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Definitions

For an integer polynomial

f (x) = adxd + ad−1xd−1 + · · ·+ a0 ∈ Z[x ]

of degree d ≥ 1, its length L(f ) is defined by

L(f ) = |ad |+ |ad−1|+ · · ·+ |a0|.

and its height H(f ) by

H(f ) = max{|ad |, |ad−1|, . . . , |a0|}.
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Turán’s problem

In 1960s, Turán asked the following: does there exist an
absolute constant C such that for any polynomial f ∈ Z[x ]
there is an irreducible (over the rational numbers) polynomial
g ∈ Z[x ] of degree at most deg f satisfying

L(f − g) ≤ C?

Although a number of partial results have been obtained
Turán’s problem remains open.
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Results on Turán’s problem

In 1970, Schinzel proved that C = 3 suffices if one removes
the condition on the degree of g . More precisely, he showed
that if f ∈ Z[x ] is of degree d then there are infinitely many
irreducible polynomials g ∈ Z[x ] such that

L(f − g) ≤
{

2 if f (0) 6= 0,
3 always,

and, moreover, at least one of them satisfies

deg g ≤ exp((5d + 7)(‖f ‖+ 3)),

where ‖f ‖ stands for the sum of the squares of the coefficients
of f .
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Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



Results on Turán’s problem

In 2010 (Acta Arith.), Banerjee and Filaseta improved the
above upper bound to

deg g ≤ 8 max{d + 3, c0}58‖f ‖+9,

where c0 is an effectively computable absolute constant.
In addition, using computational strategies, it has been
confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey,
Williams) that if f ∈ Z[x ] has degree d ≤ 40 then there exists
an irreducible polynomial g ∈ Z[x ] with deg g = d and
L(f − g) ≤ 5.

On the other hand, although the trivial example f (x) = x3

shows that C > 2, it is not known that the optimal constant
C should be strictly greater than 2.



A version of Turán’s problem

Let us consider a variant of Turán’s problem, where
“irreducible polynomial g" is replaced by “square-free
polynomial g".

For this, we pose the following conjecture:

Conjecture 1
For any f ∈ Z[x ] of degree d, there is a square-free polynomial
g ∈ Z[x ] of degree at most d satisfying

L(f − g) ≤ 2.
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Problem of Szegedy

Another problem related to Turán’s problem is that of
Szegedy: is there a constant C0 depending only on d such that
for any f ∈ Z[x ] of degree d the polynomial f (x) + t is
irreducible for some t ∈ Z with |t| 6 C0.

In general, the problem of Szegedy is still open, although there
are some partial results of Győry, Bérczes and Hajdu.
However, in our setting, when“irreducible" is replaced by
“square-free", this problem becomes very simple. One can
take, for instance, C0 = bd/2c.
Theorem 2
For any f ∈ Z[x ] of degree d, at least one of the polynomials
f (x) + t, where t ∈ Z satisfies |t| 6 bd/2c, is square-free.
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Proof of Theorem 2

Proof.
Let S be a subset of Z with the property that for each integer
t ∈ S some h2

t , where ht ∈ Z[x ] is of degree at least 1, divides
the polynomial f (x) + t. Then, ht 6= hs when t 6= s both
belong to S, since otherwise ht | (t − s), a contradiction.
Also, ht divides the derivative f ′ for every t ∈ S, so the
cardinality of the set S does not exceed deg f ′ 6 d − 1. The
assertion of the theorem now follows, because the set
{−bd/2c, . . . , 0, . . . , bd/2c} contains at least d integers.
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cardinality of the set S does not exceed deg f ′ 6 d − 1. The
assertion of the theorem now follows, because the set
{−bd/2c, . . . , 0, . . . , bd/2c} contains at least d integers.
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Is the constant 2 in Conjecture 1 optimal?

In general, the condition L(f − g) ≤ 2 of Conjecture 1 cannot
be relaxed.
Theorem 3
For any integer d ≥ 15, there exist infinitely many polynomials
f ∈ Z[x ] of degree d such that each polynomial g ∈ Z[x ]
satisfying

L(f − g) ≤ 1

is not square-free.
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An explicit example

One example of such degree 15 polynomials is

f (x) =15552x15 + 5184x14 + 5616x13 + 8784x12 + 13908x11

+ 13756x10 + 96413x9 − 18929x8 − 57229x7 + 6851x6

+ 9435x5 − 932x4 − 346x3 + 36x2.
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An explicit example

Its root 0 has multiplicity 2. Also, 0 is a root of multiplicity 2
of any polynomial f (x)± x k , where k > 2 is an integer,
whereas 1/2,−1/2, 1/6 and −1/6 are multiple roots of
f (x)− x , f (x) + 1, f (x) + x and f (x)− 1, respectively.

