Statistical properties of Klein polyhedra

Andrei Illarionov

Pacific State University (Khabarovsk, Russia)

$$lpha \in (0, 1),$$

 $\Gamma_{lpha} = \{ (Q, lpha Q - P) : P, Q \in \mathbb{Z} \};$

$$lpha \in (0, 1),$$

 $\Gamma_{lpha} = \{ (Q, \alpha Q - P) : P, Q \in \mathbb{Z} \};$

$$lpha \in (0, 1),$$

 $\Gamma_{lpha} = \{ (Q, lpha Q - P) : P, Q \in \mathbb{Z} \};$

$$lpha \in (0, 1),$$

 $\Gamma_{lpha} = \{ (Q, lpha Q - P) : P, Q \in \mathbb{Z} \};$

 $\begin{aligned} &\alpha = [q_0; q_1, q_2, q_3, \ldots] \text{ (continued fraction decomposition)}; \\ &\frac{P_n}{Q_n} = [q_0; q_1, \ldots, q_n], \ n = 0, 1, 2, \ldots \text{ (convergents to } \alpha); \\ &\mathcal{K}(\alpha) \text{ is the union of Klein polygons for the lattice } \Gamma_{\alpha}. \end{aligned}$

 $\begin{aligned} &\alpha = [q_0; q_1, q_2, q_3, \ldots] \text{ (continued fraction decomposition)}; \\ &\frac{P_n}{Q_n} = [q_0; q_1, \ldots, q_n], \ n = 0, 1, 2, \ldots \text{ (convergents to } \alpha); \\ &\mathcal{K}(\alpha) \text{ is the union of Klein polygons for the lattice } \Gamma_{\alpha}. \end{aligned}$

• The set of vertices of $K(\alpha)$ consists of lattice points

$$\pm (0,1), \qquad (Q_n, \alpha Q_n - P_n), \ n = 0, 1, 2, \dots$$

 $\begin{aligned} &\alpha = [q_0; q_1, q_2, q_3, \ldots] \text{ (continued fraction decomposition)}; \\ &\frac{P_n}{Q_n} = [q_0; q_1, \ldots, q_n], \ n = 0, 1, 2, \ldots \text{ (convergents to } \alpha); \\ &\mathcal{K}(\alpha) \text{ is the union of Klein polygons for the lattice } \Gamma_{\alpha}. \end{aligned}$

• The set of vertices of $\mathcal{K}(\alpha)$ consists of lattice points

$$\pm (0,1), \qquad (Q_n, \alpha Q_n - P_n), \ n = 0, 1, 2, \dots$$

• If [a, b] is a side (edge) of $\mathcal{K}(\alpha)$, then there exists n such that

$$\begin{aligned} \mathbf{a} &= (\mathbf{Q}_{n-1}, \alpha \mathbf{Q}_{n-1} - \mathbf{P}_{n-1}), \qquad \mathbf{b} &= (\mathbf{Q}_{n+1}, \alpha \mathbf{Q}_{n+1} - \mathbf{P}_{n+1}), \\ \mathbf{q}_{n+1} &= \# (\Gamma \cap (\mathbf{a}, \mathbf{b}]) \quad \text{(integer lenth of segment } [\mathbf{a}, \mathbf{b}]). \end{aligned}$$
(1)

(#X is the number of elements in a finite set X).

The definition of multydimensional Klein polyhedra

The definition of multydimensional Klein polyhedra

Take any **s**-dimensional lattice Γ . Suppose $\theta = (\theta_1, \dots, \theta_s)$, and $\theta_i = \pm 1$. Take any \boldsymbol{s} -dimensional lattice Γ .

Suppose $\theta = (\theta_1, \ldots, \theta_s)$, and $\theta_i = \pm 1$.

Definition (F. Klein 1895)

The polyhedron

$$K_{\theta}(\Gamma) = \operatorname{Conv} \{ \gamma \in \Gamma \setminus \{ \mathbf{0} \} : \ \theta_i \gamma_i \ge \mathbf{0}, \ i = \overline{\mathbf{1}, \mathbf{s}} \}.$$

is called a Klein polyhedron.

Take any \boldsymbol{s} -dimensional lattice Γ .

Suppose $\theta = (\theta_1, \ldots, \theta_s)$, and $\theta_i = \pm 1$.

