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1. Introduction

Let χ be a Dirichlet character, i.e. completely multiplicative function,
which is periodic with some period q and satisfies a condition
χ(n) = 0 if (n, q) > 1.

Let us also assume that χ is primitive i.e. it is not induced by any
other Dirichlet character. In number theory, the estimates for the
quantity ∑

M<n≤N+M

χ(n)

are often very useful. The Polya-Vinogradov inequality states that
sum over any interval is O(

√
q ln q) and Burgess’s bound gives a

nontrivial estimate O(Np−c(ε)) provided N ≥ p1/4+ε.
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If we consider sums only over initial interval∑
n≤x

χ(n)

then there are also certain conditional results.

If Generalized Riemann
Hypothesis is true, then for any ε > 0 we have∑

n≤x

χ(n)�
√
xqε

and some heuristics also show that qε can be replaced by

exp

(
O

(√
ln q

ln ln q

))
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2. Quadratic characters

Lets restrict ourselves to the case when our character is quadratic (χ2

is principal).

For example, if p is a prime number then one can consider the
following character

(
n

p

)
=


+1 if n is quadratic residue mod p
−1 if n is nonresidue
0 if n is divisible by p

More generally, every primitive quadratic character can be written as(
D
n

)
where D is a fundamental discriminant.
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It turns out that conditional bound that we mentioned before can be
substantially improved:

Theorem 1 (Granville, Soundararajan, 2001)

Let ω(q) be any function that tends to infinity for q → +∞. If
Generalized Riemann Hypothesis is true then∑

n≤x

χ(n) = o(x)

for all primitive characters to the modulus q and x = (ln q)ω(q).

Theorem 2 (Granville, Soundararajan, 2001)

For all sufficiently large q and any A > 0 there exists a fundamental
discriminant D with q ≤ |D| ≤ 2q such that the inequality∑

n≤x

(
D

n

)
� x

holds, where x = ( 13 ln q)
A.
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3. The case of prime conductor

It is interesting to show that Theorem 2 holds for some smaller sets of
discriminants.

Theorem 3 (Kalmynin, 2017)

Let A ≥ 1 be an arbitrarily large fixed number, x ≥ x0(A) and
y = (lnx)A. Then there exists a prime number p with x < p ≤ 2x such
that ∑

n≤y

(
n

p

)
� y

So, sums of Legendre characters of length (ln p)A are not o((ln p)A).
Proof of this result uses some properties of Siegel zeros of Dirichlet
L-functions.
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4. Ideas of proof

Let us denote S(p, y) =
∑
n≤y

(
n
p

)
. One might try to compute the

average value of S(p, y) over primes and hope to get something large,
but it turns out that it is much smaller than y (it is of order √y by
Siegel-Walfisz theorem).

So, our main idea is to introduce some weights wp that are very
biased towards large values of S(p, y).
My choice of wp is as follows:

wp =
∏
q≤M

(
1 +

(
q

p

))
=

{
2π(M) if for all primes q ≤M we have

(
q
p

)
= 1

0 everywhere else

Here M = (lnx)1/3.
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So, the main goal is to prove that∑
x<p≤2x

S(p, y)wp ln p∑
x<p≤2x

wp ln p
� y

Let us denote the numerator and denominator of this expression
S0(x) and S1(x,A).
To provide an asymptotic formulas for S0 and S1 we need to deal with
zeros of some Dirichlet L-functions

L(s, χ) =
+∞∑
n=1

χ(n)n−s
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We will use the following two classical theorems

Theorem 4
For some constants c and c1 > 0 and any nonprincipal character χ to
the modulus q ≤ ec1

√
ln x we have

∑
p≤x

χ(p) ln p = −δ x
β

β
+O

(
xe−c1

√
ln x
)
.

Where δ = 1 if L(s, χ) has a real zero β with β > 1− c
ln q and δ = 0

otherwise.

These exceptional real zeros are called Siegel zeros.

A. Kalmynin Large values of short character sums



We will use the following two classical theorems

Theorem 4
For some constants c and c1 > 0 and any nonprincipal character χ to
the modulus q ≤ ec1

√
ln x we have

∑
p≤x

χ(p) ln p = −δ x
β

β
+O

(
xe−c1

√
ln x
)
.

Where δ = 1 if L(s, χ) has a real zero β with β > 1− c
ln q and δ = 0

otherwise.

These exceptional real zeros are called Siegel zeros.

A. Kalmynin Large values of short character sums



We will use the following two classical theorems

Theorem 4
For some constants c and c1 > 0 and any nonprincipal character χ to
the modulus q ≤ ec1

√
ln x we have

∑
p≤x

χ(p) ln p = −δ x
β

β
+O

(
xe−c1

√
ln x
)
.

Where δ = 1 if L(s, χ) has a real zero β with β > 1− c
ln q and δ = 0

otherwise.

These exceptional real zeros are called Siegel zeros.

A. Kalmynin Large values of short character sums



Theorem 5
Let χ1 and χ2 be two different real characters to the moduli q1 and q2.
Let β1 and β2 be a real zeros of L(s, χ1) and L(s, χ2) repectively.
Then we have

max{β1, β2} ≤ 1− c2√
max{q1, q2}

and

min{β1, β2} ≤ 1− c3
ln(q1q2)

So, Siegel zeros cannot be too large and they are quite rare.

In
particular, one can show that a family of L-functions L(s,

(
f
·

)
),

where f ≤ e2M is squarefree can have at most one really large
exceptional zero.
We denote the corresponding squarefree integer by f and the real zero
by βf .
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Using Theorems 4 and 5 one can obtain the following asymptotic
formulas:

S0(x) ∼ x− δ1
(2x)βf − xβf

βf

where δ1 = 1 if exceptional modulus f exists and divides P (M) and 0
otherwise

and

S1(x,A) ∼ xrA,x(1)− δ2
(2x)βf − xβf

βf
rA,x(f),

where δ2 = 1 if f exists and 0 if it is not. Here rA,x is defined by the
formula

rA,x(c) = #{(a, d) : 1 ≤ a ≤ y, d | P (M), ad = ct2 for some integer t}
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To prove Theorem 3 we need the following lemma about rA,x

Lemma 6

Let c be squarefree. Then rA,x(c)� y ln y
M if c - P (M) and

rA,x(c) = rA,x(1)� y otherwise.

Now, we consider the following three cases:

f doesn’t exist. Then δ1 = δ2 = 0 and we get

S0(x) ∼ x

S1(x,A) ∼ xrA,x(1)� xy,

therefore we are done.
f exists but it doesn’t divide P (M). Then δ1 = 0 but δ2 = 1 and
we have

S0(x) ∼ x

S1(x,A) ∼ xrA,x(1)−
(2x)βf − xβf

βf
rA,x(f)
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Lemma 6 shows that rA,x(f) is much smaller than rA,x(1), therefore
we get

S1(x,A) ∼ xrA,x(1)� xy

as in the previous case.

f exists and divides P (M). Then δ1 = δ2 = 1 and so we can get
no nice asymptotic formula for S0 and S1. We only get the
following facts:

S0(x) ∼ x−
(2x)βf − xβf

βf

and

S1(x,A) ∼ xrA,x(1)−
(2x)βf − xβf

βf
rA,x(f).
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In this final case Lemma 6 gives us rA,x(1) = rA,x(f) and so
asymptotics for our sums are spoiled in exactly the same way!

Therefore, these strange functions with βf cancel out and we finally
get

S1(x,A)

S0(x)
∼ rA,x(1)� y.

This concludes the proof.
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Thank you for your
attention!
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