Rényi α -dimension of random variables with generalized Cantor distribution and Hausdorff dimension of generalized Cantor sets

Rita Giuliano (Pisa)

Department of Mathematics University of Pisa ITALY

6th International Conference on Uniform Distribution Theory 6e Colloque international sur la théorie de la répartition uniforme UDT2018 1 - 5 October, 2018

伺 と く ヨ と く ヨ と

• A procedure to construct a generalized Cantor set and Cantor functions

伺 ト く ヨ ト く ヨ ト

э

- A procedure to construct a generalized Cantor set and Cantor functions
- Rules for numbering the deleted intervals

A B + A B +

- A procedure to construct a generalized Cantor set and Cantor functions
- Rules for numbering the deleted intervals
- Formulas for the endpoints of a deleted interval

- ∢ ⊒ →

- A procedure to construct a generalized Cantor set and Cantor functions
- Rules for numbering the deleted intervals
- Formulas for the endpoints of a deleted interval
- Rényi α -dimension of random variables

* E > * E >

- A procedure to construct a generalized Cantor set and Cantor functions
- Rules for numbering the deleted intervals
- Formulas for the endpoints of a deleted interval
- Rényi α -dimension of random variables
- Holderianity of generalized Cantor distributions

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

- A procedure to construct a generalized Cantor set and Cantor functions
- Rules for numbering the deleted intervals
- Formulas for the endpoints of a deleted interval
- Rényi α -dimension of random variables
- Holderianity of generalized Cantor distributions
- Hausdorff dimension of generalized Cantor sets

- A procedure to construct a generalized Cantor set and Cantor functions
- Rules for numbering the deleted intervals
- Formulas for the endpoints of a deleted interval
- Rényi α -dimension of random variables
- Holderianity of generalized Cantor distributions
- Hausdorff dimension of generalized Cantor sets
- Rényi α -lower dimension of variables with generalized Cantor distribution

A I > A I > A

A procedure to construct a generalized Cantor set and Cantor function

[a, b) interval in $\mathbb R$ and $q \geq 2$

The operation

$$\mathrm{Del}_qig([a,b)ig) := [a,b) \setminus \Big[a + rac{b-a}{q}, b - rac{b-a}{q}\Big).$$

converts the interval [a, b) into a pair of disjoint intervals.

A procedure to construct a generalized Cantor set and Cantor function

[a,b) interval in $\mathbb R$ and $q\geq 2$

The operation

$$\mathrm{Del}_qig([\mathsf{a},\mathsf{b})ig):=[\mathsf{a},\mathsf{b})\setminus\Big[\mathsf{a}+rac{\mathsf{b}-\mathsf{a}}{q},\mathsf{b}-rac{\mathsf{b}-\mathsf{a}}{q}\Big).$$

converts the interval [a, b) into a pair of disjoint intervals.

Start with [0,1] and iterate Del_q an infinite number of steps; at the *n*-th step apply Del_q to each one of the intervals obtained in the (n-1)-th step.

Definition

The q-Cantor set is the complement in [0, 1] of the union of all the deleted intervals.

A procedure to construct a generalized Cantor set and Cantor function

[a,b) interval in $\mathbb R$ and $q\geq 2$

The operation

$$\mathrm{Del}_qig([a,b)ig):=[a,b)\setminus\Big[a+rac{b-a}{q},b-rac{b-a}{q}ig).$$

converts the interval [a, b) into a pair of disjoint intervals.

Start with [0,1] and iterate Del_q an infinite number of steps; at the *n*-th step apply Del_q to each one of the intervals obtained in the (n-1)-th step.

Definition

The q-Cantor set is the complement in [0, 1] of the union of all the deleted intervals.

Of course Del_3 produces the classical Cantor set.

(a) Number the intervals deleted at step *n* with a string of symbols $\epsilon_{n-1}, \ldots, \epsilon_1, \epsilon_0$ (of length *n*), $\epsilon_j \in \{0, 1\}$, $\epsilon_0 = 1$.