Definition (F. Klein 1895)

The polyhedron

$$K_{\theta}(\Gamma) = \operatorname{Conv} \{ \gamma \in \Gamma \setminus \{ \mathbf{0} \} : \ \theta_i \gamma_i \ge \mathbf{0}, \ i = \overline{\mathbf{1}, \mathbf{s}} \}.$$

is called a Klein polyhedron.

$$K(\Gamma) = \bigcup_{\theta} K_{\theta}(\Gamma).$$

프 🖌 🔺 프 🕨

• M.L. Kontsevich, Yu.M. Suhov, ASM Transl. (1999) (results on the existence of Klein polyhedra statistics)

- <u>M.L. Kontsevich, Yu.M. Suhov</u>, ASM Transl. (1999) (results on the existence of Klein polyhedra statistics)
- J.-O. Moussafir, Doc. Sci. Thése (2000)

(approximate calculation of statistics).

- <u>M.L. Kontsevich, Yu.M. Suhov</u>, ASM Transl. (1999) (results on the existence of Klein polyhedra statistics)
- <u>J.-O. Moussafir</u>, Doc. Sci. Thése (2000) (approximate calculation of statistics).
- <u>O.N. Karpenkov</u>, Proc. Steklov Inst. Math. (2007); Geometry of continued fractions, Springer, Berlin-Heidelberg, 2013. (Some conjectures on the average number of Klein polyhedra faces of fixed

type. The results of approximate calculation.)

- <u>M.L. Kontsevich, Yu.M. Suhov</u>, ASM Transl. (1999) (results on the existence of Klein polyhedra statistics)
- <u>J.-O. Moussafir</u>, Doc. Sci. Thése (2000) (approximate calculation of statistics).
- <u>O.N. Karpenkov</u>, Proc. Steklov Inst. Math. (2007); Geometry of continued fractions, Springer, Berlin-Heidelberg, 2013. (Some conjectures on the average number of Klein polyhedra faces of fixed type. The results of approximate calculation.)
- <u>A.A. Illarionov</u>, Sbornik: Mathematics (2013, 2015, 2018) (Some statistical properties of Klein polyhedra are examined)

(4) (5) (4) (5) (4)

Andrei Illarionov (PSU; IAM FEB R.Statistical properties of Klein polyhec

ъ

Let $f_0(\Gamma)$ be the number of vertices of Klein polyhedra $K(\Gamma)$, Let $L_s(N)$ be the set of *s*-dimensional integer lattices Γ with $\det \Gamma = N$.

Let $f_0(\Gamma)$ be the number of vertices of Klein polyhedra $K(\Gamma)$, Let $L_s(N)$ be the set of *s*-dimensional integer lattices Γ with $\det \Gamma = N$.

The average value of the number of vertices of Klein polyhedra for s-dimensional integer lattices with determinant N is equal to

$$E_0(N;s) = \frac{1}{\#L_s(N)} \sum_{\Gamma \in L_s(N)} f_0(\Gamma).$$

Let $f_0(\Gamma)$ be the number of vertices of Klein polyhedra $K(\Gamma)$, Let $L_s(N)$ be the set of *s*-dimensional integer lattices Γ with det $\Gamma = N$.

The average value of the number of vertices of Klein polyhedra for s-dimensional integer lattices with determinant N is equal to

$$E_0(N;s) = \frac{1}{\#L_s(N)} \sum_{\Gamma \in L_s(N)} f_0(\Gamma).$$

From results of H. Heilbronn, J. Porter (average length of a continuous fraction), it follows that

(case
$$s = 2$$
) $E_0(N; 2) = \frac{4 \ln 2}{\zeta(2)} \ln N + O(\ln \ln N).$ (2)

The average value of number of vertices (case s = 3)

Theorem (A.I., 2013)

The asymptotical formula for average number of vertices of 3D Klein polyhedra holds

$$E_0(N;3) = C_0(3) \cdot \ln^2 N + O(\ln N \cdot \ln \ln N).$$
 (3)

Theorem (A.I., 2013)

The asymptotical formula for average number of vertices of 3D Klein polyhedra holds

$$E_0(N;3) = C_0(3) \cdot \ln^2 N + O(\ln N \cdot \ln \ln N).$$
 (3)

 $C_0(3)$ is a positive constant. It is defined by 6D integral.

$$C_0(3) \approx 0.41205$$
 (4)

The proof is based on the parametrization of the vertices by the basis matrices of the corresponding lattice.

