Minkowski question-mark function: fixed points and the derivative

Dmitry Gayfulin

Institute for Information Transmission Problems of the Russian Academy of Sciences

> UDT 2018. CIRM, Marseille, Luminy.

Joint work with Nikita Shulga and Igor Kan

The Minkowski question-mark function: definition

The Minkowski question-mark function is defined as follows. For an arbitrary $x \in [0, 1]$ consider its continued faction expansion

$$x = [0; a_1, a_2, \dots, a_n, \dots] = \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

If x is irrational, we say that

$$?(x) := \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2^{a_1 + \dots + a_k - 1}} \tag{1}$$

If x is a rational number, then we replace (1) by a finite sum. One can easily see that if x is a rational number or a quadratic irrationality, then $?(x) \in \mathbb{Q}$. In fact, the inverse statement is also true.

Denote by F_n the *n*-th level of Stern-Brocot tree i.e.

$$F_n: \{\xi = [0; a_1, \dots, a_k]: a_1 + \dots + a_k = n+1\}$$

One can equivalently define the Minkowki function as the limit distribution function of sets F_n

$$?(x) = \lim_{n \to \infty} \frac{\#\{\xi \in F_n : \xi \leq x\}}{2^n + 1}.$$

- < 注 ▶ < 注 ▶ -

Properties of ?(x)

- ?(x) is a continuous strictly increasing function, it satisfies
 Lipschitz condition, but is not absolutely continuous function.
- Symmetry: $?(x) = 1 ?(1 x), ?(\frac{x}{x+1}) = \frac{?(x)}{2}$
- Solution The derivative of ?(x) can take only two values: 0 and +∞. Almost everywhere we have ?'(x)=0.

•
$$?'(x) = 0$$
 for all $x \in \mathbb{Q}$.

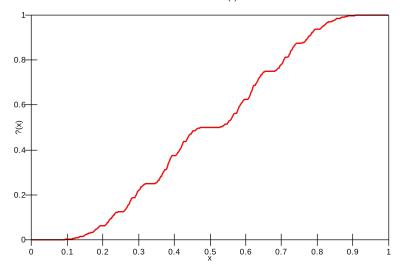
If \$\frac{p_1}{q_1}\$ and \$\frac{p_2}{q_2}\$ are two rationals such that \$|\frac{p_1}{q_1} - \frac{p_2}{q_2}| = \frac{1}{q_1q_2}\$, then \$?(\frac{p_1+p_2}{q_1+q_2}) = \frac{?(\frac{p_1}{q_1})+?(\frac{p_2}{q_2})}{2}\$
 \$\lim_{n→\infty} \int_0^1 e^{2\pi inx} d?(x) = 0\$ (Conjectured by Salem in 1943,

通 と く ほ と く ほ と

proved by Jordan and Sahlsten in 2013)

Plot of ?(x)

Minkowski ?(x)



▲御▶ ▲ 悪▶ ▲ 悪▶

Ę

Dmitry Gayfulin

One can easily see that ?(0) = 0, $?(\frac{1}{2}) = \frac{1}{2}$, ?(1) = 1. As ?'(x) = 0 at rational points, the Minkowski function has at least two more fixed points. We will call such fixed points *non-trivial*. As ?(x) = 1 - ?(1 - x), all fixed points are symmetric with respect to $\frac{1}{2}$ point. A folklore conjecture states that:

Conjecture

The equation ?(x) = x has exactly five solutions.

However, we do not even know if the number of solutions of the equation finite.

The computation shows that the fixed point(s) between 0 and $\frac{1}{2}$ equals ≈ 0.42037233942 . If there are more then one fixed points on the interval $(0, \frac{1}{2})$, their first 4000 partial quotients in continued fraction expansion coincide.

It is easy to show that all non-trivial fixed points are irrational.

The computation shows that the fixed point(s) between 0 and $\frac{1}{2}$ equals ≈ 0.42037233942 . If there are more then one fixed points on the interval $(0, \frac{1}{2})$, their first 4000 partial quotients in continued fraction expansion coincide.

It is easy to show that all non-trivial fixed points are irrational. However, we establish an equivalent conjecture, which deals with rational numbers only.

Conjecture

For any rational number
$$\frac{p}{q}$$
, $q > 2$ one has $|?(\frac{p}{q}) - \frac{p}{q}| > \frac{1}{2q^2}$.

So, if one shows that $\frac{p}{q}$ cannot be convergent fraction to $?(\frac{p}{q})$, he will prove that there are only 2 non-trivial roots.

Stable and unstable fixed points of ?(x)

As ?(x) is a monotonic function, then for any $x \in [0, 1]$ the sequence of iterations of Minkowski function

$$?^{n}(x) = \underbrace{?(? \dots ?)}_{n \text{ times}}(x) \dots)$$

is also monotonic and tends to some fixed point. We will call an isolated fixed point x_0 stable if there exists $\delta > 0$ such that $\forall x \in (x_0 - \delta, x_0 + \delta)$ one has

$$\lim_{n\to\infty}?^n(x)=x_0.$$

We will call x_0 unstable otherwise. If X is the set of non-trivial fixed points from $(0, \frac{1}{2})$ interval, then the smallest and the biggest points of X are unstable.

