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Spherical cap discrepancy

For 2 € S, t € [~1,1] define spherical caps:
C(x,t) ={y € S%: (x,y) >t}.

For a finite set Z = {21, 22, ..., 25} C S? define

Dep(Z)=  sup  |TE0CE1N)

—o(C(x,t))].
zeS te[—1,1] N ( ( ))

Theorem (Beck, '84)

There exists constants cq, Cyq > 0 such that

CaN ™23 < _inf Deap(Z) < CaN~272/log N.
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Spherical caps: L? discrepancy

Define the spherical cap L? discrepancy

ca}o,L2 /Sd /

Theorem (Beck, '84)

[N

ZﬂC:vt))

2
D —o(C(z,t))| dtdo(z)

There exists constants cq, Cq > 0 such that

1

_1_ 1 . -3- 0
cgN~" 272 S#IZn:fNDcap,L2(Z)§CdN 2724

Dmitriy Bilyk Discrepancy and energy minimization on the sphere



Spherical cap discrepancy: refinement of lower bound

Theorem (Beck, '84)
For any Z = {z1,...,2n} C S¢
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Spherical cap discrepancy: refinement of lower bound

Theorem (Beck, '84)

N 1/2
i oa 1

Deap(Z) > N"27 34 [ —

cap(Z) 2 Nmzz:l (14 NYd||z; — z;]|)4+1
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Discrete energy

Let Z = {z1,...,2x} C S? and let F: [-1,1] = R.
Discrete energy:

N
1
Er(Z) = 553 > Pz 2)
i,j=1
Questions:
m What are the minimizing configurations?
m Almost minimizers?

m Lower bounds?
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Energy integral

Let 1 be a Borel probability measure on S¢.

Energy integral
Z//F(x-y) dp(z)dp(y).

S¢ sd

ie. Ep(Z) = IF( 254)
Questions:
m What are the minimizers?
m Is 0 a minimizer?

m [s it unique?
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Positive definite functions on the sphere

For a function F € C[—1,1] the following are equivalent:
F is positive definite on S%, i.e. for any set of points

Z ={z1,...,2n} CS% the matriz [F(zz . zj)]f.vjzl 18 positive
semidefinite

Gegenbauer coefficients of F' are non-negative, i.e.
F(n,A) >0 for all n > 0.

For any signed measure p € B the energy integral is
non-negative: Ir(p) > 0.

There exists a function f € L%UA[—I, 1] such that

Fa-9) = [ fla-2)iG3)do(2), ayes
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Positive definite functions and energy minir

Let F € C[-1,1].
m The energy Ir(p) is minimized by o
__if and only if
F(n,\) >0 foralln >1,
i.e. F is positive definite up to a constant term.
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Positive definite functions and energy minimization

Let F € C[-1,1].
m The energy Ir(p) is minimized by o
__if and only if
F(n,\) >0 foralln >1,
i.e. F is positive definite up to a constant term.

m The energy Ip(p) is uniquely minimized by o
__if and only if
F(n,A\) >0 for alln > 1.
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Discrepancy + energy: Stolarsky Invariance Principle

Spherical cap L? discrepancy

1
2

2
1 N
Dcap,Lz(Z) = /Sd /;1 ]1]']2::1 1C(x,t)(zj) - U(C($,t)) dt dO’(.Q?)
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Discrepancy + energy: Stolarsky Invariance Principle

Spherical cap L? discrepancy

1
2

2
1 N
Dcap,Lz(Z) = /gd /_1 ]1]']2::1 1C(x,t)(zj) — J(C($,t)) dt dO’(JL‘)

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1,...,z2n} C S¢

N
1
CdD?:ap,LQ(Z) = // |z =yl do(x)do(y) — el Z llzi — ;|-

S wi=1
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Discrepancy + energy: Stolarsky Invariance Principle

Spherical cap L? discrepancy

1
2

2
1 N
Dcap,Lz(Z) = /gd /_1 ]1]']2::1 1C(x,t)(zj) — J(C(LE,t)) dt dO’(JL‘)

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1,...,z2n} C S¢

N
1
CdD?:ap,LQ(Z) = // |z =yl do(x)do(y) — el Z llzi — ;|-

S wi=1

Proofs:
m Stolarsky ’73, Brauchart, Dick '12, DB, Dai, Matzke ’18.
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Positive definite functions on the sphere

For a function F € C[—1,1] the following are equivalent:
F is positive definite on S.

