Discrepancy and energy minimization on the sphere

Dmitriy Bilyk University of Minnesota

6th international conference on uniform distribution theory UDT 2018

CIRM, FRANCE

coauthors:

F. Dai, A. Glazyrin, R. Matzke, J. Park, S. Steinerberger, O. Vlasiuk

October 2, 2018

Spherical cap discrepancy

For $x \in \mathbb{S}^d$, $t \in [-1, 1]$ define spherical caps:

$$C(x,t) = \{ y \in \mathbb{S}^d : \langle x, y \rangle \ge t \}.$$

For a finite set $Z = \{z_1, z_2, ..., z_N\} \subset \mathbb{S}^d$ define

$$D_{cap}(Z) = \sup_{x \in \mathbb{S}^d, t \in [-1,1]} \left| \frac{\# (Z \cap C(x,t))}{N} - \sigma (C(x,t)) \right|.$$

Theorem (Beck, '84)

There exists constants c_d , $C_d > 0$ such that

$$c_d N^{-\frac{1}{2} - \frac{1}{2d}} \le \inf_{\#Z = N} D_{cap}(Z) \le C_d N^{-\frac{1}{2} - \frac{1}{2d}} \sqrt{\log N}.$$

Spherical caps: L^2 discrepancy

Define the spherical cap L^2 discrepancy

$$D_{cap,L^2}(Z) = \left(\int_{\mathbb{S}^d} \int_{-1}^1 \left| \frac{\# \big(Z \cap C(x,t) \big)}{N} \right| - \sigma \big(C(x,t) \big) \right|^2 dt \, d\sigma(x) \right)^{\frac{1}{2}}.$$

Theorem (Beck, '84)

There exists constants c_d , $C_d > 0$ such that

$$c_d N^{-\frac{1}{2} - \frac{1}{2d}} \le \inf_{\#Z = N} D_{cap, L^2}(Z) \le C_d N^{-\frac{1}{2} - \frac{1}{2d}}.$$

Spherical cap discrepancy: refinement of lower bound

Theorem (Beck, '84)

For any
$$Z = \{z_1, \ldots, z_N\} \subset \mathbb{S}^d$$

$$D_{cap}(Z) \gtrsim N^{-\frac{1}{2} - \frac{1}{2d}}.$$

Spherical cap discrepancy: refinement of lower bound

Theorem (Beck, '84)

For any
$$Z = \{z_1, \ldots, z_N\} \subset \mathbb{S}^d$$

$$D_{cap}(Z) \gtrsim N^{-\frac{1}{2} - \frac{1}{2d}}.$$

Theorem (DB, Dai, Steinerberger, '18)

For any
$$Z = \{z_1, \ldots, z_N\} \subset \mathbb{S}^d$$

$$D_{cap}(Z) \gtrsim N^{-\frac{1}{2} - \frac{1}{2d}} \left(\frac{1}{N} \sum_{i,j=1}^{N} \frac{1}{(1 + N^{1/d} || z_i - z_j ||)^{d+1}} \right)^{1/2}.$$

Discrete energy

Let $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$ and let $F : [-1, 1] \to \mathbb{R}$. Discrete energy:

$$E_F(Z) = \frac{1}{N^2} \sum_{i,j=1}^{N} F(z_i \cdot z_j)$$

Questions:

- What are the minimizing configurations?
- Almost minimizers?
- Lower bounds?

Energy integral

Let μ be a Borel probability measure on \mathbb{S}^d . Energy integral

$$I_F(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} F(x \cdot y) \, d\mu(x) d\mu(y).$$

i.e.
$$E_F(Z) = I_F\left(\frac{1}{N}\sum \delta_{z_i}\right)$$

Questions:

- What are the minimizers?
- Is σ a minimizer?
- Is it unique?

Positive definite functions on the sphere

Lemma

For a function $F \in C[-1,1]$ the following are equivalent:

- **i** F is positive definite on \mathbb{S}^d , i.e. for any set of points $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$, the matrix $[F(z_i \cdot z_j)]_{i,j=1}^N$ is positive semidefinite
- \blacksquare Gegenbauer coefficients of F are non-negative, i.e.

$$\widehat{F}(n,\lambda) \ge 0$$
 for all $n \ge 0$.