We do not claim that d = 15 is the smallest degree of the
polynomials satisfying the conditions of Theorem 3.
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A weak form of Conjecture 1

The next result is a weak form of Conjecture 1 by relaxing the
condition on the degree of g :

Theorem 1
For any f ∈ Z[x ] of degree d and any integer

n > L(f ′), (1)

there is a square-free polynomial g ∈ Z[x ] satisfying deg g = n
and

L(f − g) =
{

1 if x2 - f (x),
2 always.



A weak form of Conjecture 1

The next result is a weak form of Conjecture 1 by relaxing the
condition on the degree of g :

Theorem 1
For any f ∈ Z[x ] of degree d and any integer

n > L(f ′), (1)

there is a square-free polynomial g ∈ Z[x ] satisfying deg g = n
and

L(f − g) =
{

1 if x2 - f (x),
2 always.



A weak form of Conjecture 1

The next result is a weak form of Conjecture 1 by relaxing the
condition on the degree of g :

Theorem 1
For any f ∈ Z[x ] of degree d and any integer

n > L(f ′), (1)

there is a square-free polynomial g ∈ Z[x ] satisfying deg g = n
and

L(f − g) =
{

1 if x2 - f (x),
2 always.



A weak form of Conjecture 1

The next result is a weak form of Conjecture 1 by relaxing the
condition on the degree of g :

Theorem 1
For any f ∈ Z[x ] of degree d and any integer

n > L(f ′), (1)

there is a square-free polynomial g ∈ Z[x ] satisfying deg g = n
and

L(f − g) =
{

1 if x2 - f (x),
2 always.



A weak form of Conjecture 1

The next result is a weak form of Conjecture 1 by relaxing the
condition on the degree of g :

Theorem 1
For any f ∈ Z[x ] of degree d and any integer

n > L(f ′), (1)

there is a square-free polynomial g ∈ Z[x ] satisfying deg g = n
and

L(f − g) =
{

1 if x2 - f (x),
2 always.



A weak form of Conjecture 1

The next result is a weak form of Conjecture 1 by relaxing the
condition on the degree of g :

Theorem 1
For any f ∈ Z[x ] of degree d and any integer

n > L(f ′), (1)

there is a square-free polynomial g ∈ Z[x ] satisfying deg g = n
and

L(f − g) =
{

1 if x2 - f (x),
2 always.



A weak form of Conjecture 1

The next result is a weak form of Conjecture 1 by relaxing the
condition on the degree of g :

Theorem 1
For any f ∈ Z[x ] of degree d and any integer

n > L(f ′), (1)

there is a square-free polynomial g ∈ Z[x ] satisfying deg g = n
and

L(f − g) =
{

1 if x2 - f (x),
2 always.



A weak form of Conjecture 1

Note that for f (x) = adxd + ad−1xd−1 + · · ·+ a0 one has

L(f ′) = d |ad |+ (d − 1)|ad−1|+ · · ·+ |a1|
6 min{dL(f ), d(d + 1)H(f )/2},

so (1) can be replaced by n > dL(f ) or n > d(d + 1)H(f )/2.

Roughly speaking, the result in Theorem 1 confirms the
existence of square-free polynomials g close to f with deg g
arbitrary large.
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Improvement of the bound n > dL(f )

In the following theorem, we establish the existence of one
square-free polynomial close to f but of degree that for large
L(f ) can be much smaller than the bound in (1). (In terms of
L(f ), the bound dL(f ) on deg g is replaced by the bound
2.2d(log d/ log log d)3 log L(f ).)
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Improvement of the bound n > dL(f )

Theorem 2
For any polynomial f ∈ Z[x ] of degree d > 3 there is a
square-free polynomial g ∈ Z[x ] satisfying

deg g <

2.2d
(

log d/ log log d
)3

log L(f ) if x2 - f (x),
2.2d

(
log d/ log log d

)3
log(L(f ) + 1) always,

and
L(f − g) =

{
1 if x2 - f (x),
2 always.
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Polynomials over F2

Let F2 denote the binary field. For any polynomial f ∈ F2[x ]
we define its length L2(f ) to be the number of its monomials.