Main result

Denote
$$\kappa_1 = \frac{\log \frac{\sqrt{5}+1}{2}}{\log \sqrt{2}} \approx 1.388$$
,
 $\kappa_2 = \frac{4 \log \frac{5+\sqrt{29}}{2} - 5 \log (2+\sqrt{5})}{\log \frac{5+\sqrt{29}}{2} - 5 \log (2+\sqrt{5}) - \log \sqrt{2}} \approx 4.401$

Theorem (DG,N. Shulga, 2018)

Let $x = [0; a_1, ..., a_n, ..]$ be unstable fixed point of Minkowski question mark function on the interval $(0, \frac{1}{2})$. Then there exists N such that $\forall n > N$

$$a_{n+1} < (\kappa_1 - 1) \sum_{i=1}^n a_i.$$
 (2)

On the other side,

$$\sum_{i=1}^{n} a_i < \kappa_2 n$$

(3)

Э

< ロ > < 同 > < 同 > < 同 > < 同 >

Dmitry Gayfulin

From the previous theorem we deduce a result on irrationality measure of unstable fixed points of ?(x):

Corollary

Let $x = [0; a_1, ..., a_n, ..]$ be unstable fixed point of Minkowski question mark function on the interval $(0, \frac{1}{2})$. Then x has irrationality measure 2.

Moreover, there exists an absolute constant c > 0 such that

$$|x - \frac{p}{q}| > \frac{c}{q^2 \log q}$$

for any $p, q \in \mathbb{Z}$.

Minkowki question-mark function - the derivative

We recall that ?'(x), if exists, can take only two values - 0 and $+\infty$. Consider irrational $x = [0; a_1, ..., a_n, ..]$. Denote $S_t(x) = a_1 + ... + a_t$.

Theorem (A.Dushistova, N.Moshchevitin, I.Kan, 2009)

(i)Let for irrational $x \in (0,1)$ one has

$$\limsup_{t\to\infty}\frac{S_{\scriptscriptstyle X}(t)}{t} < \kappa_1$$

Then ?'(x) exists and $?'(x) = +\infty$. (ii)Let for irrational $x \in (0, 1)$ one has

$$\liminf_{t\to\infty}\frac{S_x(t)}{t}>\kappa_2$$

Then ?'(x) exists and ?'(x) = 0.

Both constants are optimal and the theorem is_non_improvable.

?'(x) with bounded partial quotients - I

We consider same problem for x having uniformly bounded partial quotients. Denote by E_n the set of all $x = [0; a_1, ..., a_n, ..]$ such that $\forall i \ a_i \leq n$. There exist constants κ_1^n, κ_2^n such that

Theorem (A.Dushistova, N.Moshchevitin, I.Kan, 2009)

(i)Let for irrational $x \in (0,1) \in E_n, n \ge 5$ one has

$$\limsup_{t\to\infty}\frac{S_{\scriptscriptstyle X}(t)}{t}<\kappa_1^n$$

Then ?'(x) exists and $?'(x) = +\infty$. (ii)Let for irrational $x \in (0, 1)$ one has

$$\liminf_{t\to\infty}\frac{S_x(t)}{t}>\kappa_2^n$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Then ?'(x) exists and ?'(x) = 0.

?'(x) with bounded partial quotients -II

Both constants are also optimal and

$$\lim_{n\to\infty}\kappa_1^n=\kappa_1,\quad \lim_{n\to\infty}\kappa_1^n=\kappa_1,$$

Theorem (DG, I.Kan, 2018)

(i)Suppose that $x \in E_n$, ?'(x) exists and equals 0. Then for t and n big enough one has

$$\max_{u\leqslant t}(S_x(u)-\kappa_1^n u)>\sqrt{t}$$

(ii)For any $n \ge 5$ there exists $x \in E_n$ such that ?'(x) = 0 and for all t big enough one has

$$S_x(t) - \kappa_1^n t \leq (2^{\frac{2}{3}}n^{\frac{2}{3}} + 21n^{\frac{2}{3}})\sqrt{t}$$

Denote by q_n the denominator of a convergent continued fraction $[0; a_1, \ldots, a_n]$.

Lemma (N. Moshchevitin)

Let for irrational $x \in (0,1)$ and arbitrary δ there exists a natural $t = t(x, \delta)$ such that

$$rac{?(x+\delta)-?(x)}{\delta} \geqslant rac{q_tq_{t-1}}{2^{S_x(t)+4}} \ rac{?(x+\delta)-?(x)}{\delta} \leqslant rac{q_t}{2^{S_x(t)-2}} \ rac{q_t}{2^{S_x(t)-2}}$$

Thank you for your attention!