Gegenbauer coefficients of F' are non-negative, i.e.

F\(n,A)ZO for all n > 0.

For any signed measure i € B the energy integral is
non-negative: Ir(u) > 0.

There exists a function f € L%,A[—l, 1] such that

Fo-y) = [ fle-2)f(z-y)do(z), ayes”

i.e. F is the spherical convolution of f with itself.

Fn, A% = F(n,\)
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Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure u
w.r.t. the function f: [-1,1] — R as

/‘/f:cydu /fxyda

Sd  sd

da(m).
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Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure u
w.r.t. the function f: [-1,1] — R as

D% ;(n) Z/‘/f(w'y)d(ﬂ—a)(y) 2 do(z).

Sd  sd
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Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure u
w.r.t. the function f: [-1,1] — R as

w= [ ‘ [ 1wyt -o)w)

Sd  sd

2
do(z).

Theorem (DB, R. Matzke, F. Dai, ’18)

Generalized Stolarsky principle:
Let F be positive definite and f as in (iv), then

Ip(u) — Ir(0) = D7a 4().

Dmitriy Bilyk Discrepancy and energy minimization on the sphere



Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure u
w.r.t. the function f: [-1,1] — R as

w= [ ‘ [ 1wyt -o)w)

Sd  sd

2
do(z).

Theorem (DB, R. Matzke, F. Dai, ’18)

Generalized Stolarsky principle:
Let F be positive definite and f as in (iv), then

Ip(u) — Ir(0) = D7a 4().

m Important ingredient: Ir(u) — Ip(o) = Ip(p — o).
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Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure u
w.r.t. the function f: [-1,1] — R as

w= [ ‘ [ 1wyt -o)w)

Sd  sd

2
do(z).

Theorem (DB, R. Matzke, F. Dai, ’18)

Generalized Stolarsky principle:
Let F be positive definite and f as in (iv), then

Ip(u) — Ir(0) = D7a 4().

m Important ingredient: Ir(u) — Ip(o) = Ip(p — o).
m Arbitrary compact metric spaces (DB, O. Vlasiuk '18)
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Discrepancy /energy bounds

Theorem (DB, F. Dai, ’17)

Assume that F' is positive definite and f as in (iv).
N
1
Let Z = {z1,...,2n} C S and p = N ;521

m Upper bound:

max (F(1) — F(cos#)).

1
inf D2, .(u) S —
wz=N_ L%f I coen i
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Discrepancy /energy bounds

Theorem (DB, F. Dai, ’17)

Assume that F' is positive definite and f as in (iv).
N
1
Let Z = {z1,...,2n} C S and p = N ;521

m Upper bound:

max (F(1) — F(cos#)).

1
inf D2, .(u) S —
wz=N_ L%f I coen i

m Lower bound:

~

. 2 > .
G0t D p(1) 2 g F(k, ).
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Stolarsky principle for hemispheres

Theorem (DB, Dai, Matzke ’18, Skriganov '18)

D%Q,hemisphere( 27'(' // T y dO’ dO’( ) Z d(zi7zj) y

sd sd 3,j=1

where d(x,y) = arccos(x - y) is the geodesic distance.

Dmitriy Bilyk Discrepancy and energy minimization on the sphere



Stolarsky principle for hemispheres

N
1 T 1
2
DLQ,hemisphere(Z) = % 5 - m E d(Zi,Zj) ,

where d(x,y) = arccos(x - y) is the geodesic distance.
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Stolarsky principle for hemispheres

Theorem (DB, Dai, Matzke ’18, Skriganov ’18)

N
1 s 1
2
DLQ,hernisphere(Z) = % 5 - ﬁ Z d(Zi,Zj) ,
4 il

where d(x,y) = arccos(x - y) is the geodesic distance.