Theorem 4
For each polynomial f ∈ F2[x ] of degree d ≤ 36 which is not
square-free and satisfies f (0) 6= 0 there exists an integer n
with 0 < n < d such that xn + f (x) is square-free.
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For any polynomial f ∈ F2[x ] of degree d ≤ 81 satisfying
f (0) 6= 0 there exists a square-free polynomial g ∈ F2[x ] of
degree d such that

L2(f − g) ≤ 3.
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Application to our version of Turán’s problem

We have the following:
I for any polynomial f ∈ Z[x ] of degree d ≤ 36 with odd

leading and constant coefficients, there exists a
square-free polynomial g ∈ Z[x ] of degree d such that
L(f − g) ≤ 1;

I for any polynomial f ∈ Z[x ] of degree d ≤ 37 with odd
leading coefficient and even constant term and such that
0 is a simple root of the reduction of f modulo 2, there
exists a square-free polynomial g ∈ Z[x ] of degree d
satisfying L(f − g) ≤ 1;
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Application to our version of Turán’s problem
(continuation)

I for any polynomial f ∈ Z[x ] of degree d ≤ 81 with odd
leading and constant coefficients there exists a square-free
polynomial g ∈ Z[x ] of degree d such that L(f − g) ≤ 3;

I for any polynomial f ∈ Z[x ] of degree d ≥ 9 with odd
leading coefficient and such that the reduction of f
modulo 2 satisfies one of the two conditions (not to
specified here) there exists a square-free polynomial
g ∈ Z[x ] of degree d satisfying L(f − g) ≤ 1.

Note that from these results one can obtain various classes of
polynomials f ∈ Z[x ] such that there exists a square-free
polynomial g ∈ Z[x ] of degree deg f satisfying L(f − g) ≤ 2.
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Polynomials over prime fields

Let Fp be the finite field with p elements, where p is a prime
number. For any polynomial f ∈ Fp[x ], define its length Lp(f )
by choosing each of its coefficients in the interval (−p/2, p/2]
and then summing their absolute values (in Z).
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Polynomials over prime fields: a conjecture

As an analogue of Conjecture 1, we pose the following
question:
Question 6
Does for any prime number p and any polynomial f ∈ Fp[x ] of
degree d there exist a square-free polynomial g ∈ Fp[x ] of
degree at most d satisfying

Lp(f − g) ≤ 2?

Our results imply a positive answer to Question 6 for
polynomials in F2[x ] of degree at most 36.
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Polynomials over prime fields: a weaker result

By a recent result of Oppenheim and Shusterman (2018, J.
Number Theory), for any polynomial f ∈ Fp[x ] of degree
d ≥ 2 there exists a square-free polynomial g of degree d such
that

Lp(f − g) 6 2(d − 1).
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Proof of Theorem 3 (example with large
coefficients)

For any polynomial f ∈ Z[x ] of the form x2h(x) with non-zero
h(x) ∈ Z[x ] (so that f automatically is not square-free), if
there were a square-free polynomial g ∈ Z[x ] satisfying
L(f − g) ≤ 1, then g must be of the form f (x)± 1 or
f (x)± x .

So, our purpose is to find polynomials f ∈ Z[x ] of the form
x2h(x) such that none of the following four polynomials

f (x) + 1, f (x)− 1, f (x) + x , f (x)− x

is square-free.
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Proof of Theorem 3

Assume that

f ≡ 0 (mod x2), f ≡ −1 (mod (2x + 1)2),
f ≡ x (mod (2x − 1)2), f ≡ 1 (mod (6x + 1)2),
f ≡ −x (mod (6x − 1)2).

(2)

Then, all the solutions in Z[x ] of (2) meet our purpose.
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Proof of Theorem 3

By the Chinese Remainder Theorem and using PARI/GP, we
obtain a solution f0 ∈ Q[x ] of (2):

f0(x) =106515x9 − 8991x8 − 236133
4 x7 + 20385

4 x6

+ 152209
16 x5 − 13701

16 x4 − 22207
64 x3 + 2243

64 x2.

Let h(x) be the product of all five polynomials that appear in
the moduli of (2).
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Proof of Theorem 3

Then,

h(x) = 20736x10 − 11520x8 + 1888x6 − 80x4 + x2.

So, the general solution of (2) in Q[x ] has the form

f = f0 + hf1, f1 ∈ Q[x ].

Now, we want to choose suitable f1 such that f ∈ Z[x ].
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Proof of Theorem 3

Notice that f0 has six coefficients not in Z. We then choose f1
to be a polynomial in Q[x ] of degree 5:

f1(x) = a5x5 + · · ·+ a1x + a0

such that f0 + hf1 ∈ Z[x ], that is, hf1 is congruent to −f0
modulo the integers. By comparing the coefficients modulo
the integers starting from the lowest term, we obtain

a0 ∈
61
64 + Z, a1 ∈

63
64 + Z, a2 ∈

9
16 + Z,

a3 ∈
11
16 + Z, a4 ∈

1
4 + Z, a5 ∈

3
4 + Z.

This completes the proof of the theorem for d = 15.



