On the distance to the nearest square-free polynomial

Artūras Dubickas (Vilnius University)

UDT 2018 Marseille-Luminy, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For an integer polynomial

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0 \in \mathbb{Z}[x]$$

of degree $d \ge 1$, its *length* L(f) is defined by

$$L(f) = |a_d| + |a_{d-1}| + \cdots + |a_0|.$$

and its height H(f) by

$$H(f) = \max\{|a_d|, |a_{d-1}|, \dots, |a_0|\}.$$

For an integer polynomial

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x]$$

of degree $d \ge 1$, its *length* L(f) is defined by

$$L(f) = |a_d| + |a_{d-1}| + \cdots + |a_0|.$$

and its height H(f) by

$$H(f) = \max\{|a_d|, |a_{d-1}|, \dots, |a_0|\}.$$

For an integer polynomial

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x]$$

of degree $d \ge 1$, its *length* L(f) is defined by

$$L(f) = |a_d| + |a_{d-1}| + \cdots + |a_0|.$$

and its height H(f) by

$$H(f) = \max\{|a_d|, |a_{d-1}|, \dots, |a_0|\}.$$

For an integer polynomial

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x]$$

of degree $d \ge 1$, its *length* L(f) is defined by

$$L(f) = |a_d| + |a_{d-1}| + \cdots + |a_0|.$$

and its height H(f) by

 $H(f) = \max\{|a_d|, |a_{d-1}|, \dots, |a_0|\}.$

For an integer polynomial

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x]$$

of degree $d \ge 1$, its *length* L(f) is defined by

$$L(f) = |a_d| + |a_{d-1}| + \cdots + |a_0|.$$

and its height H(f) by

$$H(f) = \max\{|a_d|, |a_{d-1}|, \dots, |a_0|\}.$$

$$L(f-g) \leq C?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$L(f-g) \leq C?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$L(f-g) \leq C?$$

$$L(f-g) \leq C?$$

 $L(f-g) \leq C?$

 $L(f-g) \leq C?$

$$L(f-g) \leq C?$$

$$L(f-g) \leq C?$$

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \begin{cases} 2 & \text{if } f(0) \neq 0, \\ 3 & \text{always}, \end{cases}$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \begin{cases} 2 & \text{if } f(0) \neq 0, \\ 3 & \text{always}, \end{cases}$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \begin{cases} 2 & \text{if } f(0) \neq 0, \\ 3 & \text{always}, \end{cases}$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \begin{cases} 2 & \text{if } f(0) \neq 0, \\ 3 & \text{always}, \end{cases}$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \begin{cases} 2 & \text{if } f(0) \neq 0, \\ 3 & \text{always,} \end{cases}$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \begin{cases} 2 & \text{if } f(0) \neq 0, \\ 3 & \text{always}, \end{cases}$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \begin{cases} 2 & \text{if } f(0) \neq 0, \\ 3 & \text{always,} \end{cases}$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \begin{cases} 2 & \text{if } f(0) \neq 0, \\ 3 & \text{always}, \end{cases}$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In 1970, Schinzel proved that C = 3 suffices if one removes the condition on the degree of g. More precisely, he showed that if $f \in \mathbb{Z}[x]$ is of degree d then there are infinitely many irreducible polynomials $g \in \mathbb{Z}[x]$ such that

$$L(f-g) \leq \left\{ egin{array}{cc} 2 & ext{if } f(0)
eq 0, \ 3 & ext{always}, \end{array}
ight.$$

and, moreover, at least one of them satisfies

$$\deg g \le \exp((5d+7)(\|f\|+3)),$$

where ||f|| stands for the sum of the squares of the coefficients of f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

 $\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to $% \left({{\rm{Acta}}} \right) = {{\rm{Acta}}} \left({{\rm{Acta}}} \right) = {{\rm{Acta}}} \left({{\rm{Acta}}} \right)$

 $\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

 $\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

$$\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$$

where c_0 is an effectively computable absolute constant.

In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

 $\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

$$\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

$$\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

$$\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

$$\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

$$\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

On the other hand, although the trivial example $f(x) = x^3$ shows that $C \ge 2$, it is not known that the optimal constant C should be strictly greater than 2.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In 2010 (Acta Arith.), Banerjee and Filaseta improved the above upper bound to

$$\deg g \le 8 \max\{d+3, c_0\} 5^{8\|f\|+9},$$

where c_0 is an effectively computable absolute constant. In addition, using computational strategies, it has been confirmed (Bérczes, Hajdu, Filaseta, Mossinghoff, Lee, Ruskey, Williams) that if $f \in \mathbb{Z}[x]$ has degree $d \leq 40$ then there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with deg g = d and $L(f - g) \leq 5$.

A version of Turán's problem

Let us consider a variant of Turán's problem, where "irreducible polynomial g" is replaced by "square-free polynomial g".

For this, we pose the following conjecture:

Conjecture 1

For any $f \in \mathbb{Z}[x]$ of degree d, there is a square-free polynomial $g \in \mathbb{Z}[x]$ of degree at most d satisfying

$$L(f-g)\leq 2.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

A version of Turán's problem

Let us consider a variant of Turán's problem, where "irreducible polynomial g" is replaced by "square-free polynomial g".

For this, we pose the following conjecture:

Conjecture 1

For any $f \in \mathbb{Z}[x]$ of degree d, there is a square-free polynomial $g \in \mathbb{Z}[x]$ of degree at most d satisfying

$$L(f-g)\leq 2.$$
A version of Turán's problem

Let us consider a variant of Turán's problem, where "irreducible polynomial g" is replaced by "square-free polynomial g".

For this, we pose the following conjecture:

Conjecture 1

For any $f \in \mathbb{Z}[x]$ of degree d, there is a square-free polynomial $g \in \mathbb{Z}[x]$ of degree at most d satisfying

$$L(f-g)\leq 2.$$

A version of Turán's problem

Let us consider a variant of Turán's problem, where "irreducible polynomial g" is replaced by "square-free polynomial g".

For this, we pose the following conjecture:

Conjecture 1

For any $f \in \mathbb{Z}[x]$ of degree d, there is a square-free polynomial $g \in \mathbb{Z}[x]$ of degree at most d satisfying

$$L(f-g)\leq 2.$$

Let us consider a variant of Turán's problem, where "irreducible polynomial g" is replaced by "square-free polynomial g".

For this, we pose the following conjecture:

Conjecture 1

For any $f \in \mathbb{Z}[x]$ of degree d, there is a square-free polynomial $g \in \mathbb{Z}[x]$ of degree at most d satisfying

$$L(f-g)\leq 2.$$

Let us consider a variant of Turán's problem, where "irreducible polynomial g" is replaced by "square-free polynomial g".

For this, we pose the following conjecture:

Conjecture 1

For any $f \in \mathbb{Z}[x]$ of degree d, there is a square-free polynomial $g \in \mathbb{Z}[x]$ of degree at most d satisfying

$$L(f-g)\leq 2.$$

Let us consider a variant of Turán's problem, where "irreducible polynomial g" is replaced by "square-free polynomial g".