Corollary (DB, Dai, Matzke '18)

For any Z = {z1,...,z2n} C S%

1 N s
N2 Z d(zi, 2) < 5

3,j=1

with equality if and only if Z is symmetric.
(This solves a 1959 conjecture of Fejes Téth.)
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Another conjecture of Fejes Toth

Conjecture (Sum of acute angles)

Let Z = {z1,...,z2x} C S and define

F(z -y) = min { arccos(z - y), T — arccos(z - y) } = arccos |z - y],

i.e. the acute angle between the lines through x, y € S%.
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Another conjecture of Fejes Toth

Conjecture (Sum of acute angles)

Let Z = {z1,...,z2x} C S and define

F(z -y) = min { arccos(z - y), T — arccos(z - y) } = arccos |z - y],
i.e. the acute angle between the lines through x, y € S%.

N
1
m The discrete energy Ep(Z) = N2 Z F(z; - zj) is
ij=1
mazimized by the set Z = {z1,...,zx} C S with
Zi = €; mod (d+1)-
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Another conjecture of Fejes Toth

Conjecture (Sum of acute angles)

Let Z = {z1,...,z2x} C S and define

F(z -y) = min { arccos(z - y), T — arccos(z - y) } = arccos |z - y],

i.e. the acute angle between the lines through x, y € S%.

N
1
m The discrete energy Ep(Z) = N2 Z F(z; - zj) is
ij=1
mazimized by the set Z = {z1,...,zx} C S with
Zi = €; mod (d+1)-
m max [r(u) = Ir(vonB) = § ﬁ‘ll, where

d+1
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Acute angles: known results

= Known on S$!
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Acute angles: known results

m Known on S!
1N
: 1@ 2 _
m Fodor, Vigh, Zarnocz, ‘16: On S* for y = N ,2;5zi
1=

3

Ip(p) < g
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Acute angles: known results

m Known on S!
1N
: “1R- 2 —
m Fodor, Vigh, Zarnocz, ‘16: On S* for y = N z;@i
1=
3
=
m DB, R. Matzke, ‘18: On S? for general

T 69
Ip(p) < = — —— .
S )

Ip(p) <
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Acute angles: known results

= Known on S$!

N
1
m Fodor, Vigh, Zarnocz, ‘16: On S? for p = N Zézi
=1

3T
Ip(p) < e
m DB, R. Matzke, ‘18: On S? for general
s 69
I < ———
S )
m In particular, on S?:
T 69 3T
I < — — — =1.110796... < — = 1.178097....
F) <5~ 150 8
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Acute angles: known results

m Known on S!
1N
: “1R- 2 —
m Fodor, Vigh, Zarnocz, ‘16: On S* for y = N z;@i
1=
3
=
m DB, R. Matzke, ‘18: On S? for general

T 69
Ip(p) < = — —— .
S )

Ip(p) <

m In particular, on S?:

s 69 3
Ie(w) < T = 2 1 110796... < 2% — 1.178097....
P <5~ 155 0796... <3

m Conjectured maximum in d = 2 is § = 1.047198....
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Frame energy

m Z={z,...,2y} C S%is a tight frame iff there exists
A > 0 such that for any z € R%+!

Z |<$’ Zk>|2 = A||l’“2,
k

or, equivalently,
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Frame energy

m Z={z,...,2y} C S%is a tight frame iff there exists
A > 0 such that for any z € R%+!

Z ’<1’, Zk>|2 = A||$H2a
k

or, equivalently,

1
x =~ Z(az, 2k) 2k

Theorem (Benedetto, Fickus, 03)

Aset Z={z,...,2n} CS? N >d+1, is a tight frame in
R if and only if Z is a local minimizer of the frame potential:

;N
F(z)= e Z (21, 23}
ij=1
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Frame energy

Let F(t) = |[t|%. Then for each Borel probability measure p on
Sd
1
Ir(p) = y|? du(z)duly) > ——
(1) //Ix ylP du(@)dply) = o
sd sd
and the equality is achieved iff p is an isotropic measure, i.e.