- (a) Number the intervals deleted at step *n* with a string of symbols $\epsilon_{n-1}, \ldots, \epsilon_1, \epsilon_0$ (of length *n*), $\epsilon_i \in \{0, 1\}$, $\epsilon_0 = 1$.
- (b) If at the step n we have deleted an interval I^(q)<sub>ε_{n-1},...,ε₁,1, the interval deleted at step n + 1 on the left (resp. on the right) of I^(q)_{ε_{n-1},...,ε₁,1} is denoted I^(q)_{ε_{n-1},...,ε₁,0,1} (resp. I^(q)_{ε_{n-1},...,ε₁,1,1}).
 </sub>

• Step 1. Delete I_1 .

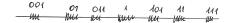
First steps

• Step 2. Delete I_{01} on the left of I_1 and I_{11} on the right of



First steps

• Step 3. Delete I_{001} on the left of I_{01} and I_{011} on the right of I_{01} ; delete I_{101} on the left of I_{11} and I_{111} on the right of I_{11} .



Definition

If $I_{\epsilon_{n-1},\ldots,\epsilon_1,1}$ is a deleted interval,

$$x = \frac{1}{2^n} \left(1 + 2\epsilon_1 + 2^2 \epsilon_2 + \dots + 2^{n-1} \epsilon_{n-1} \right)$$

is the dyadic rational associated to $I_{\epsilon_{n-1},\ldots,\epsilon_1,1}$.

伺 ト く ヨ ト く ヨ ト

Definition

If $I_{\epsilon_{n-1},\ldots,\epsilon_1,1}$ is a deleted interval,

$$x = \frac{1}{2^{n}} \left(1 + 2\epsilon_{1} + 2^{2}\epsilon_{2} + \dots + 2^{n-1}\epsilon_{n-1} \right)$$

is the dyadic rational associated to $I_{\epsilon_{n-1},\ldots,\epsilon_1,1}$.

Definition

 C_q is the continuous function that takes the value x on $I_{\epsilon_{n-1},\ldots,\epsilon_1,1}^{(q)}$.

向 ト イヨ ト イヨ ト

The q-Cantor measure

The function C_q , being non-decreasing and continuous, is the distribution function of a continuous measure μ_q on [0, 1), that can be constructed in the following way. Let

$$\left\{I_{\epsilon_{n-1},\ldots,\epsilon_1,1}^{(q)}\right\}_{(\epsilon_{n-1},\ldots,\epsilon_1,1)\in\mathcal{E}_n}$$

be the collection of intervals deleted at step n. Then the set

$$[0,1)\setminus\Big(\bigcup_{\substack{(\epsilon_{r-1},\ldots,\epsilon_1,1)\in\mathcal{E}_r\\r\leq n}}I_{\epsilon_{r-1},\ldots,\epsilon_1,1}^{(q)}\Big)$$

is the union of a disjoint family of intervals to each one of which μ_q attributes measure $\frac{1}{2^n}.$

In the paper [2] Rényi constructs a measure on [0, 1) in this way, but in his discussion the number q changes at each step of the deletion procedure.

Following Rényi, allow the number q change at each step, i.e. take $\hat{\mathbf{q}} := (q_n)_{n \ge 1}$ (a sequence of numbers, $q_n \ge 2$); at step n apply Del_{q_n} to each one of the intervals obtained at step n-1. We obtain the $\hat{\mathbf{q}}$ -Cantor set

$$\mathfrak{S}_{\mathbf{\hat{q}}} := [0,1) \setminus \Big(\bigcup_{n=1}^{\infty} \bigcup_{(\epsilon_{n-1},...,\epsilon_1,1) \in \mathcal{E}_n} I_{\epsilon_{n-1},...,\epsilon_1,1}^{(q_n)}\Big).$$

伺 と く ヨ と く ヨ と

Following Rényi, allow the number q change at each step, i.e. take $\hat{\mathbf{q}} := (q_n)_{n \ge 1}$ (a sequence of numbers, $q_n \ge 2$); at step n apply Del_{q_n} to each one of the intervals obtained at step n-1. We obtain the $\hat{\mathbf{q}}$ -Cantor set

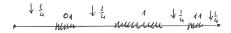
$$\mathfrak{S}_{\hat{\mathbf{q}}} := [0,1) \setminus \Big(\bigcup_{n=1}^{\infty} \bigcup_{(\epsilon_{n-1},...,\epsilon_1,1) \in \mathcal{E}_n} I_{\epsilon_{n-1},...,\epsilon_1,1}^{(q_n)} \Big).$$