For this, we pose the following conjecture:

Conjecture 1

For any $f \in \mathbb{Z}[x]$ of degree d, there is a square-free polynomial $g \in \mathbb{Z}[x]$ of degree at most d satisfying

$$L(f-g)\leq 2.$$

Another problem related to Turán's problem is that of Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu. However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Another problem related to Turán's problem is that of

Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu. However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Another problem related to Turán's problem is that of Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu. However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Another problem related to Turán's problem is that of Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu. However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Another problem related to Turán's problem is that of Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu. However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Another problem related to Turán's problem is that of Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu.

However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Another problem related to Turán's problem is that of Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu. However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Another problem related to Turán's problem is that of Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu. However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Another problem related to Turán's problem is that of Szegedy: is there a constant C_0 depending only on d such that for any $f \in \mathbb{Z}[x]$ of degree d the polynomial f(x) + t is irreducible for some $t \in \mathbb{Z}$ with $|t| \leq C_0$.

In general, the problem of Szegedy is still open, although there are some partial results of Győry, Bérczes and Hajdu. However, in our setting, when "irreducible" is replaced by "square-free", this problem becomes very simple. One can take, for instance, $C_0 = \lfloor d/2 \rfloor$.

Theorem 2

Let *S* be a subset of \mathbb{Z} with the property that for each integer $t \in S$ some h_t^2 , where $h_t \in \mathbb{Z}[x]$ is of degree at least 1, divides the polynomial f(x) + t. Then, $h_t \neq h_s$ when $t \neq s$ both belong to *S*, since otherwise $h_t \mid (t - s)$, a contradiction. Also, h_t divides the derivative f' for every $t \in S$, so the cardinality of the set *S* does not exceed deg $f' \leq d - 1$. The assertion of the theorem now follows, because the set $\{-\lfloor d/2 \rfloor, \ldots, 0, \ldots, \lfloor d/2 \rfloor\}$ contains at least *d* integers.

Let *S* be a subset of \mathbb{Z} with the property that for each integer $t \in S$ some h_t^2 , where $h_t \in \mathbb{Z}[x]$ is of degree at least 1, divides the polynomial f(x) + t. Then, $h_t \neq h_s$ when $t \neq s$ both belong to *S*, since otherwise $h_t \mid (t - s)$, a contradiction. Also, h_t divides the derivative f' for every $t \in S$, so the cardinality of the set *S* does not exceed deg $f' \leq d - 1$. The assertion of the theorem now follows, because the set $\{-\lfloor d/2 \rfloor, \ldots, 0, \ldots, \lfloor d/2 \rfloor\}$ contains at least *d* integers.

Let *S* be a subset of \mathbb{Z} with the property that for each integer $t \in S$ some h_t^2 , where $h_t \in \mathbb{Z}[x]$ is of degree at least 1, divides the polynomial f(x) + t. Then, $h_t \neq h_s$ when $t \neq s$ both belong to *S*, since otherwise $h_t \mid (t - s)$, a contradiction. Also, h_t divides the derivative f' for every $t \in S$, so the cardinality of the set *S* does not exceed deg $f' \leq d - 1$. The assertion of the theorem now follows, because the set $\{-\lfloor d/2 \rfloor, \ldots, 0, \ldots, \lfloor d/2 \rfloor\}$ contains at least *d* integers.

Let *S* be a subset of \mathbb{Z} with the property that for each integer $t \in S$ some h_t^2 , where $h_t \in \mathbb{Z}[x]$ is of degree at least 1, divides the polynomial f(x) + t. Then, $h_t \neq h_s$ when $t \neq s$ both belong to *S*, since otherwise $h_t \mid (t - s)$, a contradiction. Also, h_t divides the derivative f' for every $t \in S$, so the cardinality of the set *S* does not exceed deg $f' \leq d - 1$. The assertion of the theorem now follows, because the set $\{-\lfloor d/2 \rfloor, \ldots, 0, \ldots, \lfloor d/2 \rfloor\}$ contains at least *d* integers.

Let *S* be a subset of \mathbb{Z} with the property that for each integer $t \in S$ some h_t^2 , where $h_t \in \mathbb{Z}[x]$ is of degree at least 1, divides the polynomial f(x) + t. Then, $h_t \neq h_s$ when $t \neq s$ both belong to *S*, since otherwise $h_t \mid (t - s)$, a contradiction. Also, h_t divides the derivative f' for every $t \in S$, so the cardinality of the set *S* does not exceed deg $f' \leq d - 1$. The assertion of the theorem now follows, because the set $\{-\lfloor d/2 \rfloor, \ldots, 0, \ldots, \lfloor d/2 \rfloor\}$ contains at least *d* integers.

(ロ)、(型)、(E)、(E)、(E)、(O)への

Let *S* be a subset of \mathbb{Z} with the property that for each integer $t \in S$ some h_t^2 , where $h_t \in \mathbb{Z}[x]$ is of degree at least 1, divides the polynomial f(x) + t. Then, $h_t \neq h_s$ when $t \neq s$ both belong to *S*, since otherwise $h_t \mid (t - s)$, a contradiction. Also, h_t divides the derivative f' for every $t \in S$, so the cardinality of the set *S* does not exceed deg $f' \leq d - 1$. The assertion of the theorem now follows, because the set $\{-\lfloor d/2 \rfloor, \ldots, 0, \ldots, \lfloor d/2 \rfloor\}$ contains at least *d* integers.

(ロ)、(型)、(E)、(E)、(E)、(O)への

Let S be a subset of \mathbb{Z} with the property that for each integer $t \in S$ some h_t^2 , where $h_t \in \mathbb{Z}[x]$ is of degree at least 1, divides the polynomial f(x) + t. Then, $h_t \neq h_s$ when $t \neq s$ both belong to S, since otherwise $h_t \mid (t - s)$, a contradiction. Also, h_t divides the derivative f' for every $t \in S$, so the cardinality of the set S does not exceed deg $f' \leq d - 1$. The assertion of the theorem now follows, because the set $\{-\lfloor d/2 \rfloor, \ldots, 0, \ldots, \lfloor d/2 \rfloor\}$ contains at least d integers.

Let S be a subset of \mathbb{Z} with the property that for each integer $t \in S$ some h_t^2 , where $h_t \in \mathbb{Z}[x]$ is of degree at least 1, divides the polynomial f(x) + t. Then, $h_t \neq h_s$ when $t \neq s$ both belong to S, since otherwise $h_t \mid (t - s)$, a contradiction. Also, h_t divides the derivative f' for every $t \in S$, so the cardinality of the set S does not exceed deg $f' \leq d - 1$. The assertion of the theorem now follows, because the set $\{-\lfloor d/2 \rfloor, \ldots, 0, \ldots, \lfloor d/2 \rfloor\}$ contains at least d integers.