[ zizidp(z) = cd; ;.
Sd
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Frame energy

Let F(t) = |[t|%. Then for each Borel probability measure p on
Sd

1
Ir(p) = // |- y|? dp(z)dp(y) > ——

d+1
sd sd

and the equality is achieved iff p is an isotropic measure, i.e.
[ zizidp(z) = cd; ;.
Sd
Thus global minimizers include, in particular:

m discrete tight frames of any cardinality,

m including orthonormal bases or regular simplex,

m normalized surface measure o.
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p-Frame energy

Let F(t) = |t|P with p > 0. Consider the p-frame energy:
Ip(p) = // |2 - y[Pdpadpy
Sé Sd

Minimizers:

Dmitriy Bilyk Discrepancy and energy minimization on the sphere



p-Frame energy

Let F(t) = |t|P with p > 0. Consider the p-frame energy:

Ip(p) =//!rr-y!pduxduy

S¢ sd

Minimizers:
m p = 2: “frame energy” (Benedetto, Fickus)
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p-Frame energy

Let F(t) = |t|P with p > 0. Consider the p-frame energy:

Ip(p) =//!rr-y!pduxduy

S¢ sd

Minimizers:
m p = 2: “frame energy” (Benedetto, Fickus)
m “tight frames” (incl. ONB, simplex)
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p-Frame energy

Let F(t) = |t|P with p > 0. Consider the p-frame energy:

Ip(p) =//!rr-y!pduxduy

S¢ sd

Minimizers:
m p = 2: “frame energy” (Benedetto, Fickus)

m “tight frames” (incl. ONB, simplex)
m o (and all isotropic u).
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p-Frame energy

Let F(t) = |t|P with p > 0. Consider the p-frame energy:

Ip(p) =//!rr-y!pduxduy

S¢ sd

Minimizers:
m p = 2: “frame energy” (Benedetto, Fickus)

m “tight frames” (incl. ONB, simplex)
m o (and all isotropic u).

m 0 < p <2: ONB (but not o or other frames)
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p-Frame energy

Let F(t) = |t|P with p > 0. Consider the p-frame energy:

Ip(p) =//!rr-y!pduxduy

S¢ sd

Minimizers:
m p = 2: “frame energy” (Benedetto, Fickus)

m “tight frames” (incl. ONB, simplex)
m o (and all isotropic u).

m 0 < p <2: ONB (but not o or other frames)

m p > 2, p =2k even integer (Ehler, Okoudjo)
m o (but not ONB)
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p-Frame energy

Let F(t) = |t|P with p > 0. Consider the p-frame energy:

Ip(p) =//!rr-y!pduxduy

S¢ sd

Minimizers:
m p = 2: “frame energy” (Benedetto, Fickus)
m “tight frames” (incl. ONB, simplex)
m o (and all isotropic u).
m 0 < p <2: ONB (but not o or other frames)

m p > 2, p =2k even integer (Ehler, Okoudjo)

m o (but not ONB)
m discrete “spherical designs”
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Spherical designs

A set {p1,...pn} C S%is called a spherical design of strength ¢
iff

N
¥ 2 ) = [ Fa)do(a)
i=1 Sd

for any polynomial f of degree at most t.
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Spherical designs

A set {p1,...pn} C S%is called a spherical design of strength ¢
iff

N
¥ 2 ) = [ Fa)do(a)
i=1 Sd

for any polynomial f of degree at most ¢.

Bondarenko, Radchenko, Viazovska, 11 (settling the conjecture
of Korevaar and Meyers):

For any N > c4t%, there exists a spherical t-design with N
points.
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p-Frame energy

Let F(t) = |t|P with p > 0. Consider the p-frame energy:

) = [ [ o ypPdusdn,
Sd sd

Minimizers:
m p = 2: “frame energy” (Benedetto, Fickus)
m “tight frames” (incl. ONB, simplex)
m o (and all isotropic u).
m 0 < p <2: ONB (but not o or other frames)

m p > 2, p= 2k even integer:
m o (but not ONB)
m discrete “spherical designs”

m p> 2 but p#2k: 777 (not o, not ONB)
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“Tight” designs

Following Cohn—Kumar and Cohn-Kumar—Minton, we say that
a symmetric set {z1,... 2y} C S%is a tight design if

m it is a (2m — 1)-design

m inner products between points z; - z; take m + 1 values,

i.e. a design of high degree with few distances.
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Some known tight designs

n ‘ N ‘ M ‘ m+1 ‘ configuration

n n 3 3 cross polytope

2 | N>2 [N-1]| [§]+1 regular polygon

3 12 5 4 icosahedron

8 240 7 5 FEg root system

24 | 196, 560 11 7 Leech Lattice minimal vectors

. and some others...

n =d+ 1 is the ambient dimension
M is the strength of the design
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Main result

Theorem (DB, A. Glazyrin, R. Matzke, J. Park, O. Vlasiuk,

If {z1,...,2N} is tight design with parameter m, then the

measure 1
p= 20

is a global minimizer of the p-frame energy for every
p € (2m —4,2m — 2).