The average value of number of vertices at $s \geq 4$.

In the general case we can only get the following estimates for average number of vertices of $\pmb{s}\text{-dimensional Klein polyhedra}$

In the general case we can only get the following estimates for average number of vertices of \boldsymbol{s} -dimensional Klein polyhedra

$$E_0(N; s) \underset{s}{\asymp} \ln^{s-1} N + 1 \qquad (A.I., D. Slinkin, 2011). \tag{5}$$

In the general case we can only get the following estimates for average number of vertices of \boldsymbol{s} -dimensional Klein polyhedra

$$E_0(N; s) \underset{s}{\asymp} \ln^{s-1} N + 1 \qquad (A.I., D. Slinkin, 2011). \tag{5}$$

Conjecture

In the general case we can only get the following estimates for average number of vertices of \boldsymbol{s} -dimensional Klein polyhedra

$$E_0(N; s) \underset{s}{\simeq} \ln^{s-1} N + 1 \qquad (A.I., D. Slinkin, 2011). \tag{5}$$

Conjecture

There exists a positive constant $C_0(s)$ depending only on s such that

Let Γ be a lattice, k be a natural.

-

Let ${\sf \Gamma}$ be a lattice, ${\it k}$ be a natural.

Let $f_{1,k}(\Gamma)$ be the number of 1D faces (edges) F of $K(\Gamma)$ such that

Let Γ be a lattice, k be a natural. Let $f_{1,k}(\Gamma)$ be the number of 1D faces (edges) F of $K(\Gamma)$ such that

$$\#(F \cap \Gamma) = k + 1 \tag{7}$$

Let Γ be a lattice, k be a natural. Let $f_{1,k}(\Gamma)$ be the number of 1D faces (edges) F of $K(\Gamma)$ such that

$$\#(F \cap \Gamma) = k + 1 \tag{7}$$

(i.e. the $\Gamma\text{-integer}$ length of segment F is equal to k)

Let Γ be a lattice, k be a natural.

Let $f_{1,k}(\Gamma)$ be the number of 1D faces (edges) F of $K(\Gamma)$ such that

$$\#(F \cap \Gamma) = k + 1 \tag{7}$$

(i.e. the Γ -integer length of segment F is equal to K) Define the average number of such faces by the formula

$$E_{1,k}(N;s) = \frac{1}{\#L_s(N)} \sum_{\Gamma \in L_s(N)} f_{1,k}(\Gamma)$$

 $(L_s(N))$ is the set of s-dimensional integer lattices Γ with det $\Gamma = N$
The average value of number of edges. Case s = 2

The case s = 2 reduces to the study of the distribution of partial quotients of continued fractions.

The average value of number of edges. Case s = 2

The case s = 2 reduces to the study of the distribution of partial quotients of continued fractions.

H. Heilbronn (1969) proved the following asymptotic formula for the frequency of occurrence of a given natural k as a partial quotient:

$$\frac{1}{\#\Phi(Q)} \sum_{P \in \Phi(Q)} \#\{n : q_n(P/Q) = k\} = C(k) \ln Q + O_k \left((\ln \ln Q)^4 \right),$$
$$C(k) = \frac{2}{\zeta(2)} \cdot \ln \left(1 + \frac{1}{k(k-2)} \right), \quad \Phi(Q) = \{P \in [1,Q] : (P,Q) = 1\}.$$

Using this result we can prove that

(case
$$s = 2$$
) $E_{1,k}(N; 2) = C_{1,k}(2) \cdot \ln N + O_k(\ln \ln N)$, (8)
 $C_{1,k}(2) = 2C(k) \asymp \frac{1}{k^2}$. (9)

The average value of number of edges. Case s = 3

Theorem (A.I., 2015)

For any $\underline{k > 1}$, we have the asymptotical formula for average number of edges of 3D Klein polyhedra

$$E_{1,k}(N;3) = C_{1,k}(3) \cdot \ln^2 N + O_k(\ln N \cdot \ln \ln N), \quad (10)$$

$$C_{1,k}(3) = \frac{6}{\zeta(2)\zeta(3)} \cdot \frac{1}{k^3} + O\left(\frac{1}{k^4}\right) \asymp \frac{1}{k^3}. \quad (11)$$