Theorem 3

For any integer $d \ge 15$, there exist infinitely many polynomials $f \in \mathbb{Z}[x]$ of degree d such that each polynomial $g \in \mathbb{Z}[x]$ satisfying

$$L(f-g) \leq 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 3

For any integer $d \ge 15$, there exist infinitely many polynomials $f \in \mathbb{Z}[x]$ of degree d such that each polynomial $g \in \mathbb{Z}[x]$ satisfying

$$L(f-g) \leq 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 3 For any integer $d \ge 15$, there exist infinitely many polynomials $f \in \mathbb{Z}[x]$ of degree d such that each polynomial $g \in \mathbb{Z}[x]$ satisfying

 $L(f-g) \leq 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 3 For any integer $d \ge 15$, there exist infinitely many polynomials $f \in \mathbb{Z}[x]$ of degree d such that each polynomial $g \in \mathbb{Z}[x]$ satisfying

 $L(f-g) \leq 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 3

For any integer $d \ge 15$, there exist infinitely many polynomials $f \in \mathbb{Z}[x]$ of degree d such that each polynomial $g \in \mathbb{Z}[x]$ satisfying

$$L(f-g) \leq 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 3

For any integer $d \ge 15$, there exist infinitely many polynomials $f \in \mathbb{Z}[x]$ of degree d such that each polynomial $g \in \mathbb{Z}[x]$ satisfying

$$L(f-g) \leq 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

One example of such degree 15 polynomials is $f(x) = 15552x^{15} + 5184x^{14} + 5616x^{13} + 8784x^{12} + 139$

 $+ 13756x^{10} + 96413x^9 - 18929x^8 - 57229x^7 + 6851x^6$ $+ 9435x^5 - 932x^4 - 346x^3 + 36x^2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One example of such degree 15 polynomials is

 $\begin{aligned} f(x) =& 15552x^{15} + 5184x^{14} + 5616x^{13} + 8784x^{12} + 13908x^{11} \\ &+ 13756x^{10} + 96413x^9 - 18929x^8 - 57229x^7 + 6851x^6 \\ &+ 9435x^5 - 932x^4 - 346x^3 + 36x^2. \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One example of such degree 15 polynomials is

$$\begin{split} f(x) =& 15552x^{15} + 5184x^{14} + 5616x^{13} + 8784x^{12} + 13908x^{11} \\ &+ 13756x^{10} + 96413x^9 - 18929x^8 - 57229x^7 + 6851x^6 \\ &+ 9435x^5 - 932x^4 - 346x^3 + 36x^2. \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

We do not claim that d = 15 is the smallest degree of the polynomials satisfying the conditions of Theorem 3.

We do not claim that d = 15 is the smallest degree of the polynomials satisfying the conditions of Theorem 3.

We do not claim that d = 15 is the smallest degree of the polynomials satisfying the conditions of Theorem 3.

We do not claim that d = 15 is the smallest degree of the polynomials satisfying the conditions of Theorem 3.

We do not claim that d = 15 is the smallest degree of the polynomials satisfying the conditions of Theorem 3.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
The next result is a weak form of Conjecture 1 by relaxing the condition on the degree of g:

Theorem 1 For any $f \in \mathbb{Z}[x]$ of degree d and any integer

$$n > L(f'), \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

The next result is a weak form of Conjecture 1 by relaxing the condition on the degree of g:

Theorem 1For any $f \in \mathbb{Z}[x]$ of degree d and any integer

$$n > L(f'), \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

The next result is a weak form of Conjecture 1 by relaxing the condition on the degree of g:

Theorem 1 For any $f \in \mathbb{Z}[x]$ of degree d and any integer

$$n > L(f'), \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

The next result is a weak form of Conjecture 1 by relaxing the condition on the degree of g:

Theorem 1 For any $f \in \mathbb{Z}[x]$ of degree d and any integer

$$n > L(f'), \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

The next result is a weak form of Conjecture 1 by relaxing the condition on the degree of g:

Theorem 1 For any $f \in \mathbb{Z}[x]$ of degree d and any integer

$$n > L(f'), \tag{1}$$

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

The next result is a weak form of Conjecture 1 by relaxing the condition on the degree of g:

Theorem 1 For any $f \in \mathbb{Z}[x]$ of degree d and any integer

$$n > L(f'), \tag{1}$$

$$L(f-g) = \begin{cases} 1 & \text{if } x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

The next result is a weak form of Conjecture 1 by relaxing the condition on the degree of g:

Theorem 1 For any $f \in \mathbb{Z}[x]$ of degree d and any integer

$$n > L(f'), \tag{1}$$

$$L(f-g) = \begin{cases} 1 & \text{if } x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

Note that for $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ one has

$$L(f') = d|a_d| + (d-1)|a_{d-1}| + \dots + |a_1|$$

 $\leq \min\{dL(f), d(d+1)H(f)/2\},$

so (1) can be replaced by n > dL(f) or n > d(d+1)H(f)/2.

Roughly speaking, the result in Theorem 1 confirms the existence of square-free polynomials *g* close to *f* with deg *g* arbitrary large.

Note that for $f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0$ one has $L(f') = d|a_d| + (d-1)|a_{d-1}| + \dots + |a_1|$ $\leq \min\{dL(f), d(d+1)H(f)/2\},$

so (1) can be replaced by n > dL(f) or n > d(d+1)H(f)/2.

Roughly speaking, the result in Theorem 1 confirms the existence of square-free polynomials g close to f with deg g arbitrary large.

Note that for $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ one has

$$egin{aligned} & L(f') = d|a_d| + (d-1)|a_{d-1}| + \cdots + |a_1| \ &\leqslant \min\{dL(f), d(d+1)H(f)/2\}, \end{aligned}$$

so (1) can be replaced by n > dL(f) or n > d(d+1)H(f)/2.

Roughly speaking, the result in Theorem 1 confirms the existence of square-free polynomials *g* close to *f* with deg *g* arbitrary large.

Note that for $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ one has

$$egin{aligned} & L(f') = d|a_d| + (d-1)|a_{d-1}| + \cdots + |a_1| \ &\leqslant \min\{dL(f), d(d+1)H(f)/2\}, \end{aligned}$$

so (1) can be replaced by n > dL(f) or n > d(d+1)H(f)/2.

Roughly speaking, the result in Theorem 1 confirms the existence of square-free polynomials *g* close to *f* with deg *g* arbitrary large.

Note that for $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ one has

$$L(f') = d|a_d| + (d-1)|a_{d-1}| + \dots + |a_1|$$

 $\leq \min\{dL(f), d(d+1)H(f)/2\},$

so (1) can be replaced by n > dL(f) or n > d(d+1)H(f)/2.

Roughly speaking, the result in Theorem 1 confirms the existence of square-free polynomials g close to f with deg g arbitrary large.