Accordingly

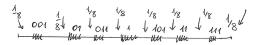
Definition

The $\hat{\mathbf{q}}$ -Cantor function $C_{\hat{\mathbf{q}}}$ is the continuous function that takes the value x on $I_{\epsilon_{r-1},...,\epsilon_{1},1}^{(q_{r})}$, where x is the associated dyadic rational. $C_{\hat{\mathbf{q}}}$ is the distribution function of a continuous measure $\mu_{\hat{\mathbf{q}}}$ on [0,1), that attributes measure $\frac{1}{2^{n}}$ to each one of the intervals not deleted up to step n.

- 4 同 6 4 日 6 4 日 6



900



 I_{1011} is deleted at the 4th step.

Question

How can I write the endpoints of I_{1011} in terms of q_1, q_2, q_3, q_4 ? The associated dyadic rational is

$$x = \frac{1}{2^4} (1 + 2 \cdot 1 + 2^2 \cdot 0 + \dots + 2^3 \cdot 1) = \frac{11}{2^4}.$$

There are exactly two ways of writing 11 as a sum of powers of 2 with alternating signs:

$$11 = 2^4 - 2^3 + 2^2 - 2^1 + 2^0 \Rightarrow \frac{11}{2^4} = \frac{1}{2^0} - \frac{1}{2^1} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4};$$

 I_{1011} is deleted at the 4th step.

Question

How can I write the endpoints of I_{1011} in terms of q_1, q_2, q_3, q_4 ? The associated dyadic rational is

$$x = \frac{1}{2^4} (1 + 2 \cdot 1 + 2^2 \cdot 0 + \dots + 2^3 \cdot 1) = \frac{11}{2^4}.$$

There are exactly two ways of writing 11 as a sum of powers of 2 with alternating signs:

$$11 = 2^{4} - 2^{3} + 2^{2} - 2^{1} + 2^{0} \Rightarrow \frac{11}{2^{4}} = \frac{1}{2^{0}} - \frac{1}{2^{1}} + \frac{1}{2^{2}} - \frac{1}{2^{3}} + \frac{1}{2^{4}};$$

$$11 = 2^{4} - 2^{3} + 2^{2} - 2^{0} \Rightarrow \frac{11}{2^{4}} = \frac{1}{2^{0}} - \frac{1}{2^{1}} + \frac{1}{2^{2}} - \frac{1}{2^{4}}.$$
Rita Giuliano (Pisa)
Rényi α - dimension of random variables with generalized Canto

Rita Giuliano (Pisa)

Endpoints of a deleted interval: a numerical example

Procedure

Replace

$$rac{1}{2^{k}} = \prod_{j=1}^{k} rac{1}{2} \longrightarrow p_{k} = \prod_{j=1}^{k} rac{1}{q_{j}}$$

and obtain

$$\frac{1}{2^0} - \frac{1}{2^1} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} \longrightarrow a = \underbrace{p_0}_{=1} - p_1 + p_2 - p_3 + p_4,$$

Endpoints of a deleted interval: a numerical example

Procedure

Replace

$$\frac{1}{2^{k}} = \prod_{j=1}^{k} \frac{1}{2} \longrightarrow p_{k} = \prod_{j=1}^{k} \frac{1}{q_{j}}$$

and obtain

$$\frac{1}{2^0} - \frac{1}{2^1} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} \longrightarrow a = \underbrace{p_0}_{=1} - p_1 + p_2 - p_3 + p_4,$$

$$\frac{1}{2^0} - \frac{1}{2^1} + \frac{1}{2^2} - \frac{1}{2^4} \longrightarrow b = \underbrace{p_0}_{=1} - p_1 + p_2 - p_4.$$