Moreover, any other minimizer is a discrete measure with the
same distribution of absolute values of inner products.
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Examples

m on S': a regular (2n + 4)-gon is a minimizer of I,(u) for
p € (2n,2n + 2).

nd energy minimization on the ¢



Examples

m on S': a regular (2n + 4)-gon is a minimizer of I,(u) for
p € (2n,2n + 2).

m on §?: a regular icosahedron is a minimizer of I,(u) for
p € (2,4).
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Examples

m on S': a regular (2n + 4)-gon is a minimizer of I,(u) for
p € (2n,2n + 2).

m on §?: a regular icosahedron is a minimizer of I,(u) for
p € (2,4).

m on S7: root system of Fg lattice is a minimizer of I,(u) for
p € (4,6).
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Examples

m on S': a regular (2n + 4)-gon is a minimizer of I,(u) for
p € (2n,2n + 2).

m on §?: a regular icosahedron is a minimizer of I,(u) for
p € (2,4).

m on S7: root system of Fg lattice is a minimizer of I,(u) for
p € (4,6).

m on S?3: shortest vectors of Leech lattice form a minimizer
of I,(p) for p € (8,10).
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Examples

m on S': a regular (2n + 4)-gon is a minimizer of I,(u) for
p € (2n,2n + 2).

m on §?: a regular icosahedron is a minimizer of I,(u) for
p € (2,4).

m on S7: root system of Fg lattice is a minimizer of I,(u) for
p € (4,6).

m on S?3: shortest vectors of Leech lattice form a minimizer
of I,(p) for p € (8,10).

m a maximal ETF (equiangular tight frame), whenever it
exists, is minimizer of I,,(p) for p € (2,4).

m etc.
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Argument

“Linear programming” method:
(Yudin; Delsarte; Cohn-Kumar...)
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Argument

“Linear programming” method:
(Yudin; Delsarte; Cohn-Kumar...)

on S%: a regular icosahedron is a minimizer of I,,(x) for
p € (2,4).




Argument

“Linear programming” method:
(Yudin; Delsarte; Cohn-Kumar...)

on S%: a regular icosahedron is a minimizer of I,,(x) for
p € (2,4).
m 5-design

and energy minimization on the sphere
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Argument

“Linear programming” method:
(Yudin; Delsarte; Cohn-Kumar...)

on S%: a regular icosahedron is a minimizer of I,,(x) for
p € (2,4).

m 5-design

m inner products: +1, i\/g.
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Argument

“Linear programming” method:
(Yudin; Delsarte; Cohn-Kumar...)

on S%: a regular icosahedron is a minimizer of I,,(x) for
p € (2,4).

m 5-design

m inner products: +1, i\/g.

Ir(p) > Ig(p) since F = |t|P > H

Discrepancy and energy minimization on the sphere

Dmitriy Bilyk



Argument

“Linear programming” method:
(Yudin; Delsarte; Cohn-Kumar...)

on S%: a regular icosahedron is a minimizer of I,,(x) for
p € (2,4).

m 5-design

m inner products: +1, i\/g.

since F = |t|P > H
since H is p.d.
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Argument

“Linear programming” method:
(Yudin; Delsarte; Cohn-Kumar...)

on S%: a regular icosahedron is a minimizer of I,,(x) for
p € (2,4).

m 5-design

m inner products: +1, i\/g.

since F = |t|P > H

Ir(p) > Tn(p)
since H is p.d.

> I (o)

= I'g (Hicosahedron) spherical design
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Argument

“Linear programming” method:
(Yudin; Delsarte; Cohn-Kumar...)

on S%: a regular icosahedron is a minimizer of I,,(x) for
p € (2,4).

m 5-design

m inner products: +1, i\/g.

Ir(p) > Ig(p) since F = |t|P > H
> Ig(o) since H is p.d.
= I'(icosahedron) spherical design
= Ir(Hticosahedron) since F(z; - zj) = H(zi - zj).
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