Note that for $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ one has

$$L(f') = d|a_d| + (d-1)|a_{d-1}| + \dots + |a_1|$$

 $\leq \min\{dL(f), d(d+1)H(f)/2\},$

so (1) can be replaced by n > dL(f) or n > d(d+1)H(f)/2.

Roughly speaking, the result in Theorem 1 confirms the existence of square-free polynomials g close to f with deg g arbitrary large.

In the following theorem, we establish the existence of one square-free polynomial close to f but of degree that for large L(f) can be much smaller than the bound in (1). (In terms of L(f), the bound dL(f) on deg g is replaced by the bound 2.2 $d(\log d/\log \log d)^3 \log L(f)$.)

In the following theorem, we establish the existence of one square-free polynomial close to f but of degree that for large L(f) can be much smaller than the bound in (1). (In terms of L(f), the bound dL(f) on deg g is replaced by the bound 2.2 $d(\log d/\log \log d)^3 \log L(f)$.)

In the following theorem, we establish the existence of one square-free polynomial close to f but of degree that for large L(f) can be much smaller than the bound in (1). (In terms of L(f), the bound dL(f) on deg g is replaced by the bound 2.2 $d(\log d/\log \log d)^3 \log L(f)$.)

In the following theorem, we establish the existence of one square-free polynomial close to f but of degree that for large L(f) can be much smaller than the bound in (1). (In terms of L(f), the bound dL(f) on deg g is replaced by the bound 2.2 $d(\log d/\log \log d)^3 \log L(f)$.)

In the following theorem, we establish the existence of one square-free polynomial close to f but of degree that for large L(f) can be much smaller than the bound in (1). (In terms of L(f), the bound dL(f) on deg g is replaced by the bound $2.2d(\log d/\log \log d)^3 \log L(f)$.)

Theorem 2

For any polynomial $f \in \mathbb{Z}[x]$ of degree $d \ge 3$ there is a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying

$$\deg g < \begin{cases} 2.2d \big(\log d/\log\log d\big)^3 \log L(f) & \text{if } x^2 \nmid f(x), \\ 2.2d \big(\log d/\log\log d\big)^3 \log(L(f)+1) & \text{always}, \end{cases}$$

and

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

Theorem 2 For any polynomial $f \in \mathbb{Z}[x]$ of degree $d \ge 3$ there is a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying

$$\deg g < \begin{cases} 2.2d \big(\log d / \log \log d\big)^3 \log L(f) & \text{if } x^2 \nmid f(x), \\ 2.2d \big(\log d / \log \log d\big)^3 \log(L(f) + 1) & \text{always}, \end{cases}$$

and

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

Theorem 2

For any polynomial $f \in \mathbb{Z}[x]$ of degree $d \ge 3$ there is a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying

$$\deg g < \begin{cases} 2.2d \big(\log d / \log \log d\big)^3 \log L(f) & \text{if } x^2 \nmid f(x), \\ 2.2d \big(\log d / \log \log d\big)^3 \log(L(f) + 1) & \text{always}, \end{cases}$$

and

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

Theorem 2

For any polynomial $f \in \mathbb{Z}[x]$ of degree $d \ge 3$ there is a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying

$$\deg g < \begin{cases} 2.2d \left(\log d / \log \log d \right)^3 \log L(f) & \text{if } x^2 \nmid f(x), \\ 2.2d \left(\log d / \log \log d \right)^3 \log(L(f) + 1) & \text{always}, \end{cases}$$

and

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

Theorem 2

For any polynomial $f \in \mathbb{Z}[x]$ of degree $d \ge 3$ there is a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying

$$\deg g < \begin{cases} 2.2d \big(\log d / \log \log d\big)^3 \log L(f) & \text{if } x^2 \nmid f(x), \\ 2.2d \big(\log d / \log \log d\big)^3 \log(L(f) + 1) & \text{always}, \end{cases}$$

and

$$L(f-g) = \begin{cases} 1 & if \ x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

Theorem 2

For any polynomial $f \in \mathbb{Z}[x]$ of degree $d \ge 3$ there is a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying

$$\deg g < \begin{cases} 2.2d \big(\log d / \log \log d\big)^3 \log L(f) & \text{if } x^2 \nmid f(x), \\ 2.2d \big(\log d / \log \log d\big)^3 \log(L(f) + 1) & \text{always}, \end{cases}$$

and

$$L(f-g) = \begin{cases} 1 & \text{if } x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

Theorem 2

For any polynomial $f \in \mathbb{Z}[x]$ of degree $d \ge 3$ there is a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying

$$\deg g < \begin{cases} 2.2d \big(\log d / \log \log d\big)^3 \log L(f) & \text{if } x^2 \nmid f(x), \\ 2.2d \big(\log d / \log \log d\big)^3 \log(L(f) + 1) & \text{always}, \end{cases}$$

and

$$L(f-g) = \begin{cases} 1 & \text{if } x^2 \nmid f(x), \\ 2 & always. \end{cases}$$

Theorem 4

For each polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 36$ which is not square-free and satisfies $f(0) \ne 0$ there exists an integer n with 0 < n < d such that $x^n + f(x)$ is square-free.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Theorem 4

For each polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 36$ which is not square-free and satisfies $f(0) \ne 0$ there exists an integer n with 0 < n < d such that $x^n + f(x)$ is square-free.

Theorem 4

For each polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 36$ which is not square-free and satisfies $f(0) \ne 0$ there exists an integer n with 0 < n < d such that $x^n + f(x)$ is square-free.

Theorem 4

For each polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 36$ which is not square-free and satisfies $f(0) \ne 0$ there exists an integer n with 0 < n < d such that $x^n + f(x)$ is square-free.

Theorem 4

For each polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 36$ which is not square-free and satisfies $f(0) \neq 0$ there exists an integer n with 0 < n < d such that $x^n + f(x)$ is square-free.

Theorem 4

For each polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 36$ which is not square-free and satisfies $f(0) \neq 0$ there exists an integer n with 0 < n < d such that $x^n + f(x)$ is square-free.

Theorem 4

For each polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 36$ which is not square-free and satisfies $f(0) \neq 0$ there exists an integer n with 0 < n < d such that $x^n + f(x)$ is square-free.

Theorem 4

For each polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 36$ which is not square-free and satisfies $f(0) \neq 0$ there exists an integer n with 0 < n < d such that $x^n + f(x)$ is square-free.

