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A procedure to construct a generalized Cantor set and
Cantor function

[a, b) interval in R and q ≥ 2

The operation

Delq
(
[a, b)

)
:= [a, b) \

[
a +

b − a

q
, b − b − a

q

)
.

converts the interval [a, b) into a pair of disjoint intervals.

Start with [0, 1] and iterate Delq an infinite number of steps; at
the n−th step apply Delq to each one of the intervals obtained in
the (n − 1)−th step.

Definition

The q−Cantor set is the complement in [0, 1] of the union of all
the deleted intervals.

Of course Del3 produces the classical Cantor set.
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Rules for numbering the deleted intervals

(a) Number the intervals deleted at step n with a string of
symbols εn−1, . . . , ε1, ε0 (of length n), εj ∈ {0, 1}, ε0 = 1.

(b) If at the step n we have deleted an interval I
(q)
εn−1,...,ε1,1

, the
interval deleted at step n + 1 on the left (resp. on the right)

of I
(q)
εn−1,...,ε1,1

is denoted I
(q)
εn−1,...,ε1,0,1

(resp. I
(q)
εn−1,...,ε1,1,1

).
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First steps

Step 1. Delete I1.
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First steps

Step 2. Delete I01 on the left of I1 and I11 on the right of

I1.
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First steps

Step 3. Delete I001 on the left of I01 and I011 on the right of
I01; delete I101 on the left of I11 and I111 on the right of I11.
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The q−Cantor distribution

Definition

If Iεn−1,...,ε1,1is a deleted interval,

x =
1

2n
(
1 + 2ε1 + 22ε2 + · · ·+ 2n−1εn−1

)
is the dyadic rational associated to Iεn−1,...,ε1,1.

Definition

Cq is the continuous function that takes the value x on I
(q)
εn−1,...,ε1,1

.
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The q−Cantor measure

The function Cq, being non–decreasing and continuous, is the
distribution function of a continuous measure µq on [0, 1), that
can be constructed in the following way. Let{

I
(q)
εn−1,...,ε1,1

}
(εn−1,...,ε1,1)∈En

be the collection of intervals deleted at step n. Then the set

[0, 1) \
( ⋃

(εr−1,...,ε1,1)∈Er
r≤n

I
(q)
εr−1,...,ε1,1

)

is the union of a disjoint family of intervals to each one of which
µq attributes measure 1

2n .

In the paper [2] Rényi constructs a measure on [0, 1) in this way,
but in his discussion the number q changes at each step of the
deletion procedure.
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The q̂−Cantor measure

Following Rényi, allow the number q change at each step, i.e. take
q̂ := (qn)n≥1 (a sequence of numbers, qn ≥ 2 ); at step n apply
Delqn to each one of the intervals obtained at step n − 1. We
obtain the q̂−Cantor set

Sq̂ := [0, 1) \
( ∞⋃

n=1

⋃
(εn−1,...,ε1,1)∈En

I
(qn)
εn−1,...,ε1,1

)
.

Accordingly

Definition

The q̂−Cantor function Cq̂ is the continuous function that takes

the value x on I
(qr )
εr−1,...,ε1,1

, where x is the associated dyadic
rational. Cq̂ is the distribution function of a continuous measure µq̂
on [0, 1), that attributes measure 1

2n to each one of the intervals
not deleted up to step n.
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The q̂−Cantor measure
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The q̂−Cantor measure

Rita Giuliano (Pisa) Rényi α−dimension of random variables with generalized Cantor distribution and Hausdorff dimension of generalized Cantor sets



The q̂−Cantor measure
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Endpoints of a deleted interval: a numerical example

I1011 is deleted at the 4th step.

Question

How can I write the endpoints of I1011 in terms of q1, q2, q3, q4?
The associated dyadic rational is

x =
1

24

(
1 + 2 · 1 + 22 · 0 + · · ·+ 23 · 1

)
=

11

24
.

