1 \frac{(2x)^{\beta_f} - x^{\beta_f}}{\beta_f}$$

where  $\delta_1 = 1$  if exceptional modulus f exists and divides P(M) and 0 otherwise and

$$S_1(x, A) \sim xr_{A,x}(1) - \delta_2 \frac{(2x)^{\beta_f} - x^{\beta_f}}{\beta_f} r_{A,x}(f)$$

where  $\delta_2 = 1$  if f exists and 0 if it is not. Here  $r_{A,x}$  is defined by the formula

$$r_{A,x}(c) = \#\{(a,d) : 1 \le a \le y, d \mid P(M), ad = ct^2 \text{ for some integer } t\}$$

### Lemma 6

Let c be squarefree. Then  $r_{A,x}(c) \ll \frac{y \ln y}{M}$  if  $c \nmid P(M)$  and  $r_{A,x}(c) = r_{A,x}(1) \gg y$  otherwise.

A. Kalmynin Large values of short character sums

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● り < ()

## Lemma 6

Let c be squarefree. Then  $r_{A,x}(c) \ll \frac{y \ln y}{M}$  if  $c \nmid P(M)$  and  $r_{A,x}(c) = r_{A,x}(1) \gg y$  otherwise.

Now, we consider the following three cases:



□ ▶ ▲ ミ ▶ ▲ ミ ▶ ミ り へ ()

#### Lemma 6

Let c be squarefree. Then  $r_{A,x}(c) \ll \frac{y \ln y}{M}$  if  $c \nmid P(M)$  and  $r_{A,x}(c) = r_{A,x}(1) \gg y$  otherwise.

Now, we consider the following three cases:

• f doesn't exist. Then  $\delta_1 = \delta_2 = 0$  and we get

 $S_0(x) \sim x$  $S_1(x, A) \sim xr_{A,x}(1) \gg xy,$ 

therefore we are done.

#### Lemma 6

Let c be squarefree. Then  $r_{A,x}(c) \ll \frac{y \ln y}{M}$  if  $c \nmid P(M)$  and  $r_{A,x}(c) = r_{A,x}(1) \gg y$  otherwise.

Now, we consider the following three cases:

• f doesn't exist. Then  $\delta_1 = \delta_2 = 0$  and we get

$$S_0(x) \sim x$$
$$S_1(x, A) \sim xr_{A,x}(1) \gg xy,$$

therefore we are done.

• f exists but it doesn't divide P(M). Then  $\delta_1 = 0$  but  $\delta_2 = 1$  and we have

$$S_0(x) \sim x$$
$$S_1(x, A) \sim xr_{A,x}(1) - \frac{(2x)^{\beta_f} - x^{\beta_f}}{\beta_f}r_{A,x}(f)$$

Lemma 6 shows that  $r_{A,x}(f)$  is much smaller than  $r_{A,x}(1)$ , therefore we get

$$S_1(x,A) \sim xr_{A,x}(1) \gg xy$$

as in the previous case.



<回> < E> < E> = E

Lemma 6 shows that  $r_{A,x}(f)$  is much smaller than  $r_{A,x}(1)$ , therefore we get

$$S_1(x,A) \sim xr_{A,x}(1) \gg xy$$

as in the previous case.

• f exists and divides P(M). Then  $\delta_1 = \delta_2 = 1$  and so we can get no nice asymptotic formula for  $S_0$  and  $S_1$ . We only get the following facts:

$$S_0(x) \sim x - \frac{(2x)^{\beta_f} - x^{\beta_f}}{\beta_f}$$

and

$$S_1(x,A) \sim xr_{A,x}(1) - \frac{(2x)^{\beta_f} - x^{\beta_f}}{\beta_f}r_{A,x}(f).$$

A B M A B M

In this final case Lemma 6 gives us  $r_{A,x}(1) = r_{A,x}(f)$  and so asymptotics for our sums are spoiled in exactly the same way!

▲ 臣 ▶ ▲ 臣 ▶ 臣 • 夕 � �

In this final case Lemma 6 gives us  $r_{A,x}(1) = r_{A,x}(f)$  and so asymptotics for our sums are spoiled in exactly the same way! Therefore, these strange functions with  $\beta_f$  cancel out and we finally get

$$\frac{S_1(x,A)}{S_0(x)} \sim r_{A,x}(1) \gg y.$$

In this final case Lemma 6 gives us  $r_{A,x}(1) = r_{A,x}(f)$  and so asymptotics for our sums are spoiled in exactly the same way! Therefore, these strange functions with  $\beta_f$  cancel out and we finally get

$$\frac{S_1(x,A)}{S_0(x)} \sim r_{A,x}(1) \gg y.$$

This concludes the proof.

# Thank you for your attention!



A. Kalmynin Large values of short character sums