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Recall that GLs(R), s = 2, 3, . . . is the multiplicative group of
nondegenerate s × s matrices with real entries, and let GLs(Z) be its
discrete subgroup consisting of matrices with integer entries and
determinant ±1.
Any complete lattice in Rs can be written in the form

Γ(M) =
{
γ = m1γ

(1) + · · ·+ msγ
(s)
∣∣ m1, . . . ,ms ∈ Z

}
,

where γ(1), . . . , γ(s) are the basis nodes specified by the corresponding
columns of a certain matrix M ∈ GLs(R).
The equality Γ(M) = Γ(M ′) is true if and only if M = M ′ · S , where
S ∈ GLs(Z).
Denote by Ls(R) the set of all lattices.
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Let Gs be the finite group acting on GLs(R) generated by transformations
of the two following types:
(a) change of sign of a row or column;
(b) transposition of two rows or two columns.
Two matrices from GLs(R) are called equivalent if one of them is obtained
from the other under a certain transformation from Gs .
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The two-dimensional case (s = 2). A Voronoi basis

Let {γ(1), γ(2)} be a basis of the lattice Γ from Ls(R) such that Γ has no
nonzero nodes γ = (γ1, γ2) with

|γ1| < max
{∣∣∣γ(1)

1

∣∣∣ , ∣∣∣γ(2)
1

∣∣∣} , |γ2| < max
{∣∣∣γ(1)

2

∣∣∣ , ∣∣∣γ(2)
2

∣∣∣} .
This is true if and only if, for a certain transformation Φ from G2, we have

Φ

(
γ

(1)
1 γ

(2)
1

γ
(1)
2 γ

(2)
2

)
= M =

(
a1 −b1

a2 b2

)
, 0 ≤ b1 ≤ a1, 0 ≤ a2 ≤ b2.

A basis {γ(1), γ(2)} of an arbitrary lattice Γ from L2(R) is a Voronoi basis
if its corresponding matrix is equivalent to the matrix M.
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The classical continued fraction and 2D lattices

Let [t0; t1, . . . , ti , . . . ] be the continued fraction representation of real α,
where t0 ∈ Z and ti ∈ Z+ (i = 1, 2, . . . ) are called the partial quotients
of the continued fraction and

pi/qi = [t0; t1, . . . , ti ] (i = 1, 2, . . . ) and p0/q0 = 1/0

are called the convergents of the continued fraction.
We assign to α ∈ (0, 1/2) the lattice

Γα =
{

(αn + m, n) = n(α, 1) + m(1, 0)
∣∣ m, n ∈ Z

}
.

For this lattice, det(Γα) = 1, and, by the Lagrange Best Approximation
Theorem, any Voronoi basis Γα consists of the pairs of nodes

±(αqi − pi , qi ), ±(αqi+1 − pi+1, qi+1) (i = 0, 1, 2, . . . ).
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Vahlen’s theorem

In the theory of continued fractions these are well known inequalities

qi |αqi − pi | ≤ 1, min
{
qi |αqi − pi |, qi+1|αqi+1 − pi+1|

}
≤ 1

2
.

The second one of them is usually called Vahlen’s theorem.
Notice that for the matrices M

a1a2 + b1b2

det(M)
=

a1a2 + b1b2

a1b2 + a2b1
= 1− (a1 − b1)(b2 − a2)

a1b2 + a2b1
≤ 1.

Therefore, for any Voronoi basis, we have the inequality∣∣∣γ(1)
1 · γ(1)

2

∣∣∣+
∣∣∣γ(2)

1 · γ(2)
2

∣∣∣ ≤ det(Γ) = det(M),

which becomes an equality for a1 = b1 or a2 = b2. It follows that, for any
node from a Voronoi basis,

|γ1γ2| ≤ det(Γ) and min
{∣∣∣γ(1)

1 γ
(1)
2

∣∣∣ , ∣∣∣γ(2)
1 γ

(2)
2

∣∣∣} ≤ 1

2
det(Γ).
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The Markov-Hurwitz theorem

For three successive convergents it is known

Theorem (in the terms of continued fractions)
∀i = 1, 2, . . .

min

{∣∣∣∣α− pi−1

qi−1

∣∣∣∣ q2
i−1,

∣∣∣∣α− pi
qi

∣∣∣∣ q2
i ,

∣∣∣∣α− pi+1

qi+1

∣∣∣∣ q2
i+1

}
≤ 1√

5
.

Theorem (for the nodes of a Voronoi basis)

If {γ(1), γ(2)} is a Voronoi basis, then

min
{∣∣∣γ(1)

1 γ
(1)
2

∣∣∣ , ∣∣∣γ(2)
1 γ

(2)
2

∣∣∣ , ∣∣∣(γ(1)
1 + γ

(2)
1

)(
γ

(1)
2 + γ

(2)
2

)∣∣∣}
det(Γ)

≤ 1√
5
.