Theorem 5

For any polynomial $f \in \mathbb{F}_2[x]$ of degree $d \leq 81$ satisfying $f(0) \neq 0$ there exists a square-free polynomial $g \in \mathbb{F}_2[x]$ of degree d such that

 $L_2(f-g)\leq 3.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Polynomials over \mathbb{F}_2

Theorem 5 For any polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 81$ satisfying $f(0) \ne 0$ there exists a square-free polynomial $g \in \mathbb{F}_2[x]$ of degree d such that

 $L_2(f-g)\leq 3.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Polynomials over \mathbb{F}_2

Theorem 5 For any polynomial $f \in \mathbb{F}_2[x]$ of degree $d \le 81$ satisfying $f(0) \ne 0$ there exists a square-free polynomial $g \in \mathbb{F}_2[x]$ of degree d such that

 $L_2(f-g)\leq 3.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
Theorem 5

For any polynomial $f \in \mathbb{F}_2[x]$ of degree $d \leq 81$ satisfying $f(0) \neq 0$ there exists a square-free polynomial $g \in \mathbb{F}_2[x]$ of degree d such that

 $L_2(f-g)\leq 3.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 5

For any polynomial $f \in \mathbb{F}_2[x]$ of degree $d \leq 81$ satisfying $f(0) \neq 0$ there exists a square-free polynomial $g \in \mathbb{F}_2[x]$ of degree d such that

 $L_2(f-g)\leq 3.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We have the following:

- for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;
- For any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

- for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;
- For any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

For any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;

for any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

- for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;
- for any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;

For any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;

For any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

- for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;
- For any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

- for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;
- for any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

- for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;
- for any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

- for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;
- for any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

We have the following:

- for any polynomial f ∈ Z[x] of degree d ≤ 36 with odd leading and constant coefficients, there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 1;
- for any polynomial f ∈ Z[x] of degree d ≤ 37 with odd leading coefficient and even constant term and such that 0 is a simple root of the reduction of f modulo 2, there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1;

- for any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- For any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

- For any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- For any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

- for any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- For any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

- For any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- For any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

- for any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- For any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

- for any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- for any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

Note that from these results one can obtain various classes of polynomials $f \in \mathbb{Z}[x]$ such that there exists a square-free polynomial $g \in \mathbb{Z}[x]$ of degree deg f satisfying $L(f - g) \leq 2$.

- for any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- for any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

- for any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- for any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

- for any polynomial f ∈ Z[x] of degree d ≤ 81 with odd leading and constant coefficients there exists a square-free polynomial g ∈ Z[x] of degree d such that L(f − g) ≤ 3;
- for any polynomial f ∈ Z[x] of degree d ≥ 9 with odd leading coefficient and such that the reduction of f modulo 2 satisfies one of the two conditions (not to specified here) there exists a square-free polynomial g ∈ Z[x] of degree d satisfying L(f − g) ≤ 1.

Polynomials over prime fields

Polynomials over prime fields

Let \mathbb{F}_p be the finite field with p elements, where p is a prime number. For any polynomial $f \in \mathbb{F}_p[x]$, define its *length* $L_p(f)$ by choosing each of its coefficients in the interval (-p/2, p/2]and then summing their absolute values (in \mathbb{Z}).

Polynomials over prime fields

Let \mathbb{F}_p be the finite field with p elements, where p is a prime number. For any polynomial $f \in \mathbb{F}_p[x]$, define its *length* $L_p(f)$ by choosing each of its coefficients in the interval (-p/2, p/2]and then summing their absolute values (in \mathbb{Z}).

As an analogue of Conjecture 1, we pose the following question:

Question 6

Does for any prime number p and any polynomial $f \in \mathbb{F}_p[x]$ of degree d there exist a square-free polynomial $g \in \mathbb{F}_p[x]$ of degree at most d satisfying

$$L_p(f-g) \leq 2?$$

As an analogue of Conjecture 1, we pose the following question:

Question 6

Does for any prime number p and any polynomial $f \in \mathbb{F}_p[x]$ of degree d there exist a square-free polynomial $g \in \mathbb{F}_p[x]$ of degree at most d satisfying

$$L_p(f-g) \leq 2?$$

As an analogue of Conjecture 1, we pose the following question:

Question 6

Does for any prime number p and any polynomial $f \in \mathbb{F}_p[x]$ of degree d there exist a square-free polynomial $g \in \mathbb{F}_p[x]$ of degree at most d satisfying

$$L_p(f-g) \leq 2?$$

As an analogue of Conjecture 1, we pose the following question:

Question 6

Does for any prime number p and any polynomial $f \in \mathbb{F}_p[x]$ of degree d there exist a square-free polynomial $g \in \mathbb{F}_p[x]$ of degree at most d satisfying

$$L_p(f-g) \le 2?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

As an analogue of Conjecture 1, we pose the following question:

Question 6

Does for any prime number p and any polynomial $f \in \mathbb{F}_p[x]$ of degree d there exist a square-free polynomial $g \in \mathbb{F}_p[x]$ of degree at most d satisfying

$L_p(f-g) \le 2?$

As an analogue of Conjecture 1, we pose the following question:

Question 6

Does for any prime number p and any polynomial $f \in \mathbb{F}_p[x]$ of degree d there exist a square-free polynomial $g \in \mathbb{F}_p[x]$ of degree at most d satisfying

$$L_p(f-g) \leq 2?$$

As an analogue of Conjecture 1, we pose the following question:

Question 6

Does for any prime number p and any polynomial $f \in \mathbb{F}_p[x]$ of degree d there exist a square-free polynomial $g \in \mathbb{F}_p[x]$ of degree at most d satisfying

$$L_p(f-g) \leq 2?$$

Polynomials over prime fields: a weaker result

By a recent result of Oppenheim and Shusterman (2018, J. Number Theory), for any polynomial $f \in \mathbb{F}_p[x]$ of degree $d \ge 2$ there exists a square-free polynomial g of degree d such that

 $L_p(f-g) \leqslant 2(d-1).$
Polynomials over prime fields: a weaker result

By a recent result of Oppenheim and Shusterman (2018, J. Number Theory), for any polynomial $f \in \mathbb{F}_p[x]$ of degree $d \ge 2$ there exists a square-free polynomial g of degree d such that

 $L_p(f-g) \leqslant 2(d-1).$

Polynomials over prime fields: a weaker result

By a recent result of Oppenheim and Shusterman (2018, J. Number Theory), for any polynomial $f \in \mathbb{F}_p[x]$ of degree $d \ge 2$ there exists a square-free polynomial g of degree d such that

 $L_p(f-g) \leqslant 2(d-1).$

By a recent result of Oppenheim and Shusterman (2018, J. Number Theory), for any polynomial $f \in \mathbb{F}_p[x]$ of degree $d \ge 2$ there exists a square-free polynomial g of degree d such that

 $L_p(f-g) \leqslant 2(d-1).$

By a recent result of Oppenheim and Shusterman (2018, J. Number Theory), for any polynomial $f \in \mathbb{F}_p[x]$ of degree $d \ge 2$ there exists a square-free polynomial g of degree d such that

$$L_p(f-g) \leqslant 2(d-1).$$

For any polynomial $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ with non-zero $h(x) \in \mathbb{Z}[x]$ (so that f automatically is not square-free), if there were a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying $L(f - g) \leq 1$, then g must be of the form $f(x) \pm 1$ or $f(x) \pm x$.