Theorem (A.I., 2015)

For any $\underline{k > 1}$, we have the asymptotical formula for average number of edges of 3D Klein polyhedra

$$E_{1,k}(N;3) = C_{1,k}(3) \cdot \ln^2 N + O_k(\ln N \cdot \ln \ln N), \quad (10)$$

$$C_{1,k}(3) = \frac{6}{\zeta(2)\zeta(3)} \cdot \frac{1}{k^3} + O\left(\frac{1}{k^4}\right) \asymp \frac{1}{k^3}. \quad (11)$$

Problem: k = 1?

Theorem (A.I., 2015)

For any $\underline{k > 1}$, we have the asymptotical formula for average number of edges of 3D Klein polyhedra

$$E_{1,k}(N;3) = C_{1,k}(3) \cdot \ln^2 N + O_k(\ln N \cdot \ln \ln N), \quad (10)$$

$$C_{1,k}(3) = \frac{6}{\zeta(2)\zeta(3)} \cdot \frac{1}{k^3} + O\left(\frac{1}{k^4}\right) \asymp \frac{1}{k^3}. \quad (11)$$

Problem: k = 1?

If relation (10) holds for k = 1, then we have asymptotical formulas for average values of number of vertices, edges, facets (i.e. *f*-vector) of 3D Klein polyhedra.

A polyhedron (polygon) is said to be integer (integral) if all its vertices are integer points.

Integral polyhedra $P_1, P_2 \subset \mathbb{R}^s$ are said to be integer-linear equivalent (has the same integer-linear type) if there is a linear map L such that

$$L: \mathbb{R}^s \to \mathbb{R}^s, \quad L\mathbb{Z}^s = \mathbb{Z}^s, \quad LP_1 = P_2.$$

The integer-linear type of a polyhedron depends on the number and location of integer points contained in this polyhedron.

The integer-linear type of Klein polyhedra face

The integer-linear type of Klein polyhedra face

Let F be a d-dimensional face of Klein polyhedra $K(\Gamma)$.

Let F be a d-dimensional face of Klein polyhedra $K(\Gamma)$. Let L be a linear map such that

$$L: \mathbb{R}^s \to \mathbb{R}^s, \quad L\Gamma = \mathbb{Z}^s.$$

The integer-linear type of the polyhedron LF does not depend on the L.

Let F be a d-dimensional face of Klein polyhedra $K(\Gamma)$. Let L be a linear map such that

$$L: \mathbb{R}^{s} \to \mathbb{R}^{s}, \quad L\Gamma = \mathbb{Z}^{s}.$$

The integer-linear type of the polyhedron LF does not depend on the L.

Definition

Let T be an integer d-dimensional integral polyhedron.

We say that F is a T-type face, if LF is integer-linear equivalent to T.

Example

Let d = 1, i.e. F is a 1-dimensional face (edge). Then the type of F is unique defined by the value

$$k=\#(F\cap\Gamma)-1.$$

If dim $\Gamma = 2$, $\Gamma = \Gamma_{\alpha} = \{(Q, \alpha Q - P) : P, Q \in \mathbb{Z}\}$, then k is equal to corresponding q_{k+1} (partial quotient for α).

The type of a face depends on the number and location of lattices points contained in this face.

The definition of the average number of T-type faces

The definition of the average number of T-type faces

Let $f(\Gamma; T)$ be the number of T-type faces of Klein polyhedra $K(\Gamma)$.

Let $f(\Gamma; T)$ be the number of T-type faces of Klein polyhedra $K(\Gamma)$. Define the average number of such faces

$$E_T(N,s) = rac{1}{\# L_s(N)} \sum_{\Gamma \in L_s(N)} f(\Gamma, T).$$

 $(L_s(N) \text{ is the set of } s \text{-dimensional integer lattices } \Gamma \text{ with } \det \Gamma = N)$

Let $f(\Gamma; T)$ be the number of T-type faces of Klein polyhedra $K(\Gamma)$. Define the average number of such faces

$$E_T(N, s) = rac{1}{\# L_s(N)} \sum_{\Gamma \in L_s(N)} f(\Gamma, T).$$

 $(\mathit{L}_{s}(N) \text{ is the set of } s\text{-dimensional integer lattices } \Gamma \text{ with } det \Gamma = N)$