Proof of Theorem 3

Notice that f0 has six coefficients not in Z. We then choose f1
to be a polynomial in Q[x ] of degree 5:

f1(x) = a5x5 + · · ·+ a1x + a0

such that f0 + hf1 ∈ Z[x ], that is, hf1 is congruent to −f0
modulo the integers. By comparing the coefficients modulo
the integers starting from the lowest term, we obtain

a0 ∈
61
64 + Z, a1 ∈

63
64 + Z, a2 ∈

9
16 + Z,

a3 ∈
11
16 + Z, a4 ∈

1
4 + Z, a5 ∈

3
4 + Z.

This completes the proof of the theorem for d = 15.



Proof of Theorem 3

Notice that f0 has six coefficients not in Z. We then choose f1
to be a polynomial in Q[x ] of degree 5:

f1(x) = a5x5 + · · ·+ a1x + a0

such that f0 + hf1 ∈ Z[x ], that is, hf1 is congruent to −f0
modulo the integers. By comparing the coefficients modulo
the integers starting from the lowest term, we obtain

a0 ∈
61
64 + Z, a1 ∈

63
64 + Z, a2 ∈

9
16 + Z,

a3 ∈
11
16 + Z, a4 ∈

1
4 + Z, a5 ∈

3
4 + Z.

This completes the proof of the theorem for d = 15.



Proof of Theorem 3

Notice that f0 has six coefficients not in Z. We then choose f1
to be a polynomial in Q[x ] of degree 5:

f1(x) = a5x5 + · · ·+ a1x + a0

such that f0 + hf1 ∈ Z[x ], that is, hf1 is congruent to −f0
modulo the integers. By comparing the coefficients modulo
the integers starting from the lowest term, we obtain

a0 ∈
61
64 + Z, a1 ∈

63
64 + Z, a2 ∈

9
16 + Z,

a3 ∈
11
16 + Z, a4 ∈

1
4 + Z, a5 ∈

3
4 + Z.

This completes the proof of the theorem for d = 15.



Proof of Theorem 3

Notice that f0 has six coefficients not in Z. We then choose f1
to be a polynomial in Q[x ] of degree 5:

f1(x) = a5x5 + · · ·+ a1x + a0

such that f0 + hf1 ∈ Z[x ], that is, hf1 is congruent to −f0
modulo the integers. By comparing the coefficients modulo
the integers starting from the lowest term, we obtain

a0 ∈
61
64 + Z, a1 ∈

63
64 + Z, a2 ∈

9
16 + Z,

a3 ∈
11
16 + Z, a4 ∈

1
4 + Z, a5 ∈

3
4 + Z.

This completes the proof of the theorem for d = 15.



Proof of Theorem 3

Notice that f0 has six coefficients not in Z. We then choose f1
to be a polynomial in Q[x ] of degree 5:

f1(x) = a5x5 + · · ·+ a1x + a0

such that f0 + hf1 ∈ Z[x ], that is, hf1 is congruent to −f0
modulo the integers. By comparing the coefficients modulo
the integers starting from the lowest term, we obtain

a0 ∈
61
64 + Z, a1 ∈

63
64 + Z, a2 ∈

9
16 + Z,

a3 ∈
11
16 + Z, a4 ∈

1
4 + Z, a5 ∈

3
4 + Z.

This completes the proof of the theorem for d = 15.



Proof of Theorem 3

Notice that f0 has six coefficients not in Z. We then choose f1
to be a polynomial in Q[x ] of degree 5:

f1(x) = a5x5 + · · ·+ a1x + a0

such that f0 + hf1 ∈ Z[x ], that is, hf1 is congruent to −f0
modulo the integers. By comparing the coefficients modulo
the integers starting from the lowest term, we obtain

a0 ∈
61
64 + Z, a1 ∈

63
64 + Z, a2 ∈

9
16 + Z,

a3 ∈
11
16 + Z, a4 ∈

1
4 + Z, a5 ∈

3
4 + Z.

This completes the proof of the theorem for d = 15.



Proof of Theorem 3

In particular, choosing a0 = 61
64 , a1 = 63

64 , a2 = 9
16 , a3 = 11

16 ,
a4 = 1

4 and a5 = 3
4 , we get the polynomial presented earlier.

For d ≥ 16, we first choose any polynomial f (x) of degree 15
as above (for instance, the same above mentioned
polynomial), and then consider the polynomial

f (x) + k(2x + 1)2(2x − 1)2(6x + 1)2(6x − 1)2xd−8,

where k is any non-zero integer. Then, by the construction of
f (x), we complete the proof for d ≥ 16.
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de Gruyter, Berlin, 1998, pp. 95–100.



Literature

A. Derbal, Une forme effective d’un théorème de Bateman
sur la fonction phi d’Euler, Integers 9 (2009), Paper A56,
735–744.
E. Dobrowolski, On a question of Lehmer and the number
of irreducible factors of a polynomial, Acta Arith. 34
(1979), 391–401.
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