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(Sudler’s) Sine Product

Let α ∈ R, and denote by Pn(α) the sine product

Pn(α) =
n∏

r=1

|2 sinπrα| .

Q: How does Pn(α) grow as n→∞?



Suppose we let α =
√
3.
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Q: Is Pn(
√
3) = O(n) as n→∞?



Growth of Pn

If α = p/q, then Pn(α) = 0 for n ≥ q.

‖Pn‖ = supα∈[0,1] |Pn(α)| grows exponentially, and

lim
n→∞

‖Pn‖1/n = E ≈ 1.22.

For almost all α, we have

lim
n→∞

Pn(α)
1/n = 1.

For all irrational α, we have

lim sup
n→∞

logPn(α)

log n
≥ 1.
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Dependence on continued fraction coefficients

Let
α = [a0; a1, a2, a3, . . .] = a0 +

1
a1 +

1
a2+

1
a3+···

.

Theorem (Lubinsky)

If supj aj <∞, then there exist constants C1,C2 > 0 such that

n−C2 ≤ Pn(α) ≤ nC1 .



Dependence on continued fraction coefficients

Theorem (Lubinsky)

If supj aj =∞, then

lim inf
n→∞

logPn(α) = −∞. (1)

In fact, Pn(α) will decay to zero for infinitely many n faster than
any power of n.

Quote Lubinsky (1999): “...and we are certain that (1) is true in
general.”



The special case α = (
√
5− 1)/2

Let α = ϕ = (
√
5− 1)/2 = [0; 1, 1, 1, . . .] = [0; 1].

Denote by Fn = (1, 1, 2, 3, 5, 8, . . .) the Fibonacci sequence.

Consider the subsequence

PFn(ϕ) =
Fn∏
r=1

|2 sinπrϕ| .

Theorem (Mestel and Verschueren 2016)

lim
n→∞

PFn(ϕ) = c > 0
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Periodic continued fraction expansions

Let α =
{√

2
}
= [0; 2] = [0; 2, 2, 2, . . .].
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Periodic continued fraction expansions

Let α =
{√

3
}
= [0; 1, 2].
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Periodic continued fraction expansions

Let α =
{√

7
}
= [0; 1, 1, 1, 4].
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Periodic continued fraction expansions

Theorem (G. and Neumüller 2018)

Let α = [0; a1, . . . , a`], and denote by qn the nth best
approximation denominator of α. Then

lim
m→∞

Pq`m+k
(α) = lim

m→∞

q`m+k∏
r=1

|2 sinπrα| = ck

for positive constants c1, . . . , c`.

Corollary
Adding a preperiod to the continued fraction expansion of α does
not change the conclusion in the theorem above.



Recovering Lubinsky’s polynomial bounds for ϕ =
√

5−1
2

Let n =
∑m

j=1 Fnj be the Zeckendorf representation of n. Then we
may rewrite Pn(ϕ) as

Pn(ϕ) =
m∏
j=1

Fnj∏
r=1

|2 sinπ(rϕ+ kjϕ)| ,

with kj =
∑m

s=j+1 Fns for 1 ≤ j ≤ m − 1 and km = 0.

Note that m = O(log n).



Recovering Lubinsky’s polynomial bounds for ϕ =
√

5−1
2

All “inner products” can be bounded by real constants
0 < K1 < 1 < K2:

K1 ≤
Fnj∏
r=1

|2 sinπ(rϕ+ kjϕ)| ≤ K2

Thus, we have
Km

1 ≤ Pn(ϕ) ≤ Km
2 .



Our strategy

Show that for sufficiently large values of nj (or equivalently j), the
inner product can be bounded below by

Fnj∏
r=1

|2 sinπ(rϕ+ kjϕ)| ≥ 1, j ≥ J.

Accordingly, we have

Pn(ϕ) ≥ K J
1 for all n = 1, 2, . . .



Theorem (G., Kaltenböck and Neumüller)

For ϕ = (
√
5− 1)/2, we have

Pn(ϕ) > c > 0 for all n ∈ N. (2)

In other words, it is not the case that

lim inf
n→∞

Pn(α) = 0

for all irrationals α.

Q: Does (2) hold for other quadratic irrationals?
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Thank you for your attention.


