
RANDOM WALKS ON THE CIRCLE AND DIOPHANTINE
APPROXIMATION

Joint results with Bence Borda

Sums of independent random variables 1711-

Weak law of large numbers (J. Bernoulli 1711)

Central limit theorem (de Moivre 1733)

Strong law of large numbers (Borel 1909)

Law of the iterated logarithm (Khinchin 1924)

Sums of i.i.d. random variables mod 1

Sn = X1 + . . . +Xn, Zn = {Sn}
Motivation:

Benford’s law: leading digit of numbers in large databases is NOT uniformly
distributed: P ({1}) = log10 2 > 0.3

”Typical” behavior of discrepancy of {nkα}
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{Sn} is random walk on circle =⇒ Markov chain

(a) X1 absolutely continuous =⇒ exponential convergence to uniform distribution

(b) X1 is lattice distributed with values kα, (k = 0,±1,±2, . . .), α irrational

Countable Markov chain =⇒ Convergence to uniform distribution is much slower

Random walks on finite groups Kesten, Diaconis, Saloff-Coste (1980-2000)

Card mixing: How many shuffles to uniformity?

Aldous (1983): Cutoff at 3
2 log2 n steps

New York Times (January 9, 1990): In Shuffling Cards, 7 Is Winning Number

Random walk on circle: Moving forward or backward with angle ±α, α
irrational
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Convergence speed depends on rational approximation properties of α

Sn = kα, |k| ≤ n Assume α = p
q +O(q−100) Sn = kp

q +O(kq−100)

Schatte (1984-91)

Su (1998): If α is quadratic irrational (α = r + s
√
t), then

C1n
−1/2 ≤ sup

x
|P (Sn < x)− x| ≤ C2n

−1/2

Quadratic irrationals: bad rational approximation (worst case:
√
5+1
2 )

Nonrandom analogue: xn = {nα}, α irrational

Empirical measure

Fn(x) =
1

n

n∑
k=1

I(0,x)(xk)

DN(xk) = sup
0≤a≤1

∣∣∣∣∣ 1N
N∑
k=1

I[0,a)(xk)− a

∣∣∣∣∣ discrepancy

The magnitude of DN({kα}) depends on the continued fraction digits of α

3



Diophantine conditions in analysis

Poincaré (1890) Planetary motion

∑
m,n ̸=0

am,n
ei(mω1+nω2)t

mω1 + nω2
.

Jupiter ω1 = 299.1”, Saturn ω2 = 12.5”, 2ω1 − 5ω2 ≈ 0.

Settled by Arnold (1963)

Siegel (1942) Stability of fix point algorithms depends on rational approximation of α in

z0 = e2πiα

Diophantine type

sup

{
c :

∣∣∣∣α− p

q

∣∣∣∣ < A

qc+1
for infinitely many p/q

}
Strong type ∣∣∣∣α− p

q

∣∣∣∣ < A

qc+1

holds for infinitely many p/q for large A and finitely many p/q for small A.
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Berry-Esseen type results

X1, X2, . . . i.i.d. integer valued nondegenerate random variables, α irrational, Sn =
∑n

k=1Xk,

∆n = sup
x

|P ({Snα} < x)− x|

Theorem. If EX2
1 < ∞, Sn is unimodal and α is of strong type γ, then

∆n = O(n−1/(2γ)), ∆n = Ω(n−1/(2γ)).

γ = 1: badly approximable number α (bounded digits in continued fraction)

Theorem. Let 0 < β < 2 and assume

P (|X1| > t) ∼ ct−β and lim
x→∞

P (X1 ≥ x)/P (|X1| ≥ x) exists.

If Sn is unimodal and α has strong type γ, then

∆n = O(n−1/(βγ)), ∆n = Ω(n−1/(βγ)).

Berry-Esseen problem for ordinary i.i.d. sums:

sup
x

∣∣∣∣P ( Sn

n1/β
< x

)
−Gβ(x)

∣∣∣∣ = O(n1−2/β)
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A random version of Schmidt’s lower bound

For any infinite sequence (xk)

DN(xk) = Ω

(
logN

N

)
and this bound is attained, e.g., for xk = {kα} with badly approximable α

Theorem. For any nondegenerate i.i.d. sequence (Xn) and any irrational α

DN({Skα}) = Ω

(√
log logN

N

)
a.s.

This bound is attained if P (|X1| > x) ∼ 1/ log x

Critical behavior at γ = 2

Theorem. For smooth periodic f and γ < 2 we have

N−1/2
N∑
k=1

f (Skα)
d−→ N(0, σ2)

and this fails for γ > 2.
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γ = 2:
∣∣∣α− p

q

∣∣∣ < C
q3

N∑
k=1

1

k ∥kα∥1/2
=

{
O (logN) if γ ≤ 2,

O
(
Nγ/2−1

)
if γ > 2

Some classical examples for critical phenomena:

Lacunary trigonometric series (Erdős 1962)
∑N

k=1 sinnkx, nk ≫ e
√
k

Gaussian processes (Dobrushin, Major, Taqqu 1979)
∑N

k=1 f (ξk) rn ∼ 1
n

Critical discrepancy behavior

(i) If 1 ≤ γ ≤ 2, then

DN = O

(√
log logN

N
logN

)
, DN = Ω

(√
log logN

N

)
a.s.

(ii) If γ > 2, then

DN = O

((
log logN

N

)1/γ
)
, DN = Ω

(
1

N 1/γ

)
a.s.
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