Let s = 2. Then the type T of facet is unique defined by the number of lattice points laying at the face. Let $k = #(T \cap \mathbb{Z}^2) - 1$. Then

(case
$$s = 2$$
) $E_T(N; 2) = E_{1,k}(N; 2) \sim 2 \cdot C(k) \cdot \ln N, \quad N \to \infty.$ (12)

Let TF_s be the set of (s-1)-dimensional integral polyhedra $T \subset \mathbb{R}^s$ such that there is a *s*-dimensional Klein polyhedron having *T*-type facet.

Let TF_s be the set of (s-1)-dimensional integral polyhedra $T \subset \mathbb{R}^s$ such that there is a *s*-dimensional Klein polyhedron having *T*-type facet.

Theorem (A.I., 2013)

Let TF_s be the set of (s-1)-dimensional integral polyhedra $T \subset \mathbb{R}^s$ such that there is a *s*-dimensional Klein polyhedron having *T*-type facet.

Theorem (A.I., 2013)

The asymptotical formula for average value of number of T-type facets of 3D Klein polyhedra holds

$$\forall T \in TF_3 \qquad E_T(N;3) = C_T(3) \cdot \ln^2 N + O_T(\ln N \cdot \ln \ln N).$$
(13)

The average value of number of T-type facets. Case $s \ge 4$

The average value of number of T-type facets. Case $s \ge 4$

Theorem (A.I., 2018)

The average value of number of T-type facets. Case $s \ge 4$

Theorem (A.I., 2018)

Let $s \geq 2, T \in TF_s$, and

A) the relative interior of the polyhedron \mathcal{T} has at least one integer point.

Theorem (A.I., 2018)

Let $s \geq 2, T \in TF_s$, and

A) the relative interior of the polyhedron \mathcal{T} has at least one integer point.

Then

$$E_{\mathcal{T}}(N;s) = C_{\mathcal{T}}(s) \cdot \ln^{s-1} N + O_{\mathcal{T}}(\ln^{s-2} N \cdot \ln \ln N).$$
(14)

The constant $C_{\mathcal{T}}(s)$ is defined by $(s^2 - s)$ -dimensional integral

Let $D_{s}(\mathbb{R}) \subset GL_{s}(\mathbb{R})$ be the set of diagonal $(s \times s)$ -matrices. Let $P_{s}(\mathbb{R}) = D_{s}(\mathbb{R}_{+}) \setminus GL_{s}(\mathbb{R})$.

Let \mathcal{P} be the projectivisation mapping $GL_{s}(\mathbb{R}) \to P_{s}(\mathbb{R})$.

Let $D_{s}(\mathbb{R}) \subset GL_{s}(\mathbb{R})$ be the set of diagonal $(s \times s)$ -matrices. Let $P_{s}(\mathbb{R}) = D_{s}(\mathbb{R}_{+}) \setminus GL_{s}(\mathbb{R})$.

Let \mathcal{P} be the projectivisation mapping $\operatorname{GL}_{\mathfrak{s}}(\mathbb{R}) \to \operatorname{P}_{\mathfrak{s}}(\mathbb{R})$. Define the measure μ on the $\operatorname{P}_{\mathfrak{s}}(\mathbb{R})$.

Let $\operatorname{GL}_{\mathcal{S}}(\mathbb{R}, k) = \{ X \in \operatorname{GL}_{\mathcal{S}}(\mathbb{R}) : x_{ik_i} = 1, i = \overline{1, s} \}.$

The set of all $\operatorname{GL}_{\mathfrak{s}}(\mathbb{R}, k)$ forms an atlas of the manifold $\operatorname{P}_{\mathfrak{s}}(\mathbb{R})$, and matrices from $\operatorname{GL}_{\mathfrak{s}}(\mathbb{R}, k)$ are the coordinates of the corresponding elements of $\operatorname{P}_{\mathfrak{s}}(\mathbb{R}, k)$.