There are exactly two ways of writing 11 as a sum of powers of 2
with alternating signs:

11 = 24 − 23 + 22 − 21 + 20 ⇒ 11

24
=

1

20
− 1

21
+

1

22
− 1

23
+

1

24
;

11 = 24 − 23 + 22 − 20 ⇒ 11

24
=

1

20
− 1

21
+

1

22
− 1

24
.
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Endpoints of a deleted interval: a numerical example

Procedure
Replace

1

2k
=

k∏
j=1

1

2
−→ pk =

k∏
j=1

1

qj

and obtain

1

20
− 1

21
+

1

22
− 1

23
+

1

24
−→ a = p0︸︷︷︸

=1

−p1 + p2 − p3 + p4,

1

20
− 1

21
+

1

22
− 1

24
−→ b = p0︸︷︷︸

=1

−p1 + p2 − p4.

Then

I1011 = (a, b].
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Rényi 1−dimension of random variables

X real random variable.

Xn =
1

n
[nX ],

pk,n = P
(

Xn =
k

n

)
= P

(k

n
≤ X <

k + 1

n

)
, k ∈ Z, n ∈ N∗.

H
(1)
0 (Xn) = −

∑
k

pk,n log pk,n

is the Shannon entropy of Xn.

d (1)(X ) := lim inf
n→∞

H
(1)
0 (Xn)

log n
; d

(1)
(X ) := lim sup

n→∞

H
(1)
0 (Xn)

log n
;

d(X ) (resp. d(X )) is the 1-lower dimension (resp. 1-upper
dimension) of X .
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Rényi α−dimension of random variables

X real random variable.

Xt =
1

t
[tX ],

pk,t = P
(

Xt =
k

t

)
= P

(k

t
≤ X <

k + 1

t

)
, k ∈ Z, t ∈ R+.

Rényi has generalized the Shannon entropy to a family of entropies

H
(α)
0 , (α ≥ 0, 6= 1):

H
(α)
0 (Xt) :=

1

1− α
log
(∑

k

pαk,t

)
.

d (α)(X ) := lim inf
t→+∞

H
(α)
0 (Xt)

log t
, d

(α)
(X ) := lim sup

t→+∞

H
(α)
0 (Xt)

log t
.

d (α)(X ) (resp.d
(α)

(X )) is the α-lower dimension (resp.the
α−α-upper dimension) of X .
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Rita Giuliano (Pisa) Rényi α−dimension of random variables with generalized Cantor distribution and Hausdorff dimension of generalized Cantor sets



Rényi α−dimension of random variables

Warning
• Our limits are taken along the real numbers

not only along the integers, as in [2]!

• The limit of
H

(α)
0 (Xt)
log t := d (α)(X ) may not exist!

d (α)(X ) (if it exists) is the α-dimension of X .

Further, if d (α)(X ) exists,

H
(α)

d (α)(X )
(X ) = lim

t→+∞

(
H

(α)
0 (Xt)− d (α)(X ) log t

)
,

provided the limit on the right exists.
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Holderianity of q̂− Cantor distributions

q̂ = (qn)n≥1 (qn ≥ 2 for all ∀ n); Cq̂ the associated q̂− Cantor
distribution function.

Notation

an = log2 qn, sn =
n∑

k=1

an;

hence

pk =
k∏

j=1

1

qj
=

k∏
j=1

1

2aj
=

1

2
∑k

j=1 aj
=

1

2sk
, k = 0, 1, 2, . . . , n.

E :=
{
λ ∈ R : (sn − λn)n≥1 is bounded from above

}
is a (possibly empty) right half-line.
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Holderianity of q̂− Cantor distributions

There are two crucial quantities:

inf E = lim sup
n→∞

sn
n

=: `←−

(the = must be proved!)

−→ σ := sup
λ∈E

sup
n

(sn − λn)

If σ ∈ R, then ` is finite !

Proposition

Let q̂ := (qn)n≥1 be a given sequence of real numbers, with qn ≥ 2
for every n, and Cq̂ the associated q̂− Cantor function. Assume
that σ ∈ R (hence ` as well!). Then

Cq̂(t)` ≤ max{1, 2σ}t.
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Holderianity of q̂− Cantor distributions

Examples

(i) qn = q ≥ 2, i.e. an = log2 q := a ≥ 1 ∀ n. Here sn = an, ` = a,
σ = 0 so C (t)` ≤ t (this is proved in Lemma 2 of [1]).

(ii)

an =
3 + (−1)n

2
=

{
1 for odd n

2 for even n.