So, our purpose is to find polynomials $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ such that none of the following four polynomials

$$f(x) + 1$$
, $f(x) - 1$, $f(x) + x$, $f(x) - x$

For any polynomial $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ with non-zero $h(x) \in \mathbb{Z}[x]$ (so that f automatically is not square-free), if there were a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying $L(f-g) \leq 1$, then g must be of the form $f(x) \pm 1$ or $f(x) \pm x$.

So, our purpose is to find polynomials $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ such that none of the following four polynomials

$$f(x) + 1$$
, $f(x) - 1$, $f(x) + x$, $f(x) - x$

For any polynomial $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ with non-zero $h(x) \in \mathbb{Z}[x]$ (so that f automatically is not square-free), if there were a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying $L(f-g) \leq 1$, then g must be of the form $f(x) \pm 1$ or $f(x) \pm x$.

So, our purpose is to find polynomials $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ such that none of the following four polynomials

$$f(x) + 1$$
, $f(x) - 1$, $f(x) + x$, $f(x) - x$

For any polynomial $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ with non-zero $h(x) \in \mathbb{Z}[x]$ (so that f automatically is not square-free), if there were a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying $L(f - g) \leq 1$, then g must be of the form $f(x) \pm 1$ or $f(x) \pm x$.

So, our purpose is to find polynomials $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ such that none of the following four polynomials

$$f(x) + 1$$
, $f(x) - 1$, $f(x) + x$, $f(x) - x$

For any polynomial $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ with non-zero $h(x) \in \mathbb{Z}[x]$ (so that f automatically is not square-free), if there were a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying $L(f - g) \leq 1$, then g must be of the form $f(x) \pm 1$ or $f(x) \pm x$.

So, our purpose is to find polynomials $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ such that none of the following four polynomials

f(x) + 1, f(x) - 1, f(x) + x, f(x) - x

For any polynomial $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ with non-zero $h(x) \in \mathbb{Z}[x]$ (so that f automatically is not square-free), if there were a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying $L(f - g) \leq 1$, then g must be of the form $f(x) \pm 1$ or $f(x) \pm x$.

So, our purpose is to find polynomials $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ such that none of the following four polynomials

f(x) + 1, f(x) - 1, f(x) + x, f(x) - x

For any polynomial $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ with non-zero $h(x) \in \mathbb{Z}[x]$ (so that f automatically is not square-free), if there were a square-free polynomial $g \in \mathbb{Z}[x]$ satisfying $L(f - g) \leq 1$, then g must be of the form $f(x) \pm 1$ or $f(x) \pm x$.

So, our purpose is to find polynomials $f \in \mathbb{Z}[x]$ of the form $x^2h(x)$ such that none of the following four polynomials

$$f(x) + 1$$
, $f(x) - 1$, $f(x) + x$, $f(x) - x$

Assume that

$$f \equiv 0 \pmod{x^2}, \quad f \equiv -1 \pmod{(2x+1)^2}, f \equiv x \pmod{(2x-1)^2}, \quad f \equiv 1 \pmod{(6x+1)^2}, \quad (2) f \equiv -x \pmod{(6x-1)^2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Then, all the solutions in $\mathbb{Z}[x]$ of (2) meet our purpose.

Assume that

$$f \equiv 0 \pmod{x^2}, \quad f \equiv -1 \pmod{(2x+1)^2}, f \equiv x \pmod{(2x-1)^2}, \quad f \equiv 1 \pmod{(6x+1)^2}, \quad (2) f \equiv -x \pmod{(6x-1)^2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Then, all the solutions in $\mathbb{Z}[x]$ of (2) meet our purpose.

Assume that

$$f \equiv 0 \pmod{x^2}, \quad f \equiv -1 \pmod{(2x+1)^2}, f \equiv x \pmod{(2x-1)^2}, \quad f \equiv 1 \pmod{(6x+1)^2}, \quad (2) f \equiv -x \pmod{(6x-1)^2}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Then, all the solutions in $\mathbb{Z}[x]$ of (2) meet our purpose.

$$f_0(x) = 106515x^9 - 8991x^8 - \frac{236133}{4}x^7 + \frac{20385}{4}x^6 + \frac{152209}{16}x^5 - \frac{13701}{16}x^4 - \frac{22207}{64}x^3 + \frac{2243}{64}x^2.$$

Let h(x) be the product of all five polynomials that appear in the moduli of (2).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let h(x) be the product of all five polynomials that appear in the moduli of (2).

$$\begin{split} f_0(x) =& 106515x^9 - 8991x^8 - \frac{236133}{4}x^7 + \frac{20385}{4}x^6 \\ &+ \frac{152209}{16}x^5 - \frac{13701}{16}x^4 - \frac{22207}{64}x^3 + \frac{2243}{64}x^2. \end{split}$$

Let h(x) be the product of all five polynomials that appear in the moduli of (2).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\begin{split} f_0(x) =& 106515x^9 - 8991x^8 - \frac{236133}{4}x^7 + \frac{20385}{4}x^6 \\ &+ \frac{152209}{16}x^5 - \frac{13701}{16}x^4 - \frac{22207}{64}x^3 + \frac{2243}{64}x^2. \end{split}$$

Let h(x) be the product of all five polynomials that appear in the moduli of (2).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $h(x) = 20736x^{10} - 11520x^8 + 1888x^6 - 80x^4 + x^2.$

So, the general solution of (2) in $\mathbb{Q}[x]$ has the form

 $f = f_0 + hf_1, \quad f_1 \in \mathbb{Q}[x].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$h(x) = 20736x^{10} - 11520x^8 + 1888x^6 - 80x^4 + x^2.$

So, the general solution of (2) in $\mathbb{Q}[x]$ has the form

$f = f_0 + hf_1, \quad f_1 \in \mathbb{Q}[x].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$h(x) = 20736x^{10} - 11520x^8 + 1888x^6 - 80x^4 + x^2.$$

So, the general solution of (2) in $\mathbb{Q}[x]$ has the form

$f = f_0 + hf_1, \quad f_1 \in \mathbb{Q}[x].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$h(x) = 20736x^{10} - 11520x^8 + 1888x^6 - 80x^4 + x^2.$$

So, the general solution of (2) in $\mathbb{Q}[x]$ has the form

$$f = f_0 + hf_1, \quad f_1 \in \mathbb{Q}[x].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notice that f_0 has six coefficients not in \mathbb{Z} . We then choose f_1 to be a polynomial in $\mathbb{Q}[x]$ of degree 5:

$$f_1(x) = a_5 x^5 + \dots + a_1 x + a_0$$

such that $f_0 + hf_1 \in \mathbb{Z}[x]$, that is, hf_1 is congruent to $-f_0$ modulo the integers. By comparing the coefficients modulo the integers starting from the lowest term, we obtain

$$a_0 \in rac{61}{64} + \mathbb{Z}, \quad a_1 \in rac{63}{64} + \mathbb{Z}, \quad a_2 \in rac{9}{16} + \mathbb{Z}, \ a_3 \in rac{11}{16} + \mathbb{Z}, \quad a_4 \in rac{1}{4} + \mathbb{Z}, \quad a_5 \in rac{3}{4} + \mathbb{Z}.$$