If $W \subset \operatorname{GL}_{s}(\mathbb{R}, k)$, and $w = \mathcal{P}(W)$, then

$$\mu(w) = \int_W \frac{dX}{|\det X|^s}.$$

(《문) 《문)

For any $T \in TF_s$ there is a matrix set $\Omega_T \subset GL_s(\mathbb{R})$ such that

$$\mathrm{D}_{s}(\mathbb{R})\cdot\Omega_{T}=\Omega_{T},$$
 $\mathcal{C}_{T}(s)=rac{\mu(\mathcal{P}(\Omega_{T}))}{\zeta(2)\zeta(3)\ldots\zeta(s)}rac{1}{(s-1)!}.$

A) the relative interior of the polyhedron \mathcal{T} has at least one integer point.

Let us consider the polyhedron T as a n-dimensional integral polyhedron from \mathbb{R}^n (n = s - 1).

Let the set U(T) consists of $x \in \mathbb{R}^n$ such that

 $\operatorname{Conv}\left(T\cup\{x\}\right)\cap\mathbb{Z}^{n}=\left(T\cup\{x\}\right)\cap\mathbb{Z}^{n}.$

A) the relative interior of the polyhedron \mathcal{T} has at least one integer point.

Let us consider the polyhedron T as a n-dimensional integral polyhedron from \mathbb{R}^n (n = s - 1).

Let the set U(T) consists of $x \in \mathbb{R}^n$ such that

$$\operatorname{Conv}(T \cup \{x\}) \cap \mathbb{Z}^n = (T \cup \{x\}) \cap \mathbb{Z}^n.$$

Question:

Is finite the set $U(T) \cap \mathbb{Z}^n$?

Definition

The integer symplex $\Delta \subset \mathbb{R}^n$ is called empty if $\Delta \cap \mathbb{Z}^n$ consists of vertices of Δ .

Definition

The integer symplex $\Delta \subset \mathbb{R}^n$ is called empty if $\Delta \cap \mathbb{Z}^n$ consists of vertices of Δ .

(case *n* = 2 (*s* = 3))

Let Δ be a 2D integral empty symplex. Then $mes \Delta = 1/2$.

From this property, it follows that

$$U(T) \cap \mathbb{Z}^2$$
 is finite (if $n = 2$, i.e. $s = 3$).

Definition

The integer symplex $\Delta \subset \mathbb{R}^n$ is called empty if $\Delta \cap \mathbb{Z}^n$ consists of vertices of Δ .

(case *n* = 2 (*s* = 3))

Let Δ be a 2D integral empty symplex. Then $mes \Delta = 1/2$.

From this property, it follows that

$$U(T) \cap \mathbb{Z}^2$$
 is finite (if $n = 2$, i.e. $s = 3$).

(case *n* ≥ 3 (*s* ≥ 4))

Let $n \geq 3$. For any R > 1 there is a *n*-dimensional integral empty symplex Δ such that $\text{mes } \Delta > R$.

From this property, it follows that

 $U(T) \cap \mathbb{Z}^n$ may be infinite (if $n \geq 3$, i.e., $s \geq 4$).

Lemma

Let T be a *n*-dimensional integral polyhedron from \mathbb{R}^n . Suppose that interior of T contents at least one integer point. Then the set U(T) is bounded ($\Longrightarrow U(T) \cap \mathbb{Z}^n$ is finite).

Some unsolved problems

Andrei Illarionov (PSU; IAM FEB R.Statistical properties of Klein polyhec

æ

돈 ▶ . ★ 돈 ▶

• A number of properties of **3**-dimensional Klein polyhedra are not studied.

- A number of properties of **3**-dimensional Klein polyhedra are not studied.
 - What is the typical vertex degree?

- A number of properties of 3-dimensional Klein polyhedra are not studied.
 - What is the typical vertex degree?
 - How many sides does a typical face have?
- A number of properties of 3-dimensional Klein polyhedra are not studied.
 - What is the typical vertex degree?
 - How many sides does a typical face have?
 - What is the integral area of a typical face? of Klein polyhedron boundary?

- A number of properties of 3-dimensional Klein polyhedra are not studied.
 - What is the typical vertex degree?
 - How many sides does a typical face have?
 - What is the integral area of a typical face? of Klein polyhedron boundary?
- The almost all presented results were obtained for <u>3D</u> Klein polyhedra. We know almost nothing about *s*-dimensional Klein polyhedra at s > 3.

Thank you for your attention!