Here sn =
[

3
2 n
]
, ` = 3

2 and σ = 0. Again C (t)` ≤ t.
(iii) More generally, one can prove that the condition σ ∈ R is valid
for any periodic sequence (an)n≥1 (but not necessarily σ = 0!)
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Rita Giuliano (Pisa) Rényi α−dimension of random variables with generalized Cantor distribution and Hausdorff dimension of generalized Cantor sets



Holderianity of q̂− Cantor distributions

Examples

(i) qn = q ≥ 2, i.e. an = log2 q := a ≥ 1 ∀ n. Here sn = an, ` = a,
σ = 0 so C (t)` ≤ t (this is proved in Lemma 2 of [1]). (ii)

an =
3 + (−1)n

2
=

{
1 for odd n

2 for even n.

Here sn =
[

3
2 n
]
, ` = 3

2 and σ = 0. Again C (t)` ≤ t.
(iii) More generally, one can prove that the condition σ ∈ R is valid
for any periodic sequence (an)n≥1 (but not necessarily σ = 0!)
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Holderianity of q̂− Cantor distributions

Proposition

Let qn ≥ 3 for every n. Then Cq̂ is subadditive.

Corollary

Let qn ≥ 3 for every n. Then Cq̂ is the first modulus of continuity
of itself, i.e

sup
|x−y|≤δ
x,y∈[0,1]

|Cq̂(y)− Cq̂(x)| = Cq̂(δ),

for all δ ∈ [0, 1].

This is because a function f is a modulus of continuity if and only
if it is defined, continuous, nondecreasing and subadditive on [0, 1]
and f (0) = 0 .
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Holderianity of q̂− Cantor distributions

Conclusion

Theorem

Let qn ≥ 3 for every n and σ <∞. Then Cq̂ is holderian with
exponent 1

` , i.e.∣∣Cq̂(y)− Cq̂(x)
∣∣ ≤ (max{1, 2σ}

) 1
`
∣∣x − y

∣∣ 1
` .

The case that qn = 2 for some n remains open! /
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Hausdorff dimension of generalized Cantor sets

Remind

an = log2 qn, sn =
n∑

k=1

an, ` = lim sup
n→∞

sn
n
.

Notation

S =
{

s1 < s2 < . . .
}

d(S) =
1

`
(with d(S) = 0 if ` = +∞)

If an are integers (i.e. if qn are powers of 2), d(S) is
the lower density of S .

Proposition

The Hausdorff dimension of Sq̂ (denoted dH(Sq̂)) is equal to
d(S).
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Rényi α− lower dimension of variables with generalized
Cantor distribution

Theorem

Let X be a random variable with the distribution Cq̂. If qn ≥ 3 for
every n and σ ∈ R, then the α−lower dimension of X equals d(S).

To grasp the use of holderianity, i.e. |C(x)− C(y)| ≤ M|x − y |d(S)

here is the proof of the inequality

d (1)(X ) ≥ d(S)

i.e. case α = 1 only.

H
(1)
0 (Xt) = −

∑
k

pk,t log pk,t

= −
∑
k

{
C
(k + 1

t

)
− C

(k

t

)}
log
{
C
(k + 1

t

)
− C

(k

t

)}
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Rényi α− lower dimension of variables with generalized
Cantor distribution

= −
∑
k

{
C
(k + 1

t

)
− C

(k

t

)}
log
{
C
(k + 1

t

)
− C

(k

t

)}
− d(S)

∑
k

{
C
(k + 1

t

)
− C

(k

t

)}
log

1

t

+ d(S)
∑
k

{
C
(k + 1

t

)
− C

(k

t

)}
log

1

t

= −
∑
k

{
C
(k + 1

t

)
− C

(k

t

)}
log

{
C
(
k+1
t

)
− C

(
k
t

)}
( 1
t )d(S)

+ d(S) log t

≥ −
∑
k

{
C
(k + 1

t

)
− C

(k

t

)}
log M + d(S) log t

= − log M + d(S) log t, by holderianity .
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Rényi α− lower dimension of variables with generalized
Cantor distribution

We get

d (1)(X ) = lim inf
t→+∞

H
(1)
0 (Xt)

log t
≥ d(S).

Conclusion

Rényi α− lower dimension of variable with generalized Cantor distribution =

= Hausdorff dimension of generalized Cantor set =

= d(S), ∀α ≥ 0.
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Thank you for attention!
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