Here the third element is defined by the sum of the nodes of a Voronoi
basis.
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Minkowski bases

A basis {γ(1), γ(2), γ(3)} of a lattice Γ from L3(R) is called a Minkowski
basis if the corresponding matrix is equivalent to a matrix of one of the
following forms a1 b1 −c1

−a2 b2 c2

a3 −b3 c3

 ,

 a1 b1 c1

−a2 b2 c2

a3 −b3 c3


with nonnegative ai , bi , ci such that
(i) max{b1, c1} ≤ a1 , max{a2, c2} ≤ b2, max{a3, b3} ≤ c3;
(ii) matrices of the first form satisfy at least one of the inequalities
a2 ≤ c2, b3 ≤ a3;
(iii) matrices of the second form satisfy the inequalities
c1 ≤ b1, b2 ≤ a2 + c2.
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Vahlen’s theorem for Minkowski bases

Notice that Minkowski’s convex body theorem immediately implies the
estimate

|γ1γ2γ3| ≤ det(Γ)

for any relative minimum γ = (γ1, γ2, γ3) of a three-dimensional lattice Γ
from L3(R). In 1999 it was shown that for adjacent relative minima γ(1)

and γ(2)

min
{∣∣∣γ(1)

1 γ
(1)
2 γ

(1)
3

∣∣∣ , ∣∣∣γ(2)
1 γ

(2)
2 γ

(2)
3

∣∣∣} ≤ 1

2
det(Γ).

For nodes γ(1), γ(2), γ(3) that form a Minkowski basis in 2003 the estimate

min
{∣∣∣γ(1)

1 γ
(1)
2 γ

(1)
3

∣∣∣ , ∣∣∣γ(2)
1 γ

(2)
2 γ

(2)
3

∣∣∣ , ∣∣∣γ(3)
1 γ

(3)
2 γ

(3)
3

∣∣∣} ≤ 1

3
det(Γ)

was proved and in 2006 the following improvement was achieved:∣∣∣γ(1)
1 γ

(1)
2 γ

(1)
3

∣∣∣+
∣∣∣γ(2)

1 γ
(2)
2 γ

(2)
3

∣∣∣+
∣∣∣γ(3)

1 γ
(3)
2 γ

(3)
3

∣∣∣ ≤ det(Γ).
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3D Markov-Hurwitz

It is know that (Davenport, 1938–43)

min
γ∈Γ\{0}

∣∣γ1γ2γ3

∣∣ ≤ 1

7
det(Γ).

This inequality is sharp. There is a unique lattice Γ such that

min
γ∈Γ\{0}

∣∣γ1γ2γ3

∣∣ =
1

7
det(Γ).

This lattice is generated by columns of the matrix1 α α2

1 β β2

1 γ γ2


where

{α, β, γ} =

{
2 cos

2π

7
, 2 cos

4π

7
, 2 cos

6π

7

}
.
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The constant 1
7 is a first element of 3D analogue of Markov spectrum.

Second element is 1
9 . It corresponds to a lattice Γ generated by columns of

the matrix 1 α α2

1 β β2

1 γ γ2


where

{α, β, γ} =

{
2 cos

2π

9
, 2 cos

4π

9
, 2 cos

8π

9

}
.

The begining of 3D Markov spectrum was calculated by Swinnerton–Dyer
(1971). Only first 20 elements are known. The reciprocals are

7, 9,
√

148,
63

5
, 13, 14,

351

25
,

189

13
,

133

19
,
√

229,
259

17
, . . .
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From "global"to "local"

Cassels (An introduction to the geometry of numbers):
"It would be interesting if local methods could be successfully extended to
problems in more than 2 dimensions, for example to problems relating to
x1 max{x2

2 , x
2
3}, x1(x2

2 + x2
3 ), x2

1 + x2
2 − x2

3 or x1x2x3. The difficulty is not
to find the analogues of the xi but to devise techniques to cope with their
interrelations."
Our problem is a part of this program, we want to replace infinite set
Γ\{0} in formula

min
γ∈Γ\{0}

|γ1γ2γ3| ≤
1

7
det Γ

by finite set of nodes.
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Conjectures

1) Let Γ = 〈γ(1), γ(2), γ(3)〉 where {γ(1), γ(2), γ(3)} is a Minkovski basis of
the I type and

Γ1 = {γ(1), γ(2), γ(3), γ(1)− γ(3), γ(1) + γ(2)− γ(3), γ(1) + γ(2), γ(2) + γ(3)}.

Then
min

γ∈R(Γ1)
|γ1γ2γ3| ≤

1

7
det Γ

2) Let Γ = 〈γ(1), γ(2), γ(3)〉 where {γ(1), γ(2), γ(3)} is a Minkovski basis of
the II type and

Γ2 = {γ(1), γ(2), γ(1) + γ(2), γ(1) − γ(2) − γ(3), γ(1) − γ(3), γ(2) + γ(3),

2γ(1) − γ(2) − γ(3)}.
Then

min
γ∈R(Γ2)

|γ1γ2γ3| ≤
1

9
det Γ.
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The main result

Theorem
1) If for all γ ∈ Γ1 products |γ1γ2γ3| are equal to each other then Γ is
generated by 2 cos 2π

7 , 2 cos 4π
7 , 2 cos 6π

7 .
2) If for all γ ∈ Γ2 products |γ1γ2γ3| are equal to each other then Γ is
generated by 2 cos 2π

9 , 2 cos 4π
9 , 2 cos 8π

9 .
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