Endpoints of a deleted interval: a numerical example

Procedure

Replace

$$rac{1}{2^{k}} = \prod_{j=1}^{k} rac{1}{2} \longrightarrow p_{k} = \prod_{j=1}^{k} rac{1}{q_{j}}$$

and obtain

$$\frac{1}{2^{0}} - \frac{1}{2^{1}} + \frac{1}{2^{2}} - \frac{1}{2^{3}} + \frac{1}{2^{4}} \longrightarrow a = \underbrace{p_{0}}_{=1} - p_{1} + p_{2} - p_{3} + p_{4},$$
$$\frac{1}{2^{0}} - \frac{1}{2^{1}} + \frac{1}{2^{2}} - \frac{1}{2^{4}} \longrightarrow b = \underbrace{p_{0}}_{=1} - p_{1} + p_{2} - p_{4}.$$
$$\mathbf{Then}$$
$$I_{1011} = (a, b].$$

X real random variable.

$$X_n = \frac{1}{n} [nX],$$

$$p_{k,n} = P\left(X_n = \frac{k}{n}\right) = P\left(\frac{k}{n} \le X < \frac{k+1}{n}\right), k \in \mathbb{Z}, n \in \mathbb{N}^*.$$

$$H_0^{(1)}(X_n) = -\sum_k p_{k,n} \log p_{k,n}$$

is the Shannon entropy of X_n .

X real random variable.

$$X_n = \frac{1}{n} [nX],$$

$$p_{k,n} = P\left(X_n = \frac{k}{n}\right) = P\left(\frac{k}{n} \le X < \frac{k+1}{n}\right), k \in \mathbb{Z}, n \in \mathbb{N}^*.$$

$$H_0^{(1)}(X_n) = -\sum_k p_{k,n} \log p_{k,n}$$

is the Shannon entropy of X_n .

$$\underline{d}^{(1)}(X) := \liminf_{n \to \infty} \frac{H_0^{(1)}(X_n)}{\log n}; \qquad \overline{d}^{(1)}(X) := \limsup_{n \to \infty} \frac{H_0^{(1)}(X_n)}{\log n};$$

 $\underline{d}(X)$ (resp. $\overline{d}(X)$) is the 1-lower dimension (resp. 1-upper dimension) of X.

X real random variable.

$$X_t = \frac{1}{t}[tX],$$

$$p_{k,t} = P\left(X_t = \frac{k}{t}\right) = P\left(\frac{k}{t} \le X < \frac{k+1}{t}\right), k \in \mathbb{Z}, t \in \mathbb{R}^+.$$

Rényi has generalized the Shannon entropy to a family of entropies $H_0^{(\alpha)}$, ($\alpha \ge 0, \ne 1$):

$$H_0^{(\alpha)}(X_t) := rac{1}{1-lpha} \log\Big(\sum_k p_{k,t}^{lpha}\Big).$$

X real random variable.

$$X_t = \frac{1}{t}[tX],$$

$$p_{k,t} = P\left(X_t = \frac{k}{t}\right) = P\left(\frac{k}{t} \le X < \frac{k+1}{t}\right), k \in \mathbb{Z}, t \in \mathbb{R}^+.$$

Rényi has generalized the Shannon entropy to a family of entropies $H_0^{(\alpha)}$, ($\alpha \ge 0, \ne 1$):

$$H_0^{(\alpha)}(X_t) := \frac{1}{1-\alpha} \log \left(\sum_k p_{k,t}^{\alpha} \right).$$

$$\underline{d}^{(\alpha)}(X) := \liminf_{t \to +\infty} \frac{H_0^{(\alpha)}(X_t)}{\log t}, \quad \overline{d}^{(\alpha)}(X) := \limsup_{t \to +\infty} \frac{H_0^{(\alpha)}(X_t)}{\log t}$$

 $\underline{d}^{(\alpha)}(X)$ (resp. $\overline{d}^{(\alpha)}(X)$) is the α -lower dimension (resp.the α - α -upper dimension) of X.

Warning

• Our limits are taken along the real numbers not only along the integers, as in [2]!

Warning

Our limits are taken along the real numbers not only along the integers, as in [2]!
The limit of H₀^(α)(X_t)/_{log t} := d^(α)(X) may not exist!

Warning

Our limits are taken along the real numbers not only along the integers, as in [2]!
The limit of H₀^(α)(X_t)/_{log t} := d^(α)(X) may not exist!

 $d^{(\alpha)}(X)$ (if it exists) is the α -dimension of X.

Rényi α -dimension of random variables

Warning

Our limits are taken along the real numbers not only along the integers, as in [2]!
The limit of H₀^(α)(X_t) / log t := d^(α)(X) may not exist!

