### On Distances to Lattice Points in Knapsack Polyhedra

I. Aliev, M. Henk and T. Oertel

Cardiff University

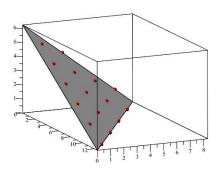
**UDT 2018** 

# Statement of the problem

Given  $\mathbf{a} \in \mathbb{Z}^n$ ,  $b \in \mathbb{Z}$ , a knapsack polyhedron  $P(\mathbf{a}, b)$  is defined as

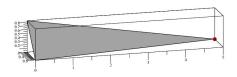
$$P(\boldsymbol{a},b) = \{ \boldsymbol{x} \in \mathbb{R}^n_{\geq 0} : \boldsymbol{a} \cdot \boldsymbol{x} = b \}.$$

We are interested in the distance from a vertex of  $P(\boldsymbol{a},b)$  to the set of its lattice points.



(Lattice points in P((2,3,4),25))

#### Statement of the problem



(Another example: Lattice points in P((6,1,6),5))

We will estimate the (maximum) vertex distance

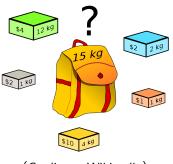
$$d(\boldsymbol{a},b) = \left\{ \begin{array}{ll} \max_{\boldsymbol{v}} \min_{\boldsymbol{z} \in P(\boldsymbol{a},b) \cap \mathbb{Z}^n} \|\boldsymbol{v} - \boldsymbol{z}\|_{\infty} \,, & \text{if } P(\boldsymbol{a},b) \cap \mathbb{Z}^n \neq \emptyset \,, \\ -\infty \,, & \text{otherwise} \,, \end{array} \right.$$

where the maximum is taken over all vertices  $\mathbf{v}$  of the polyhedron  $P(\mathbf{a}, b)$ .

### Link to Mathematical Optimisation

Given a cost vector  $\mathbf{c} \in \mathbb{Q}^n$ ,  $\mathbf{a} \in \mathbb{Z}^n$  and  $b \in \mathbb{Z}$ , the classical integer knapsack problem in Integer Programming is stated as

$$\max\{\boldsymbol{c}\cdot\boldsymbol{x}:\boldsymbol{x}\in P(\boldsymbol{a},b)\cap\mathbb{Z}^n\}. \tag{1}$$



(Credits to Wikipedia)

The problem (1) is NP-hard (Lueker (1975)).

## Link to Mathematical Optimisation

The linear programming relaxation of (1)

$$\max\{\boldsymbol{c}\cdot\boldsymbol{x}:\boldsymbol{x}\in P(\boldsymbol{a},b)\}\tag{2}$$

can be solved in polynomial time (Khachiyan (1979)).

Let IP(c, a, b) and LP(c, a, b) denote the optimal values of (1) and (2). We can bound the integrality gap

$$LP(c, a, b) - IP(c, a, b) \le d(a, b) ||c||_1.$$

#### Bounds for the vertex distance

We will assume the following conditions:

(i) 
$$\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{Z}^n, n \ge 2, a_i \ne 0, i = 1, \dots, n,$$
  
(ii)  $\gcd(\mathbf{a}) := \gcd(a_1, \dots, a_n) = 1.$  (3)

#### Theorem 1

(i) Let **a** satisfy (3) and  $b \in \mathbb{Z}$ . Then

$$d(\boldsymbol{a},b) \leq \|\boldsymbol{a}\|_{\infty} - 1.$$

(ii) For any positive integer k and any dimension n there exist **a** satisfying (3) with  $\|\mathbf{a}\|_{\infty} = k$  and  $b \in \mathbb{Z}$  such that

$$d(\mathbf{a},b) = \|\mathbf{a}\|_{\infty} - 1.$$

#### Some known results

Results of Cook et al. (1986) imply

$$d(\boldsymbol{a},b)\leq n\|\boldsymbol{a}\|_{\infty}.$$

Let  $A=(a_{ij})\in\mathbb{Z}^{m\times n}$ ,  $\boldsymbol{b}\in\mathbb{Z}^m$ . A recent result of Eisenbrand and Weismantel (2017) implies that to every vertex  $\boldsymbol{v}$  of an integer feasible polyhedron  $P=\{\boldsymbol{x}\in\mathbb{R}^n_{\geq 0}:A\boldsymbol{x}=\boldsymbol{b}\}$  there exists an integer point  $\boldsymbol{z}$  in P, such that

$$\|\mathbf{v} - \mathbf{z}\|_1 \le m(2m\|A\|_{\infty} + 1)^m.$$

#### Vertex distance in a randomised scenario

How large is the vertex distance of a "typical" knapsack polyhedron? Specifically, consider for  $H \geq 1$  the set Q(H) of  $\boldsymbol{a} \in \mathbb{Z}^n$  that satisfy (3) and

$$\|\boldsymbol{a}\|_{\infty} \leq H$$
.