This completes the proof of the theorem for d = 15.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Notice that f_0 has six coefficients not in \mathbb{Z} . We then choose f_1 to be a polynomial in $\mathbb{Q}[x]$ of degree 5:

$$f_1(x) = a_5 x^5 + \dots + a_1 x + a_0$$

such that $f_0 + hf_1 \in \mathbb{Z}[x]$, that is, hf_1 is congruent to $-f_0$ modulo the integers. By comparing the coefficients modulo the integers starting from the lowest term, we obtain

$$a_0 \in rac{61}{64} + \mathbb{Z}, \quad a_1 \in rac{63}{64} + \mathbb{Z}, \quad a_2 \in rac{9}{16} + \mathbb{Z}, \ a_3 \in rac{11}{16} + \mathbb{Z}, \quad a_4 \in rac{1}{4} + \mathbb{Z}, \quad a_5 \in rac{3}{4} + \mathbb{Z}.$$

This completes the proof of the theorem for d = 15.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Notice that f_0 has six coefficients not in \mathbb{Z} . We then choose f_1 to be a polynomial in $\mathbb{Q}[x]$ of degree 5:

$$f_1(x) = a_5 x^5 + \cdots + a_1 x + a_0$$

such that $f_0 + hf_1 \in \mathbb{Z}[x]$, that is, hf_1 is congruent to $-f_0$ modulo the integers. By comparing the coefficients modulo the integers starting from the lowest term, we obtain

$$a_0 \in rac{61}{64} + \mathbb{Z}, \quad a_1 \in rac{63}{64} + \mathbb{Z}, \quad a_2 \in rac{9}{16} + \mathbb{Z}, \ a_3 \in rac{11}{16} + \mathbb{Z}, \quad a_4 \in rac{1}{4} + \mathbb{Z}, \quad a_5 \in rac{3}{4} + \mathbb{Z}.$$

This completes the proof of the theorem for d = 15.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Notice that f_0 has six coefficients not in \mathbb{Z} . We then choose f_1 to be a polynomial in $\mathbb{Q}[x]$ of degree 5:

$$f_1(x) = a_5 x^5 + \cdots + a_1 x + a_0$$

such that $f_0 + hf_1 \in \mathbb{Z}[x]$, that is, hf_1 is congruent to $-f_0$ modulo the integers. By comparing the coefficients modulo the integers starting from the lowest term, we obtain

$$a_0 \in rac{61}{64} + \mathbb{Z}, \quad a_1 \in rac{63}{64} + \mathbb{Z}, \quad a_2 \in rac{9}{16} + \mathbb{Z}, \ a_3 \in rac{11}{16} + \mathbb{Z}, \quad a_4 \in rac{1}{4} + \mathbb{Z}, \quad a_5 \in rac{3}{4} + \mathbb{Z}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This completes the proof of the theorem for d = 15.

Notice that f_0 has six coefficients not in \mathbb{Z} . We then choose f_1 to be a polynomial in $\mathbb{Q}[x]$ of degree 5:

$$f_1(x) = a_5 x^5 + \cdots + a_1 x + a_0$$

such that $f_0 + hf_1 \in \mathbb{Z}[x]$, that is, hf_1 is congruent to $-f_0$ modulo the integers. By comparing the coefficients modulo the integers starting from the lowest term, we obtain

$$a_0 \in rac{61}{64} + \mathbb{Z}, \quad a_1 \in rac{63}{64} + \mathbb{Z}, \quad a_2 \in rac{9}{16} + \mathbb{Z}, \ a_3 \in rac{11}{16} + \mathbb{Z}, \quad a_4 \in rac{1}{4} + \mathbb{Z}, \quad a_5 \in rac{3}{4} + \mathbb{Z}.$$

This completes the proof of the theorem for d = 15.

Notice that f_0 has six coefficients not in \mathbb{Z} . We then choose f_1 to be a polynomial in $\mathbb{Q}[x]$ of degree 5:

$$f_1(x) = a_5 x^5 + \cdots + a_1 x + a_0$$

such that $f_0 + hf_1 \in \mathbb{Z}[x]$, that is, hf_1 is congruent to $-f_0$ modulo the integers. By comparing the coefficients modulo the integers starting from the lowest term, we obtain

$$egin{aligned} &a_0\in rac{61}{64}+\mathbb{Z}, \quad a_1\in rac{63}{64}+\mathbb{Z}, \quad a_2\in rac{9}{16}+\mathbb{Z}, \ &a_3\in rac{11}{16}+\mathbb{Z}, \quad a_4\in rac{1}{4}+\mathbb{Z}, \quad a_5\in rac{3}{4}+\mathbb{Z}. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This completes the proof of the theorem for d=15

Notice that f_0 has six coefficients not in \mathbb{Z} . We then choose f_1 to be a polynomial in $\mathbb{Q}[x]$ of degree 5:

$$f_1(x) = a_5 x^5 + \cdots + a_1 x + a_0$$

such that $f_0 + hf_1 \in \mathbb{Z}[x]$, that is, hf_1 is congruent to $-f_0$ modulo the integers. By comparing the coefficients modulo the integers starting from the lowest term, we obtain

$$egin{aligned} &a_0\in rac{61}{64}+\mathbb{Z}, \quad a_1\in rac{63}{64}+\mathbb{Z}, \quad a_2\in rac{9}{16}+\mathbb{Z}, \ &a_3\in rac{11}{16}+\mathbb{Z}, \quad a_4\in rac{1}{4}+\mathbb{Z}, \quad a_5\in rac{3}{4}+\mathbb{Z}. \end{aligned}$$

This completes the proof of the theorem for d = 15.

In particular, choosing $a_0 = \frac{61}{64}$, $a_1 = \frac{63}{64}$, $a_2 = \frac{9}{16}$, $a_3 = \frac{11}{16}$, $a_4 = \frac{1}{4}$ and $a_5 = \frac{3}{4}$, we get the polynomial presented earlier. For $d \ge 16$, we first choose any polynomial f(x) of degree 15 as above (for instance, the same above mentioned polynomial), and then consider the polynomial

$$f(x) + k(2x + 1)^{2}(2x - 1)^{2}(6x + 1)^{2}(6x - 1)^{2}x^{d-8},$$

where k is any non-zero integer. Then, by the construction of f(x), we complete the proof for $d \ge 16$.