- For any signed measure $\mu \in \mathcal{B}$ the energy integral is non-negative: $I_F(\mu) \geq 0$.
- There exists a function $f \in L^2_{w_{\lambda}}[-1,1]$ such that

$$F(x \cdot y) = \int_{\mathbb{S}^d} f(x \cdot z) f(z \cdot y) \, d\sigma(z), \quad x, y \in \mathbb{S}^d.$$

Positive definite functions and energy minimization

Lemma

Let $F \in C[-1,1]$.

The energy $I_F(\mu)$ is minimized by σ if and only if $\widehat{F}(n,\lambda) \geq 0$ for all $n \geq 1$,

i.e. F is positive definite up to a constant term.

Positive definite functions and energy minimization

Lemma

Let $F \in C[-1,1]$.

- The energy $I_F(\mu)$ is minimized by σ if and only if $\widehat{F}(n,\lambda) \geq 0$ for all $n \geq 1$, i.e. F is positive definite up to a constant term.
- The energy $I_F(\mu)$ is uniquely minimized by σ if and only if $\widehat{F}(n,\lambda) > 0$ for all $n \geq 1$.

Discrepancy + energy: Stolarsky Invariance Principle

Spherical cap L^2 discrepancy

$$D_{cap,L^{2}}(Z) = \left(\int_{\mathbb{S}^{d}} \int_{-1}^{1} \left| \frac{1}{N} \sum_{j=1}^{N} \mathbf{1}_{C(x,t)}(z_{j}) - \sigma(C(x,t)) \right|^{2} dt \, d\sigma(x) \right)^{\frac{1}{2}}$$

Discrepancy + energy: Stolarsky Invariance Principle

Spherical cap L^2 discrepancy

$$D_{cap,L^{2}}(Z) = \left(\int_{\mathbb{S}^{d}} \int_{-1}^{1} \left| \frac{1}{N} \sum_{j=1}^{N} \mathbf{1}_{C(x,t)}(z_{j}) - \sigma(C(x,t)) \right|^{2} dt \, d\sigma(x) \right)^{\frac{1}{2}}$$

Theorem (Stolarsky invariance principle)

For any finite set $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$

$$c_d D_{cap,L^2}^2(Z) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \|x - y\| \, d\sigma(x) d\sigma(y) - \frac{1}{N^2} \sum_{i,j=1}^N \|z_i - z_j\|.$$

Discrepancy + energy: Stolarsky Invariance Principle

Spherical cap L^2 discrepancy

$$D_{cap,L^{2}}(Z) = \left(\int_{\mathbb{S}^{d}} \int_{-1}^{1} \left| \frac{1}{N} \sum_{j=1}^{N} \mathbf{1}_{C(x,t)}(z_{j}) - \sigma(C(x,t)) \right|^{2} dt \, d\sigma(x) \right)^{\frac{1}{2}}$$

Theorem (Stolarsky invariance principle)

For any finite set $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$

$$c_d D_{cap,L^2}^2(Z) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \|x - y\| \, d\sigma(x) d\sigma(y) - \frac{1}{N^2} \sum_{i,j=1}^N \|z_i - z_j\|.$$

Proofs:

Stolarsky '73, Brauchart, Dick '12, DB, Dai, Matzke '18.

Positive definite functions on the sphere

Lemma

For a function $F \in C[-1,1]$ the following are equivalent:

- \blacksquare F is positive definite on \mathbb{S}^d .
- \blacksquare Gegenbauer coefficients of F are non-negative, i.e.

$$\widehat{F}(n,\lambda) \ge 0$$
 for all $n \ge 0$.

- For any signed measure $\mu \in \mathcal{B}$ the energy integral is non-negative: $I_F(\mu) \geq 0$.
- There exists a function $f \in L^2_{w_{\lambda}}[-1,1]$ such that

$$F(x \cdot y) = \int_{\mathbb{S}^d} f(x \cdot z) f(z \cdot y) \, d\sigma(z), \quad x, y \in \mathbb{S}^d.$$

i.e. F is the spherical convolution of f with itself. $\widehat{f}(n,\lambda)^2 = \widehat{F}(n,\lambda)$

Define the L^2 discrepancy of a Borel probability measure μ w.r.t. the function $f: [-1,1] \to \mathbb{R}$ as

$$D_{L^2,f}^2(\mu) = \int\limits_{\mathbb{S}^d} \left| \int\limits_{\mathbb{S}^d} f(x \cdot y) d\mu(y) - \int\limits_{\mathbb{S}^d} f(x \cdot y) d\sigma(y) \right|^2 d\sigma(x).$$

Define the L^2 discrepancy of a Borel probability measure μ w.r.t. the function $f: [-1,1] \to \mathbb{R}$ as

$$D_{L^2,f}^2(\mu) = \int_{\mathbb{S}^d} \left| \int_{\mathbb{S}^d} f(x \cdot y) d(\mu - \sigma)(y) \right|^2 d\sigma(x).$$

Define the L^2 discrepancy of a Borel probability measure μ w.r.t. the function $f: [-1,1] \to \mathbb{R}$ as

$$D_{L^2,f}^2(\mu) = \int_{\mathbb{S}^d} \left| \int_{\mathbb{S}^d} f(x \cdot y) d(\mu - \sigma)(y) \right|^2 d\sigma(x).$$

Theorem (DB, R. Matzke, F. Dai, '18)

Generalized Stolarsky principle:

Let F be positive definite and f as in (iv), then

$$I_F(\mu) - I_F(\sigma) = D_{L^2, f}^2(\mu).$$

Define the L^2 discrepancy of a Borel probability measure μ w.r.t. the function $f: [-1,1] \to \mathbb{R}$ as

$$D_{L^2,f}^2(\mu) = \int_{\mathbb{S}^d} \left| \int_{\mathbb{S}^d} f(x \cdot y) d(\mu - \sigma)(y) \right|^2 d\sigma(x).$$

Theorem (DB, R. Matzke, F. Dai, '18)

Generalized Stolarsky principle:

Let F be positive definite and f as in (iv), then

$$I_F(\mu) - I_F(\sigma) = D_{L^2, f}^2(\mu).$$

■ Important ingredient: $I_F(\mu) - I_F(\sigma) = I_F(\mu - \sigma)$.

Define the L^2 discrepancy of a Borel probability measure μ w.r.t. the function $f:[-1,1]\to\mathbb{R}$ as

$$D_{L^2,f}^2(\mu) = \int_{\mathbb{S}^d} \left| \int_{\mathbb{S}^d} f(x \cdot y) d(\mu - \sigma)(y) \right|^2 d\sigma(x).$$

Theorem (DB, R. Matzke, F. Dai, '18)

Generalized Stolarsky principle:

Let F be positive definite and f as in (iv), then

$$I_F(\mu) - I_F(\sigma) = D_{L^2, f}^2(\mu).$$

- Important ingredient: $I_F(\mu) I_F(\sigma) = I_F(\mu \sigma)$.
- Arbitrary compact metric spaces (DB, O. Vlasiuk '18)

Discrepancy/energy bounds

Theorem (DB, F. Dai, '17)

Assume that F is positive definite and f as in (iv).

Let
$$Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d \text{ and } \mu = \frac{1}{N} \sum_{i=1}^N \delta_{z_i}$$
.

■ Upper bound:

$$\inf_{\#Z=N} D_{L^2,f}^2(\mu) \lesssim \frac{1}{N} \max_{0 < \theta \le N^{-\frac{1}{d}}} (F(1) - F(\cos \theta)).$$

Discrepancy/energy bounds

Theorem (DB, F. Dai, '17)

Assume that F is positive definite and f as in (iv).

Let
$$Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d \text{ and } \mu = \frac{1}{N} \sum_{i=1}^N \delta_{z_i}$$
.

■ Upper bound:

$$\inf_{\#Z=N} D_{L^2,f}^2(\mu) \lesssim \frac{1}{N} \max_{0 < \theta \lesssim N^{-\frac{1}{d}}} (F(1) - F(\cos \theta)).$$

■ Lower bound:

$$\inf_{\#Z=N} D^2_{L^2,f}(\mu) \gtrsim \min_{1 \le k \lesssim N^{1/d}} \widehat{F}(k,\lambda).$$

Stolarsky principle for hemispheres

Theorem (DB, Dai, Matzke '18, Skriganov '18)

$$D_{L^2,\text{hemisphere}}^2(Z) = \frac{1}{2\pi} \left(\int_{\mathbb{S}^d} \int_{\mathbb{S}^d} d(x,y) \, d\sigma(x) \, d\sigma(y) - \frac{1}{N^2} \sum_{i,j=1}^N d(z_i,z_j) \right),$$
where $d(x,y) = \arccos(x \cdot y)$ is the geodesic distance.

Stolarsky principle for hemispheres

Theorem (DB, Dai, Matzke '18, Skriganov '18)

$$D_{L^2,\text{hemisphere}}^2(Z) = \frac{1}{2\pi} \left(\frac{\pi}{2} - \frac{1}{N^2} \sum_{i,j=1}^N d(z_i, z_j) \right),$$

where $d(x, y) = \arccos(x \cdot y)$ is the geodesic distance.

Stolarsky principle for hemispheres

Theorem (DB, Dai, Matzke '18, Skriganov '18)

$$D_{L^2,\text{hemisphere}}^2(Z) = \frac{1}{2\pi} \left(\frac{\pi}{2} - \frac{1}{N^2} \sum_{i,j=1}^N d(z_i, z_j) \right),$$

where $d(x, y) = \arccos(x \cdot y)$ is the geodesic distance.

Corollary (DB, Dai, Matzke '18)

For any $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$

$$\frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \le \frac{\pi}{2}$$

with equality if and only if Z is symmetric. (This solves a 1959 conjecture of Fejes Tóth.)

Another conjecture of Fejes Tóth

Conjecture (Sum of acute angles)

Let
$$Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$$
 and define

$$F(x \cdot y) = \min \{\arccos(x \cdot y), \pi - \arccos(x \cdot y)\} = \arccos|x \cdot y|,$$

i.e. the acute angle between the lines through $x, y \in \mathbb{S}^d$.

Another conjecture of Fejes Tóth

Conjecture (Sum of acute angles)

Let $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$ and define

$$F(x \cdot y) = \min \{ \arccos(x \cdot y), \pi - \arccos(x \cdot y) \} = \arccos|x \cdot y|,$$

i.e. the acute angle between the lines through $x, y \in \mathbb{S}^d$.

■ The discrete energy $E_F(Z) = \frac{1}{N^2} \sum_{i,j=1}^N F(z_i \cdot z_j)$ is maximized by the set $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$ with $z_i = e_{i \mod (d+1)}$.

Another conjecture of Fejes Tóth

Conjecture (Sum of acute angles)

Let $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$ and define

$$F(x \cdot y) = \min \{ \arccos(x \cdot y), \pi - \arccos(x \cdot y) \} = \arccos|x \cdot y|,$$

i.e. the acute angle between the lines through $x, y \in \mathbb{S}^d$.

- The discrete energy $E_F(Z) = \frac{1}{N^2} \sum_{i,j=1}^N F(z_i \cdot z_j)$ is maximized by the set $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$ with $z_i = e_{i \mod (d+1)}$.
- $\max I_F(\mu) = I_F(\nu_{ONB}) = \frac{\pi}{2} \cdot \frac{d}{d+1}$, where

$$\nu_{ONB} = \frac{1}{d+1} \sum_{i=1}^{d+1} \delta_{e_i}$$

■ Known on \mathbb{S}^1

- Known on \mathbb{S}^1
- Fodor, Vigh, Zarnocz, '16: On \mathbb{S}^2 for $\mu = \frac{1}{N} \sum_{i=1}^N \delta_{z_i}$

$$I_F(\mu) \le \frac{3\pi}{8}.$$

- Known on \mathbb{S}^1
- Fodor, Vigh, Zarnocz, '16: On \mathbb{S}^2 for $\mu = \frac{1}{N} \sum_{i=1}^N \delta_{z_i}$

$$I_F(\mu) \le \frac{3\pi}{8}.$$

■ DB, R. Matzke, '18: On \mathbb{S}^d for general μ

$$I_F(\mu) \le \frac{\pi}{2} - \frac{69}{50(d+1)}.$$

- Known on \mathbb{S}^1
- Fodor, Vigh, Zarnocz, '16: On \mathbb{S}^2 for $\mu = \frac{1}{N} \sum_{i=1}^N \delta_{z_i}$

$$I_F(\mu) \le \frac{3\pi}{8}.$$

■ DB, R. Matzke, '18: On \mathbb{S}^d for general μ

$$I_F(\mu) \le \frac{\pi}{2} - \frac{69}{50(d+1)}.$$

■ In particular, on \mathbb{S}^2 :

$$I_F(\mu) \le \frac{\pi}{2} - \frac{69}{150} = 1.110796... < \frac{3\pi}{8} = 1.178097...$$

- Known on \mathbb{S}^1
- Fodor, Vigh, Zarnocz, '16: On \mathbb{S}^2 for $\mu = \frac{1}{N} \sum_{i=1}^N \delta_{z_i}$

$$I_F(\mu) \le \frac{3\pi}{8}.$$

■ DB, R. Matzke, '18: On \mathbb{S}^d for general μ

$$I_F(\mu) \le \frac{\pi}{2} - \frac{69}{50(d+1)}.$$

■ In particular, on \mathbb{S}^2 :

$$I_F(\mu) \le \frac{\pi}{2} - \frac{69}{150} = 1.110796... < \frac{3\pi}{8} = 1.178097...$$

• Conjectured maximum in d=2 is $\frac{\pi}{3}=1.047198...$

■ $Z = \{z_1, ..., z_N\} \subset \mathbb{S}^d$ is a tight frame iff there exists A > 0 such that for any $x \in \mathbb{R}^{d+1}$

$$\sum_{k} |\langle x, z_k \rangle|^2 = A ||x||^2,$$

or, equivalently,

$$x = \frac{1}{A} \sum \langle x, z_k \rangle z_k.$$

■ $Z = \{z_1, \ldots, z_N\} \subset \mathbb{S}^d$ is a tight frame iff there exists A > 0 such that for any $x \in \mathbb{R}^{d+1}$

$$\sum_{k} |\langle x, z_k \rangle|^2 = A ||x||^2,$$

or, equivalently,

$$x = \frac{1}{A} \sum \langle x, z_k \rangle z_k.$$

Theorem (Benedetto, Fickus, '03)

A set $Z = \{z_1, \ldots, z_N\} \subset \mathbb{S}^d$, $N \geq d+1$, is a tight frame in \mathbb{R}^{d+1} if and only if Z is a local minimizer of the frame potential:

$$F(Z) = \frac{1}{N^2} \sum_{i,j=1}^{N} |\langle z_i, z_j \rangle|^2.$$

Let $F(t) = |t|^2$. Then for each Borel probability measure μ on \mathbb{S}^d

$$I_F(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^2 d\mu(x) d\mu(y) \ge \frac{1}{d+1},$$

and the equality is achieved iff μ is an isotropic measure, i.e. $\int\limits_{\mathbb{S}^d} x_i x_j d\mu(x) = c \delta_{i,j}.$

Let $F(t) = |t|^2$. Then for each Borel probability measure μ on \mathbb{S}^d

$$I_F(\mu) = \int\limits_{\mathbb{S}^d} \int\limits_{\mathbb{S}^d} |x \cdot y|^2 d\mu(x) d\mu(y) \ge \frac{1}{d+1},$$

and the equality is achieved iff μ is an isotropic measure, i.e. $\int_{\mathbb{S}^d} x_i x_j d\mu(x) = c \delta_{i,j}.$

Thus global minimizers include, in particular:

- discrete tight frames of any cardinality,
- including orthonormal bases or regular simplex,
- \blacksquare normalized surface measure σ .

Let $F(t) = |t|^p$ with p > 0. Consider the *p*-frame energy:

$$I_p(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^p d\mu_x d\mu_y$$

Let $F(t) = |t|^p$ with p > 0. Consider the *p*-frame energy:

$$I_p(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^p d\mu_x d\mu_y$$

Minimizers:

■ p = 2: "frame energy" (Benedetto, Fickus)

Let $F(t) = |t|^p$ with p > 0. Consider the *p*-frame energy:

$$I_p(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^p d\mu_x d\mu_y$$

- p = 2: "frame energy" (Benedetto, Fickus)
 - "tight frames" (incl. ONB, simplex)

Let $F(t) = |t|^p$ with p > 0. Consider the *p*-frame energy:

$$I_p(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^p d\mu_x d\mu_y$$

- p = 2: "frame energy" (Benedetto, Fickus)
 - "tight frames" (incl. ONB, simplex)
 - \bullet σ (and all isotropic μ).

Let $F(t) = |t|^p$ with p > 0. Consider the *p*-frame energy:

$$I_p(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^p d\mu_x d\mu_y$$

- p = 2: "frame energy" (Benedetto, Fickus)
 - "tight frames" (incl. ONB, simplex)
 - \bullet σ (and all isotropic μ).
- 0 : ONB (but**not** $<math>\sigma$ or other frames)

Let $F(t) = |t|^p$ with p > 0. Consider the *p*-frame energy:

$$I_p(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^p d\mu_x d\mu_y$$

- p = 2: "frame energy" (Benedetto, Fickus)
 - "tight frames" (incl. ONB, simplex)
 - \bullet σ (and all isotropic μ).
- 0 : ONB (but**not** $<math>\sigma$ or other frames)
- p > 2, p = 2k even integer (Ehler, Okoudjo)
 - \bullet σ (but **not** ONB)

Let $F(t) = |t|^p$ with p > 0. Consider the *p*-frame energy:

$$I_p(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^p d\mu_x d\mu_y$$

- p = 2: "frame energy" (Benedetto, Fickus)
 - "tight frames" (incl. ONB, simplex)
 - \bullet σ (and all isotropic μ).
- 0 : ONB (but**not** $<math>\sigma$ or other frames)
- p > 2, p = 2k even integer (Ehler, Okoudjo)
 - \bullet σ (but **not** ONB)
 - discrete "spherical designs"

Spherical designs

A set $\{p_1, \dots p_N\} \subset \mathbb{S}^d$ is called a spherical design of strength t iff

$$\frac{1}{N} \sum_{i=1}^{N} f(p_i) = \int_{\mathbb{S}^d} f(x) d\sigma(x)$$

for any polynomial f of degree at most t.

Spherical designs

A set $\{p_1, \dots p_N\} \subset \mathbb{S}^d$ is called a spherical design of strength t iff

$$\frac{1}{N} \sum_{i=1}^{N} f(p_i) = \int_{\mathbb{S}^d} f(x) d\sigma(x)$$

for any polynomial f of degree at most t.

Bondarenko, Radchenko, Viazovska, '11 (settling the conjecture of Korevaar and Meyers):

For any $N \geq c_d t^d$, there exists a spherical t-design with N points.

Let $F(t) = |t|^p$ with p > 0. Consider the *p*-frame energy:

$$I_p(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} |x \cdot y|^p d\mu_x d\mu_y$$

- p = 2: "frame energy" (Benedetto, Fickus)
 - "tight frames" (incl. ONB, simplex)
 - \bullet σ (and all isotropic μ).
- 0 : ONB (but**not** $<math>\sigma$ or other frames)
- p > 2, p = 2k even integer:
 - \bullet σ (but **not** ONB)
 - discrete "spherical designs"
- p > 2, but $p \neq 2k$: ??? (not σ , not ONB)

"Tight" designs

Following Cohn–Kumar and Cohn-Kumar–Minton, we say that a symmetric set $\{z_1, \ldots z_N\} \subset \mathbb{S}^d$ is a *tight design* if

- it is a (2m-1)-design
- inner products between points $z_i \cdot z_j$ take m+1 values,

i.e. a design of *high* degree with *few* distances.

Some known tight designs

\underline{n}	N	M	m+1	configuration
\overline{n}	n	3	3	cross polytope
2	$N \ge 2$	N-1	$\lfloor \frac{N}{2} \rfloor + 1$	regular polygon
3	12	5	4	icosahedron
8	240	7	5	E_8 root system
24	196,560	11	7	Leech Lattice minimal vectors

... and some others...

n = d + 1 is the ambient dimension M is the strength of the design

Main result

Theorem (DB, A. Glazyrin, R. Matzke, J. Park, O. Vlasiuk, 2018)

If $\{z_1,...,z_N\}$ is tight design with parameter m, then the measure

$$\mu = \frac{1}{N} \sum \delta_{z_i}$$

is a global minimizer of the p-frame energy for every $p \in (2m-4, 2m-2)$.

Moreover, any other minimizer is a discrete measure with the same distribution of absolute values of inner products.

• on \mathbb{S}^1 : a regular (2n+4)-gon is a minimizer of $I_p(\mu)$ for $p \in (2n, 2n+2)$.

- on \mathbb{S}^1 : a regular (2n+4)-gon is a minimizer of $I_p(\mu)$ for $p \in (2n, 2n+2)$.
- on \mathbb{S}^2 : a regular icosahedron is a minimizer of $I_p(\mu)$ for $p \in (2,4)$.

- on \mathbb{S}^1 : a regular (2n+4)-gon is a minimizer of $I_p(\mu)$ for $p \in (2n, 2n+2)$.
- on \mathbb{S}^2 : a regular icosahedron is a minimizer of $I_p(\mu)$ for $p \in (2,4)$.
- on \mathbb{S}^7 : root system of E_8 lattice is a minimizer of $I_p(\mu)$ for $p \in (4,6)$.

- on \mathbb{S}^1 : a regular (2n+4)-gon is a minimizer of $I_p(\mu)$ for $p \in (2n, 2n+2)$.
- on \mathbb{S}^2 : a regular icosahedron is a minimizer of $I_p(\mu)$ for $p \in (2,4)$.
- on \mathbb{S}^7 : root system of E_8 lattice is a minimizer of $I_p(\mu)$ for $p \in (4,6)$.
- on \mathbb{S}^{23} : shortest vectors of Leech lattice form a minimizer of $I_p(\mu)$ for $p \in (8, 10)$.

- on \mathbb{S}^1 : a regular (2n+4)-gon is a minimizer of $I_p(\mu)$ for $p \in (2n, 2n+2)$.
- on \mathbb{S}^2 : a regular icosahedron is a minimizer of $I_p(\mu)$ for $p \in (2,4)$.
- on \mathbb{S}^7 : root system of E_8 lattice is a minimizer of $I_p(\mu)$ for $p \in (4,6)$.
- on \mathbb{S}^{23} : shortest vectors of Leech lattice form a minimizer of $I_p(\mu)$ for $p \in (8, 10)$.
- a maximal ETF (equiangular tight frame), whenever it exists, is minimizer of $I_p(\mu)$ for $p \in (2, 4)$.
- etc.


```
"Linear programming" method: (Yudin; Delsarte; Cohn–Kumar...)
```

```
"Linear programming" method: (Yudin; Delsarte; Cohn–Kumar...) on \mathbb{S}^2: a regular icosahedron is a minimizer of I_p(\mu) for p\in (2,4).
```

```
"Linear programming" method: (Yudin; Delsarte; Cohn–Kumar...) on \mathbb{S}^2: a regular icosahedron is a minimizer of I_p(\mu) for p \in (2,4).

• 5-design
```

```
"Linear programming" method: (Yudin; Delsarte; Cohn–Kumar...)
```

- 5-design
- inner products: ± 1 , $\pm \frac{1}{\sqrt{5}}$.

"Linear programming" method: (Yudin; Delsarte; Cohn–Kumar...)

- 5-design
- inner products: ± 1 , $\pm \frac{1}{\sqrt{5}}$.

$$I_F(\mu) \ge I_H(\mu)$$

since
$$F = |t|^p \ge H$$

"Linear programming" method: (Yudin; Delsarte; Cohn–Kumar...)

- 5-design
- inner products: ± 1 , $\pm \frac{1}{\sqrt{5}}$.

$$I_F(\mu) \ge I_H(\mu)$$

 $\ge I_H(\sigma)$

since
$$F = |t|^p \ge H$$

since H is p.d.

"Linear programming" method: (Yudin; Delsarte; Cohn-Kumar...)

on \mathbb{S}^2 : a regular icosahedron is a minimizer of $I_p(\mu)$ for $p \in (2,4)$.

- 5-design
- inner products: ± 1 , $\pm \frac{1}{\sqrt{5}}$.

$$I_F(\mu) \ge I_H(\mu)$$

 $\ge I_H(\sigma)$
 $= I_H(\mu_{\text{icosahedron}})$

since $F = |t|^p \ge H$ since H is p.d. spherical design

```
"Linear programming" method: (Yudin; Delsarte; Cohn-Kumar...)
```

- 5-design
- inner products: ± 1 , $\pm \frac{1}{\sqrt{5}}$.

$$I_F(\mu) \ge I_H(\mu)$$
 since $F = |t|^p \ge H$
 $\ge I_H(\sigma)$ since H is p.d.
 $= I_H(\mu_{\text{icosahedron}})$ spherical design
 $= I_F(\mu_{\text{icosahedron}})$ since $F(z_i \cdot z_j) = H(z_i \cdot z_j)$.