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The definition of Klein polygons

a < (0,1),
Mo =1{(Q,aQ-P): P,QeZ};
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Klein polygons and continued fractions
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Klein polygons and continued fractions

n

a =[q0; 91,92, Qs, . ..] (continued fraction decomposition);
P
Qn - [QOYQL---

,Qn], n=0,1,2,... (convergents to «);
K(«) is the union of Klein polygons for the lattice I,.
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a =[q0; 91,92, Qs, . ..] (continued fraction decomposition);
P
Qn - [QOYQL---

,Qn], n=0,1,2,... (convergents to «);
K(«) is the union of Klein polygons for the lattice I,.

@ The set of vertices of K(«) consists of lattice points

Zl:(071), (Qn,aon_Pn),n:0,1,2,
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Klein polygons and continued fractions

n_

a =[q0; 91,92, Qs, . ..] (continued fraction decomposition);
P
Qn - [QOYQL---

,Qn], n=0,1,2,... (convergents to «);
K(«) is the union of Klein polygons for the lattice I,.

@ The set of vertices of K(«) consists of lattice points

Zl:(071), (Qn,aon_Pn),n:0,1,2,.. .

o If [a, b] is a side (edge) of K(«), then there exists n such that

a=(Qn_1,aQn_1 — Pp_4), b= (Qni1,a2Qni1 — Pny1),
dn+1 = #(T'N (a, b]) (1)

(integer lenth of segment [a, b]).
(#X is the number of elements in a finite set X).
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The definition of multydimensional Klein polyhedra
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The definition of multydimensional Klein polyhedra

Take any s-dimensional lattice I'.
Suppose 0 = (01,...,0s), and 0; = £1.
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The definition of multydimensional Klein polyhedra

Take any s-dimensional lattice I'.
Suppose 0 = (01,...,0s), and 0; = £1.

Definition (F. Klein 1895)

The polyhedron

Ko(T) = Conv {7 € T\ {0} : 6720, i=T,8).

is called a Klein polyhedron.
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Since 1989 V.I. Arnold has formulated many problems on the
properties of Klein polyhedra.
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Since 1989 V.I. Arnold has formulated many problems on the
properties of Klein polyhedra.

e M.L. Kontsevich, Yu.M. Suhov, ASM Transl. (1999)

(results on the existence of Klein polyhedra statistics)
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properties of Klein polyhedra.

e M.L. Kontsevich, Yu.M. Suhov, ASM Transl. (1999)

(results on the existence of Klein polyhedra statistics)
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Since 1989 V.I. Arnold has formulated many problems on the
properties of Klein polyhedra.
e M.L. Kontsevich, Yu.M. Suhov, ASM Transl. (1999)

(results on the existence of Klein polyhedra statistics)

@ J.-O. Moussalfir, Doc. Sci. Thése (2000)

(approximate calculation of statistics).

e O.N. Karpenkov, Proc. Steklov Inst. Math. (2007);
Geometry of continued fractions, Springer, Berlin-Heidelberg, 2013.

(Some conjectures on the average number of Klein polyhedra faces of fixed

type. The results of approximate calculation.)
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Since 1989 V.I. Arnold has formulated many problems on the
properties of Klein polyhedra.

e M.L. Kontsevich, Yu.M. Suhov, ASM Transl. (1999)

(results on the existence of Klein polyhedra statistics)

@ J.-O. Moussalfir, Doc. Sci. Thése (2000)

(approximate calculation of statistics).

e O.N. Karpenkov, Proc. Steklov Inst. Math. (2007);
Geometry of continued fractions, Springer, Berlin-Heidelberg, 2013.

(Some conjectures on the average number of Klein polyhedra faces of fixed
type. The results of approximate calculation.)
o A.A. Illarionov, Sbornik: Mathematics (2013, 2015, 2018)

(Some statistical properties of Klein polyhedra are examined)
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The average value of number of vertices
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The average value of number of vertices

Let fy(I') be the number of vertices of Klein polyhedra K(I),
Let Ls(N) be the set of s-dimensional integer lattices I with detl" = N.
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The average value of number of vertices

Let fy(I') be the number of vertices of Klein polyhedra K(I),
Let Ls(N) be the set of s-dimensional integer lattices I with detl" = N.

The average value of the number of vertices of Klein polyhedra for

s-dimensional integer lattices with determinant N is equal to

Eo(N; s) = Z fo(I).

FeL
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The average value of number of vertices

Let fy(I') be the number of vertices of Klein polyhedra K(I),
Let Ls(N) be the set of s-dimensional integer lattices I with detl" = N.

The average value of the number of vertices of Klein polyhedra for

s-dimensional integer lattices with determinant N is equal to

Eo(N; s) = Z fo(I).

FeLs

From results of H. Heilbronn, J. Porter (average length of a continuous

fraction), it follows that

4In2

(case s = 2) Eo(N;2) = @

InN + O(Inln N). (2)
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The average value of number of vertices (case s = 3)
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The average value of number of vertices (case s = 3)

The asymptotical formula for average number of vertices of 3D Klein

polyhedra holds

Eo(N;3) = Cy(3) - In> N+ O(In N - Inin N). (3)
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The average value of number of vertices (case s = 3)

The asymptotical formula for average number of vertices of 3D Klein
polyhedra holds

Eo(N;3) = Cy(3) - In> N+ O(In N - Inin N). (3)

Co(3) is a positive constant. It is defined by 6D integral.
Co(3) ~ 0.41205 (4)

The proof is based on the parametrization of the vertices by the basis

matrices of the corresponding lattice.
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The average value of number of vertices at § > 4.

Andrei Illarionov (PSU; IAM FEB R.Statistical properties of Klein polyhec



The average value of number of vertices at § > 4.

In the general case we can only get the following estimates for average

number of vertices of s-dimensional Klein polyhedra
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The average value of number of vertices at § > 4.

In the general case we can only get the following estimates for average

number of vertices of s-dimensional Klein polyhedra

Eo(N;s) = INS"'N+1 (AL, D. Slinkin, 2011). (5)
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In the general case we can only get the following estimates for average
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The average value of number of vertices at § > 4.

In the general case we can only get the following estimates for average

number of vertices of s-dimensional Klein polyhedra

Eo(N;s) = INS"'N+1 (AL, D. Slinkin, 2011). (5)

Conjecture

There exists a positive constant Cy(S) depending only on S such that

Eo(N;s) ~ Co(s)-In° "N at N — +oo. (6)
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Edges of Klein polyhedra

Let I be a lattice, k be a natural.
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Edges of Klein polyhedra

Let I be a lattice, k be a natural.
Let f; x(I') be the number of 1D faces (edges) F of K(I') such that
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Edges of Klein polyhedra

Let I be a lattice, k be a natural.
Let f; x(I') be the number of 1D faces (edges) F of K(I') such that

#FNT)=k+1 (7)
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Edges of Klein polyhedra

Let I be a lattice, k be a natural.
Let f; x(I') be the number of 1D faces (edges) F of K(I') such that

#FNT)=k+1 (7)

(i.e. the I-integer length of segment F is equal to k)
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Edges of Klein polyhedra

Let I be a lattice, k be a natural.
Let f; x(I') be the number of 1D faces (edges) F of K(I') such that

#FNT)=k+1 (7)

(i.e. the I-integer length of segment F is equal to k)

Define the average number of such faces by the formula

E1,k(N;s)=#L:(N) S fi(n)

rGLs(N)

(Ls(N) is the set of s-dimensional integer lattices I' with detl’ = N)
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The average value of number of edges. C:

The case § = 2 reduces to the study of the distribution of partial

quotients of continued fractions.
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The average value of number of edges. Case § = 2

The case § = 2 reduces to the study of the distribution of partial
quotients of continued fractions.
H. Heilbronn (1969) proved the following asymptotic formula for the

frequency of occurrence of a given natural K as a partial quotient:

1 : = = 4
76(Q) Pe%(:o) #{n: a:(P/Q) = k} = C(K)InQ+ Oy (NI Q)*),
C(k) = o +In ! ®(Q)={Pec[1,Q: (P,Q)=1
)= 5 (1 g ). ©@={Pelal: (P.O)=1)

Using this result we can prove that

(case s=2)  Eqx(N:2) = Ci4(2)-InN+ Ok(IninN), (8)

C14(2) = 2C(K) = 1. )
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The average value of number of edges. C
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The average value of number of edges. Case s = 3

Theorem (A.L, 2015)

For any k > 1, we have the asymptotical formula for average number of

edges of 3D Klein polyhedra
Ei x(N;3) = Cy(3) - In? N+ Ox(InN - InIn N), (10)

6 1 1 1
C1’k(3):m k3+0<k4) Xk— (11))
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The average value of number of edges. Case s = 3

Theorem (A.L, 2015)

For any k > 1, we have the asymptotical formula for average number of

edges of 3D Klein polyhedra
Ei x(N;3) = Cy(3) - In? N+ Ox(InN - InIn N), (10)

6 1 1 1
C1’k(3):m k3+0<k4) Xk— (11))

Problem: k =17
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The average value of number of edges. Case § = 3

Theorem (A.L, 2015)

For any k > 1, we have the asymptotical formula for average number of

edges of 3D Klein polyhedra

Ei x(N;3) = Cy(3) - In? N+ Ox(InN - InIn N), (10)
6 1 1 1
C1’k(3):m k3+0<k4) Xk— (11))

Problem: kK =17
If relation (10) holds for k = 1, then we have asymptotical formulas for
average values of number of vertices, edges, facets (i.e. f-vector) of 3D

Klein polyhedra.
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A polyhedron (polygon) is said to be integer (integral) if all its vertices

are integer points.
Integral polyhedra Py, Po C RS are said to be integer-linear equivalent

(has the same integer-linear type) if there is a linear map L such that
L:RS — ]RS, L75 = ZS, LP1 = P2.

The integer-linear type of a polyhedron depends on the number and

location of integer points contained in this polyhedron.
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The integer-linear type of Klein polyhedra face
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The integer-linear type of Klein polyhedra face

Let F be a d-dimensional face of Klein polyhedra K(I).
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The integer-linear type of Klein polyhedra face

Let F be a d-dimensional face of Klein polyhedra K(I).
Let L be a linear map such that

L:RS - RS, LI =275

The integer-linear type of the polyhedron LF does not depend on the L.
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The integer-linear type of Klein polyhedra face

Let F be a d-dimensional face of Klein polyhedra K(I).
Let L be a linear map such that

L:RS - RS, LI =275

The integer-linear type of the polyhedron LF does not depend on the L.

Let T be an integer d-dimensional integral polyhedron.

We say that F is a T-type face, if LF is integer-linear equivalent to T.
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Example

Let d =1, i.e. F is a 1-dimensional face (edge). Then the type of F is
unique defined by the value

k=#(FNT)—1.

Ifdmr=2,T=r,={(Q,aQ— P): P,Q € Z}, then k is equal to
corresponding gky1 (partial quotient for ).

The type of a face depends on the number and location of lattices

points contained in this face.
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The definition of the average number of T-type f.
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The definition of the average number of T-type f.

Let f(I'; T) be the number of T-type faces of Klein polyhedra K(I).
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The definition of the average number of T-type fa

Let f(I'; T) be the number of T-type faces of Klein polyhedra K(I).

Define the average number of such faces

Er(N,s) =

Zfrr)

rELs(N)

#s(

(Ls(N) is the set of s-dimensional integer lattices [ with detl' = N)

Andrei Illarionov (PSU; IAM FEB R.Statistical properties of Klein polyhec



The definition of the average number of T-type faces

Let f(I'; T) be the number of T-type faces of Klein polyhedra K(I).

Define the average number of such faces

Er(N,s) =

Zfrr)

rELs(N)

# s(
(Ls(N) is the set of s-dimensional integer lattices [ with detl' = N)

Let s = 2. Then the type T of facet is unique defined by the number of
lattice points laying at the face. Let k = #(T N Z2) — 1. Then

(case s =2) ET(N;2) = E{ k(N;2) ~2-C(k):InN, N — oo. (12)
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The average value of number of T-type facets. Case § = 3

Let TFs be the set of (s — 1)-dimensional integral polyhedra T C R®
such that there is a s-dimensional Klein polyhedron having T-type

facet.
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The average value of number of T-type facets. Case § = 3

Let TFs be the set of (s — 1)-dimensional integral polyhedra T C R®
such that there is a s-dimensional Klein polyhedron having T-type

facet.

Theorem (A.I., 2013)
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The average value of number of T-type facets. Case § = 3

Let TFs be the set of (s — 1)-dimensional integral polyhedra T C R®
such that there is a s-dimensional Klein polyhedron having T-type

facet.

Theorem (A.I., 2013)

The asymptotical formula for average value of number of T-type facets
of 3D Klein polyhedra holds

VT e TR  Er(N;3)=Cr(3)-IPN+Or(InN-IninN).  (13)
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The average value of number of T ts. Case s > 4
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The average value of number of T-type facets. Case s > 4

Theorem (A.IL, 2018)
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The average value of number of T-type facets. Case s > 4

Theorem (A.IL, 2018)
Let s>2, T € TFs, and

A) the relative interior of the polyhedron T has at least one integer

point.
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The average value of number of T-type facets. Case s > 4

Theorem (A.IL, 2018)
Let s>2, T € TFs, and

A) the relative interior of the polyhedron T has at least one integer
point.
Then
E7r(N;s) = Cr(s)-InS" "N+ Or(In2N-IninN). (14)

v

The constant Cr(S) is defined by (s? — s)-dimensional integral
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The constant Cr(S)

Let Dg(R) € GLg(RR) be the set of diagonal (S x §)-matrices.
Let P be the projectivisation mapping GLg(R) — Pg(R).
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The constant Cr(S)

Let Dg(R) € GLg(RR) be the set of diagonal (S x §)-matrices.

Let P5(R) = Ds(R. )\GLs(R).

Let P be the projectivisation mapping GLg(R) — Pg(R).

Define the measure p on the Pg(R).

Let GLg(R, k) = {X € GLg(R) : xj, = 1, i = 1,5}.

The set of all GLg(R, k) forms an atlas of the manifold Pg(R), and
matrices from GLg(RR, k) are the coordinates of the corresponding
elements of Ps(R, k).

If W C GLg(R, k), and w = P(W), then

= |y TdetX]s
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The constant Cr(S)

For any T € TFg there is a matrix set Q7 C GLg(R) such that

Ds(R) - Q7 = Qr,

CWP@n) 1
Crl8) = 1@)@) .5 (s D
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The condition A)

A) the relative interior of the polyhedron T has at least one integer

point.

Let us consider the polyhedron T as a n-dimensional integral
polyhedron from R” (n=s—1).
Let the set U(T) consists of x € R” such that

Conv(TU{x})NZ"=(Tu{x})nZ".
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The condition A)

A) the relative interior of the polyhedron T has at least one integer

point.

Let us consider the polyhedron T as a n-dimensional integral
polyhedron from R” (n=s—1).
Let the set U(T) consists of x € R” such that

Conv(TU{x})NZ"=(Tu{x})nZ".

Question:
Is finite the set U(T) NZ"?
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The integer symplex A C R" is called empty if A NZ" consists of

vertices of A.
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The integer symplex A C R" is called empty if A NZ" consists of

vertices of A.

Let A be a 2D integral empty symplex. Then mes A = 1/2.

From this property, it follows that
U(T)NZ2 is finite (if n =2, i.e. s =3).
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The integer symplex A C R" is called empty if A NZ" consists of

vertices of A.

Let A be a 2D integral empty symplex. Then mes A = 1/2.

From this property, it follows that
U(T)NZ2 is finite (if n =2, i.e. s =3).

Let n > 3. For any R > 1 there is a n-dimensional integral empty

symplex A such that mes A > R.

From this property, it follows that
U(T)NZ" may be infinite (if n > 3, i.e. § > 4).
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Let T be a n-dimensional integral polyhedron from R".

Suppose that interior of T contents at least one integer point.
Then the set U(T) is bounded (= U(T) NZ" is finite).
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Some unsolved problems
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Some unsolved problems

@ A number of properties of 3-dimensional Klein polyhedra are not
studied.
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Some unsolved problems

@ A number of properties of 3-dimensional Klein polyhedra are not
studied.

® What is the typical vertex degree?
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Some unsolved problems

@ A number of properties of 3-dimensional Klein polyhedra are not
studied.
® What is the typical vertex degree?
® How many sides does a typical face have?

Andrei Illarionov (PSU; IAM FEB R.Statistical properties of Klein polyhec



Some unsolved problems

@ A number of properties of 3-dimensional Klein polyhedra are not
studied.
® What is the typical vertex degree?
® How many sides does a typical face have?
® What is the integral area of a typical face? of Klein polyhedron
boundary?
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Some unsolved problems

@ A number of properties of 3-dimensional Klein polyhedra are not
studied.

® What is the typical vertex degree?

® How many sides does a typical face have?

® What is the integral area of a typical face? of Klein polyhedron
boundary?

@ The almost all presented results were obtained for 3D Klein
polyhedra. We know almost nothing about s-dimensional Klein
polyhedra at s > 3.
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Thank you for your attention!
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