In particular, choosing $a_0 = \frac{61}{64}$, $a_1 = \frac{63}{64}$, $a_2 = \frac{9}{16}$, $a_3 = \frac{11}{16}$, $a_4 = \frac{1}{4}$ and $a_5 = \frac{3}{4}$, we get the polynomial presented earlier. For $d \ge 16$, we first choose any polynomial f(x) of degree 15 as above (for instance, the same above mentioned polynomial), and then consider the polynomial

$$f(x) + k(2x + 1)^{2}(2x - 1)^{2}(6x + 1)^{2}(6x - 1)^{2}x^{d-8},$$

where k is any non-zero integer. Then, by the construction of f(x), we complete the proof for $d \ge 16$.

In particular, choosing $a_0 = \frac{61}{64}$, $a_1 = \frac{63}{64}$, $a_2 = \frac{9}{16}$, $a_3 = \frac{11}{16}$, $a_4 = \frac{1}{4}$ and $a_5 = \frac{3}{4}$, we get the polynomial presented earlier. For $d \ge 16$, we first choose any polynomial f(x) of degree 15 as above (for instance, the same above mentioned polynomial), and then consider the polynomial

$$f(x) + k(2x + 1)^{2}(2x - 1)^{2}(6x + 1)^{2}(6x - 1)^{2}x^{d-8},$$

where k is any non-zero integer. Then, by the construction of f(x), we complete the proof for $d \ge 16$.

In particular, choosing $a_0 = \frac{61}{64}$, $a_1 = \frac{63}{64}$, $a_2 = \frac{9}{16}$, $a_3 = \frac{11}{16}$, $a_4 = \frac{1}{4}$ and $a_5 = \frac{3}{4}$, we get the polynomial presented earlier. For $d \ge 16$, we first choose any polynomial f(x) of degree 15 as above (for instance, the same above mentioned polynomial), and then consider the polynomial

$$f(x) + k(2x + 1)^{2}(2x - 1)^{2}(6x + 1)^{2}(6x - 1)^{2}x^{d-8},$$

where k is any non-zero integer. Then, by the construction of f(x), we complete the proof for $d \ge 16$.

In particular, choosing $a_0 = \frac{61}{64}$, $a_1 = \frac{63}{64}$, $a_2 = \frac{9}{16}$, $a_3 = \frac{11}{16}$, $a_4 = \frac{1}{4}$ and $a_5 = \frac{3}{4}$, we get the polynomial presented earlier. For $d \ge 16$, we first choose any polynomial f(x) of degree 15 as above (for instance, the same above mentioned polynomial), and then consider the polynomial

$$f(x) + k(2x + 1)^2(2x - 1)^2(6x + 1)^2(6x - 1)^2x^{d-8},$$

where k is any non-zero integer. Then, by the construction of f(x), we complete the proof for $d \ge 16$.

In particular, choosing $a_0 = \frac{61}{64}$, $a_1 = \frac{63}{64}$, $a_2 = \frac{9}{16}$, $a_3 = \frac{11}{16}$, $a_4 = \frac{1}{4}$ and $a_5 = \frac{3}{4}$, we get the polynomial presented earlier. For $d \ge 16$, we first choose any polynomial f(x) of degree 15 as above (for instance, the same above mentioned polynomial), and then consider the polynomial

$$f(x) + k(2x + 1)^2(2x - 1)^2(6x + 1)^2(6x - 1)^2x^{d-8},$$

where k is any non-zero integer. Then, by the construction of f(x), we complete the proof for $d \ge 16$.

In particular, choosing $a_0 = \frac{61}{64}$, $a_1 = \frac{63}{64}$, $a_2 = \frac{9}{16}$, $a_3 = \frac{11}{16}$, $a_4 = \frac{1}{4}$ and $a_5 = \frac{3}{4}$, we get the polynomial presented earlier. For $d \ge 16$, we first choose any polynomial f(x) of degree 15 as above (for instance, the same above mentioned polynomial), and then consider the polynomial

$$f(x) + k(2x + 1)^2(2x - 1)^2(6x + 1)^2(6x - 1)^2x^{d-8},$$

where k is any non-zero integer. Then, by the construction of f(x), we complete the proof for $d \ge 16$.
The results are joint with Min Sha (Macquarie University, Sydney) and will appear in Acta Arithmetica.

The results are joint with Min Sha (Macquarie University, Sydney) and will appear in Acta Arithmetica.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The results are joint with Min Sha (Macquarie University, Sydney) and will appear in Acta Arithmetica.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The results are joint with Min Sha (Macquarie University, Sydney) and will appear in Acta Arithmetica.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- P. Banerjee and M. Filaseta, *On a polynomial conjecture of Pál Turán*, Acta Arith. **143** (2010), 239–255.
- P. T. Bateman, *The distribution of values of the Euler function*, Acta Arith. **21** (1972), 329–345.
- A. Bérczes and L. Hajdu, Computational experiences on the distances of polynomials to irreducible polynomials, Math. Comp. 66 (1997), 391–398.
- A. Bérczes and L. Hajdu, On a problem of P. Turán concerning irreducible polynomials, Number Theory: Diophantine, Computational and Algebraic Aspects (Eger, Hungary, 1996) (K. Győry, A. Pethő and V. T. Sós, eds.), de Gruyter, Berlin, 1998, pp. 95–100.

- A. Derbal, Une forme effective d'un théorème de Bateman sur la fonction phi d'Euler, Integers 9 (2009), Paper A56, 735–744.
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391–401.
- P. Erdős, Some remarks of Euler's φ function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540–544.
- M. Filaseta, Is every polynomial with integer coefficients near an irreducible polynomial? Elem. Math. 69 (2014), no. 3, 130–143.

- M. Filaseta and M. J. Mossinghoff, The distance to an irreducible polynomial II, Math. Comp. 81 (2012), 1571–1585.
- K. Győry, On the irreducibility of neighbouring polynomials, Acta Arith. **67** (1994), 283–294.
- L. Hajdu, Irreducible polynomials in arithmetic progressions and a problem of Szegedy, Publ. Math. Debrecen 65 (2004), 363–370.
- G. Lee, F. Ruskey and A. Williams, Hamming distance from irreducible polynomials over 𝔽₂, Discrete Math. Theor. Comput. Sci. Proc., vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07), 2007, pp. 183–196.

- M. J. Mossinghoff, *The distance to an irreducible polynomial*, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina and V. H. Moll, eds.), Contemp. Math., vol. 517, Amer. Math. Soc., Providence, RI, 2010, pp. 275–288.
- A. Oppenheim and M. Shusterman, Squarefree polynomials with prescribed coefficients, J. Number Theory 187 (2018), 189–197.
- J. B. Rosser and L. Schoenfeld, *Approximate formulas for some functions of prime numbers*, Illinois J. Math. **6** (1962), 64–94.

- A. Schinzel, *Reducibility of polynomials and covering systems of congruences*, Acta Arith. **13** (1967), 91–101.
- A. Schinzel, *Reducibility of lacunary polynomials II*, Acta Arith. **16** (1970), 371–392.
- C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169–175.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで