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Recall that GLs(R), s = 2,3,... is the multiplicative group of
nondegenerate s x s matrices with real entries, and let GLs(Z) be its
discrete subgroup consisting of matrices with integer entries and
determinant +1.

Any complete lattice in R® can be written in the form

F(M):{7:m17(1)+~--+ms'y(5)‘ml,...,mSGZ},

where v 4(5) are the basis nodes specified by the corresponding
columns of a certain matrix M € GLs(R).

The equality [(M) = (M) is true if and only if M = M" - S, where
S € GLs(Z).

Denote by Ls(R) the set of all lattices.
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Let Gs be the finite group acting on GLs(R) generated by transformations
of the two following types:

(a) change of sign of a row or column;

(b) transposition of two rows or two columns.

Two matrices from GL4(R) are called equivalent if one of them is obtained
from the other under a certain transformation from Gs.
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The two-dimensional case (s = 2). A Voronoi basis

Let {v(1), (2} be a basis of the lattice I from £4(R) such that I has no
nonzero nodes v = (71, 72) with

2
P}
This is true if and only if, for a certain transformation ® from G,, we have
1) @ _
o Ty ) =M= <al bbl), 0<b<a, 0<a<b.
Y20 M 92 2

A basis {71, 42} of an arbitrary lattice I from L,(R) is a Voronoi basis
if its corresponding matrix is equivalent to the matrix M.

<o) o<

M Avdeeva, M. Monina (PNU) Basic properties of 3D continued fraction



The classical continued fraction and 2D lattices

Let [to; t1,...,t;,...] be the continued fraction representation of real «,
where to € Z and t; € Zy (i =1,2,...) are called the partial quotients
of the continued fraction and

pi/qi = [to; t1,...,t;] (i=1,2,...) and po/qo=1/0

are called the convergents of the continued fraction.
We assign to o € (0,1/2) the lattice

Fo = {(an+ m,n) = n(a,1) + m(1,0) ‘ m,n € L}.

For this lattice, det(I',) = 1, and, by the Lagrange Best Approximation
Theorem, any Voronoi basis I, consists of the pairs of nodes

+(agi — pi, i), +(aqit1 — pit1, Gi+1) (i=0,1,2,...).
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Vahlen's theorem

In the theory of continued fractions these are well known inequalities

. 1
gilagi — pil <1, min{ qilagi — pil, giv1lagivi — piv1|} < =

The second one of them is usually called Vahlen's theorem.

Notice that for the matrices M
aatbiby _amtbiby _, (a-bi)(be—a)
det(M) aiby + asby aiby + axby -

Therefore, for any Voronoi basis, we have the inequality

‘7(1) 1)‘ + ‘7(2) 52)‘ < det(l") = det(M),
which becomes an equality for a; = by or ax = by. It follows that, for any
node from a Voronoi basis,

1
(1) ) 7&2)752))} < Edet(r).

|7172| < det(l) and min {‘71

M Avdeeva, M. Monina (PNU) Basic properties of 3D continued fraction



The Markov-Hurwitz theorem

For three successive convergents it is known

Theorem (in the terms of continued fractions)

Vi=1,2,...

o

Theorem (for the nodes of a Voronoi basis)

Pi—1
gi—1

p/-‘,—l
qi+1

2

2
di—1,

_‘qi7O‘

]

o —

1
< —.
ql+1}— \/g

If {v) 42} js a Voronoi basis, then

o B L8 (08
det(N) =5

Here the third element is defined by the sum of the nodes of a Voronoi
basis.

(2)7( )
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Minkowski bases

A basis {71, 4(2) ~(3)} of a lattice I from L3(R) is called a Minkowski
basis if the corresponding matrix is equivalent to a matrix of one of the
following forms

aa b —a aa b a
—a b o |, —a b o
a3 —b3 a3 —b3 &

with nonnegative a;, b;, ¢; such that

(i) max{b1,c1} < a1 , max{az, &} < by, max{as, b3} < c3;

(ii) matrices of the first form satisfy at least one of the inequalities
az < ¢, b3 < az;

(i) matrices of the second form satisfy the inequalities

< by, bh<a+o.
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Vahlen's theorem for Minkowski bases

Notice that Minkowski's convex body theorem immediately implies the
estimate

|717273| < det(T)

for any relative minimum ~ = (71,72, 73) of a three-dimensional lattice I'
from L3(R). In 1999 it was shown that for adjacent relative minima ~(1)

and 7(2)
min { |2{94§9240| [ (2))} < ~det(I).

For nodes (1), ~(2) ~(3) that form a Minkowski basis in 2003 the estimate

()()’,Y

1
723 75 } < 3 det(T)

min {"71 Y273

was proved and in 2006 the following improvement was achieved:

Ml)%” (1)‘ +‘,y(2) (2, ‘+)71 VBB < det(I).
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3D Markov-Hurwitz

It is know that (Davenport, 1938-43)
. 1
Werp\l?o}hmw\ < = det(r).
This inequality is sharp. There is a unique lattice ' such that
'yerp\i?o}hwz%‘ = ;det(r).
This lattice is generated by columns of the matrix

2
2

,72

)
=2 X L
= Q

where

27 47 6m
=12 —,2 —,2 e
{a, 8,7} { cos —-,2¢cos —-, 2¢cos — }
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The constant 1 is a first element of 3D analogue of Markov spectrum.
Second element is 5. It corresponds to a lattice I' generated by columns of

the matrix )

2

,.Y2

)
= L

o
B
Y
where

27 4
{a,ﬁ,'y}:{2cos 9 ,2cos 97r 2c058;T}.

The begining of 3D Markov spectrum was calculated by Swinnerton—Dyer
(1971). Only first 20 elements are known. The reciprocals are

1189 1 2
79\/ﬁ63 13,14, == 35 1839 393 \/@,%9,...
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From "global"to "local"

Cassels (An introduction to the geometry of numbers):

"It would be interesting if local methods could be successfully extended to
problems in more than 2 dimensions, for example to problems relating to
X1 max{x22, xg}, X1 (x22 + x:,?), xl2 + x22 — xg or x1xox3. The difficulty is not
to find the analogues of the x; but to devise techniques to cope with their
interrelations."”

Our problem is a part of this program, we want to replace infinite set
M\{0} in formula

min _|y17273] < E det |
|
~er\{o} 2%l = 7

by finite set of nodes.
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1) Let I = (41,4 1)) where {y(1), 4(2) ~(3)} is a Minkovski basis of
the | type and

Then

1
min < =detl
L in [717273] < =

2) Let T = (y(1) 4(2) ~B)y where {~(1),4(2) 431 is a Minkovski basis of
the Il type and
Mo = {1, 7@ 40 L @) (1) _ 42 _ 56) (1) _4B) 1) 4 46),

27(1) _ 7(2) _ 7(3)},
Then

1
min < —detTl.
L min [717273] < 5
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The main result

1) If for all v € T1 products |y1y2y3| are equal to each other then T is
generated by 2 cos 27”, 2 cos 47”, 2 cos 67”
2) If for all v € T, products |717273| are equal to each other then I is
generated by 2 cos 2* s T 2cos iT 55 2cos g

Basic properties of 3D continued fraction

M Avdeeva, M. Monina (PNU)