 $d^{(\alpha)}(X)$ (if it exists) is the α -dimension of X.

Further, if $d^{(\alpha)}(X)$ exists,

$$H^{(\alpha)}_{d^{(\alpha)}(X)}(X) = \lim_{t \to +\infty} \left(H^{(\alpha)}_0(X_t) - d^{(\alpha)}(X) \log t
ight),$$

provided the limit on the right exists.

 $\hat{\mathbf{q}} = (q_n)_{n \ge 1}$ $(q_n \ge 2 \text{ for all } \forall n)$; $C_{\hat{\mathbf{q}}}$ the associated $\hat{\mathbf{q}}$ - Cantor distribution function.

Notation

$$a_n = \log_2 q_n, \qquad s_n = \sum_{k=1}^n a_n;$$

-

hence

$$p_k = \prod_{j=1}^k \frac{1}{q_j} = \prod_{j=1}^k \frac{1}{2^{a_j}} = \frac{1}{2^{\sum_{j=1}^k a_j}} = \frac{1}{2^{s_k}}, \qquad k = 0, 1, 2, \dots, n.$$

 $\hat{\mathbf{q}} = (q_n)_{n \ge 1}$ $(q_n \ge 2 \text{ for all } \forall n)$; $C_{\hat{\mathbf{q}}}$ the associated $\hat{\mathbf{q}}$ - Cantor distribution function.

Notation

$$a_n = \log_2 q_n, \qquad s_n = \sum_{k=1}^n a_n;$$

hence

$$p_k = \prod_{j=1}^k \frac{1}{q_j} = \prod_{j=1}^k \frac{1}{2^{a_j}} = \frac{1}{2^{\sum_{j=1}^k a_j}} = \frac{1}{2^{s_k}}, \qquad k = 0, 1, 2, \dots, n.$$

 $E := \left\{ \lambda \in \mathbb{R} : (s_n - \lambda n)_{n \ge 1} \text{ is bounded from above} \right\}$ is a (possibly empty) right half-line.

伺 と く ヨ と く ヨ と …

There are two crucial quantities:

$$\inf E = \limsup_{n \to \infty} \frac{s_n}{n} =: \ell \longleftarrow$$

(the = must be proved!)

There are two crucial quantities:

$$\inf E = \limsup_{n \to \infty} \frac{s_n}{n} =: \ell \longleftarrow$$

$$(\text{the} = \text{ must be proved!})$$

$$\rightarrow \sigma := \sup_{\lambda \in E} \sup_{n} (s_n - \lambda n)$$

If $\sigma \in \mathbb{R}$, then ℓ is finite !

There are two crucial quantities:

$$\inf E = \limsup_{n \to \infty} \frac{s_n}{n} =: \ell \longleftarrow$$

(the = must be proved!)

 $\longrightarrow \sigma := \sup_{\lambda \in E} \sup_{n} (s_n - \lambda n)$

If $\sigma \in \mathbb{R}$, then ℓ is finite !

Proposition

Let $\hat{\mathbf{q}} := (q_n)_{n \ge 1}$ be a given sequence of real numbers, with $q_n \ge 2$ for every n, and $C_{\hat{\mathbf{q}}}$ the associated $\hat{\mathbf{q}}$ - Cantor function. Assume that $\sigma \in \mathbb{R}$ (hence ℓ as well!). Then

 $\mathcal{C}_{\hat{\mathbf{q}}}(t)^{\boldsymbol{\ell}} \leq \max\{1, 2^{\boldsymbol{\sigma}}\}t.$

4 E b

Examples

(i) $q_n = q \ge 2$, i.e. $a_n = \log_2 q := a \ge 1 \ \forall n$. Here $s_n = an$, $\ell = a$, $\sigma = 0$ so $C(t)^{\ell} \le t$ (this is proved in Lemma 2 of [1]).

Examples

(i) $q_n = q \ge 2$, i.e. $a_n = \log_2 q := a \ge 1 \ \forall n$. Here $s_n = an$, $\ell = a$, $\sigma = 0$ so $C(t)^{\ell} \le t$ (this is proved in Lemma 2 of [1]). (ii)

$$a_n = rac{3+(-1)^n}{2} = egin{cases} 1 & ext{ for odd } n \ 2 & ext{ for even } n \end{cases}$$

Here $s_n = \left[\frac{3}{2}n\right]$, $\ell = \frac{3}{2}$ and $\sigma = 0$. Again $C(t)^{\ell} \leq t$.

Examples

(i) $q_n = q \ge 2$, i.e. $a_n = \log_2 q := a \ge 1 \ \forall n$. Here $s_n = an$, $\ell = a$, $\sigma = 0$ so $C(t)^{\ell} \le t$ (this is proved in Lemma 2 of [1]). (ii)

$$a_n = rac{3+(-1)^n}{2} = egin{cases} 1 & ext{ for odd } n \ 2 & ext{ for even } n \end{cases}$$

Here $s_n = \begin{bmatrix} \frac{3}{2}n \end{bmatrix}$, $\ell = \frac{3}{2}$ and $\sigma = 0$. Again $C(t)^{\ell} \leq t$. (iii) More generally, one can prove that the condition $\sigma \in \mathbb{R}$ is valid for any periodic sequence $(a_n)_{n\geq 1}$ (but not necessarily $\sigma = 0$!)

Proposition

Let $q_n \geq 3$ for every n. Then $C_{\hat{\mathbf{q}}}$ is subadditive.

A B + A B +

Proposition

Let $q_n \geq 3$ for every *n*. Then $C_{\hat{\mathbf{q}}}$ is subadditive.

Corollary

Let $q_n \geq 3$ for every n. Then $\mathcal{C}_{\hat{\mathbf{q}}}$ is the first modulus of continuity of itself, i.e

$$\sup_{\substack{\langle -y| \leq \delta \\ y \in [0,1]}} |\mathcal{C}_{\hat{\mathbf{q}}}(y) - \mathcal{C}_{\hat{\mathbf{q}}}(x)| = \mathcal{C}_{\hat{\mathbf{q}}}(\delta),$$

for all $\delta \in [0, 1]$.

This is because a function f is a modulus of continuity if and only if it is defined, continuous, nondecreasing and subadditive on [0,1] and f(0) = 0.

Conclusion

Theorem

Let $q_n \geq 3$ for every n and $\sigma < \infty$. Then $C_{\hat{\mathbf{q}}}$ is holderian with exponent $\frac{1}{\ell}$, i.e.

$$\left|\mathcal{C}_{\mathbf{\hat{q}}}(y) - \mathcal{C}_{\mathbf{\hat{q}}}(x)\right| \leq \big(\max\{1, 2^{\sigma}\}\big)^{\frac{1}{\ell}} \big|x - y\big|^{\frac{1}{\ell}}.$$

The case that $q_n = 2$ for some *n* remains open!

Remind

$$a_n = \log_2 q_n, \quad s_n = \sum_{k=1}^n a_n, \quad \ell = \limsup_{n \to \infty} \frac{s_n}{n}.$$

Remind

$$a_n = \log_2 q_n, \quad s_n = \sum_{k=1}^n a_n, \quad \ell = \limsup_{n \to \infty} \frac{s_n}{n}.$$
Notation
$$S = \{s_1 < s_2 < \dots\}$$

$$\underline{d}(S) = \frac{1}{\ell} (\text{with } \underline{d}(S) = 0 \text{ if } \ell = +\infty)$$

Remind

$$a_n = \log_2 q_n, \quad s_n = \sum_{k=1}^n a_n, \quad \ell = \limsup_{n \to \infty} \frac{s_n}{n}.$$
Notation
$$S = \{s_1 < s_2 < \dots\}$$

$$\underline{d}(S) = \frac{1}{\ell} (\text{with } \underline{d}(S) = 0 \text{ if } \ell = +\infty)$$
are integers (i.e., if q_n are powers of 2), $d(S) = 0$

If a_n are integers (i.e. if q_n are powers of 2), $\underline{d}(S)$ is the *lower density of* S.

- ∢ ≣ ▶

Remind

$$a_n = \log_2 q_n, \quad s_n = \sum_{k=1}^n a_n, \quad \ell = \limsup_{n \to \infty} \frac{s_n}{n}.$$
Notation
$$S = \{s_1 < s_2 < \dots\}$$

$$\underline{d}(S) = \frac{1}{\ell} (\text{with } \underline{d}(S) = 0 \text{ if } \ell = +\infty)$$
If a_n are integers (i.e. if q_n are powers of 2), $\underline{d}(S)$ is the *lower density of S*.

Proposition

The Hausdorff dimension of $\mathfrak{S}_{\hat{\mathbf{q}}}$ (denoted $d_H(\mathfrak{S}_{\hat{\mathbf{q}}})$) is equal to $\underline{d}(S)$.

.≡ ►

Theorem

Let X be a random variable with the distribution $C_{\hat{q}}$. If $q_n \ge 3$ for every n and $\sigma \in \mathbb{R}$, then the α -lower dimension of X equals $\underline{d}(S)$.

Theorem

Let X be a random variable with the distribution $C_{\hat{q}}$. If $q_n \ge 3$ for every n and $\sigma \in \mathbb{R}$, then the α -lower dimension of X equals $\underline{d}(S)$.

To grasp the use of holderianity, i.e. $|\mathcal{C}(x) - \mathcal{C}(y)| \le M|x - y|^{\underline{d}(S)}$ here is the proof of the inequality

> $\underline{d}^{(1)}(X) \geq \underline{d}(S)$ i.e. case $\alpha = 1$ only.

$$H_0^{(1)}(X_t) = -\sum_k p_{k,t} \log p_{k,t}$$
$$= -\sum_k \left\{ \mathcal{C}\left(\frac{k+1}{t}\right) - \mathcal{C}\left(\frac{k}{t}\right) \right\} \log \left\{ \mathcal{C}\left(\frac{k+1}{t}\right) - \mathcal{C}\left(\frac{k}{t}\right) \right\}$$

$$\begin{split} &= -\sum_{k} \left\{ \mathcal{C} \left(\frac{k+1}{t} \right) - \mathcal{C} \left(\frac{k}{t} \right) \right\} \log \left\{ \mathcal{C} \left(\frac{k+1}{t} \right) - \mathcal{C} \left(\frac{k}{t} \right) \right\} \\ &- \underline{d}(S) \sum_{k} \left\{ \mathcal{C} \left(\frac{k+1}{t} \right) - \mathcal{C} \left(\frac{k}{t} \right) \right\} \log \frac{1}{t} \\ &+ \underline{d}(S) \sum_{k} \left\{ \mathcal{C} \left(\frac{k+1}{t} \right) - \mathcal{C} \left(\frac{k}{t} \right) \right\} \log \frac{1}{t} \\ &= -\sum_{k} \left\{ \mathcal{C} \left(\frac{k+1}{t} \right) - \mathcal{C} \left(\frac{k}{t} \right) \right\} \log \frac{\left\{ \mathcal{C} \left(\frac{k+1}{t} \right) - \mathcal{C} \left(\frac{k}{t} \right) \right\}}{\left(\frac{1}{t} \right) \underline{d}(S)} + \underline{d}(S) \log t \\ &\geq -\sum_{k} \left\{ \mathcal{C} \left(\frac{k+1}{t} \right) - \mathcal{C} \left(\frac{k}{t} \right) \right\} \log M + \underline{d}(S) \log t \\ &= -\log M + \underline{d}(S) \log t, \qquad \text{by holderianity.} \end{split}$$

We get

$$\underline{d}^{(1)}(X) = \liminf_{t \to +\infty} \frac{H_0^{(1)}(X_t)}{\log t} \geq \underline{d}(S).$$

Conclusion

Rényi $\alpha-$ lower dimension of variable with generalized Cantor distribution =

= Hausdorff dimension of generalized Cantor set =

$$= \underline{d}(S), \quad \forall \alpha \ge 0.$$

- Gorin, E. A., Kukushkin B.N. (2004), Integrals related to the Cantor function. *St. Petersburg Math. J.*, 15 (2003), Vol. 15 (2004), No. 3, 449–468.
- Rényi, A. (1959), On the dimension and entropy of probability distributions. Acta Mathematica Academiae Scientiarum Hungarica, 10(1–2), 193–215.

☺ Thank you for attention! ☺

-