For  $\epsilon \in (0, 3/4)$  let

$$N_{\epsilon}(H,t) = \# \left\{ oldsymbol{a} \in Q(H) : \max_{b \in \mathbb{Z}} rac{d(oldsymbol{a},b)}{\|oldsymbol{a}\|_{\infty}^{\epsilon}} > t 
ight\}.$$

#### Theorem 2

Fix  $n \ge 3$ . For any  $\epsilon \in (0,3/4)$  we have

$$\frac{N_{\epsilon}(H,t)}{\#(Q(H))} \ll_n t^{-\alpha(\epsilon,n)} \text{ with } \alpha(\epsilon,n) = \frac{n-2}{(1-\epsilon)n}$$

over all H > 1 and t > 0.

### Average vertex distance

#### Corollary 3

Fix  $n \ge 3$ . For any  $\epsilon > 2/n$ 

$$\frac{1}{\#(\mathit{Q}(\mathit{H}))} \sum_{{\boldsymbol{a}} \in \mathit{Q}(\mathit{H})} \max_{b \in \mathbb{Z}} \frac{d({\boldsymbol{a}},b)}{\|{\boldsymbol{a}}\|_{\infty}^{\epsilon}} \ll_n 1 \,.$$

## Tools for positive a

Let  $\mathbf{a} \in \mathbb{Z}_{>0}^n$  with  $\gcd(\mathbf{a}) = 1$ . The Frobenius number  $g(\mathbf{a})$  is the largest integer b that cannot be represented as a nonnegative integer linear combination of  $a_i$ -s, that is  $P(\mathbf{a},b) \cap \mathbb{Z}^n = \emptyset$ .

For instance, let  $\mathbf{a} = (3,5)$ . The representable (green dots) and non-representable (red dots) integers:



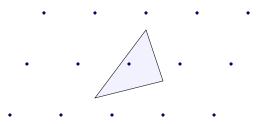
$$g(a) = 7.$$

Let  $K \subset \mathbb{R}^n$  be a convex body,  $\Lambda$  a full-dimensional lattice and  $S \in \{\mathbb{R}^n, \mathbb{Z}^n\}$ .

$$\mu(K, \Lambda, S) = \min\{\mu : S \subset \mu K + \Lambda\}.$$

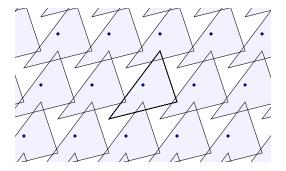
Let  $K \subset \mathbb{R}^n$  be a convex body,  $\Lambda$  a full-dimensional lattice and  $S \in \{\mathbb{R}^n, \mathbb{Z}^n\}$ .

$$\mu(K, \Lambda, S) = \min\{\mu : S \subset \mu K + \Lambda\}.$$



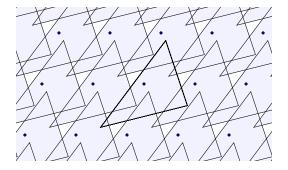
Let  $K \subset \mathbb{R}^n$  be a convex body,  $\Lambda$  a full-dimensional lattice and  $S \in \{\mathbb{R}^n, \mathbb{Z}^n\}$ .

$$\mu(K, \Lambda, S) = \min\{\mu : S \subset \mu K + \Lambda\}.$$



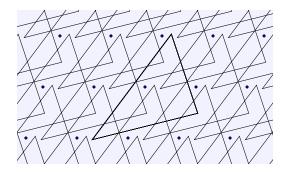
Let  $K \subset \mathbb{R}^n$  be a convex body,  $\Lambda$  a full-dimensional lattice and  $S \in \{\mathbb{R}^n, \mathbb{Z}^n\}$ .

$$\mu(K, \Lambda, S) = \min\{\mu : S \subset \mu K + \Lambda\}.$$



Let  $K \subset \mathbb{R}^n$  be a convex body,  $\Lambda$  a full-dimensional lattice and  $S \in \{\mathbb{R}^n, \mathbb{Z}^n\}$ .

$$\mu(K, \Lambda, S) = \min\{\mu : S \subset \mu K + \Lambda\}.$$



#### Results of Ravi Kannan

For  $\boldsymbol{a}=(a_1,\ldots,a_n)\in\mathbb{Z}^n_{>0}$  with  $\gcd(\boldsymbol{a})=1$ , let

$$\mathcal{T}_{\boldsymbol{a}} = \left\{ \boldsymbol{x} \in \mathbb{R}^{n-1}_{\geq 0} \ : \ \sum_{i=1}^{n-1} a_i x_i \leq 1 
ight\}$$

and

$$\Lambda_{\mathbf{a}} = \left\{ \mathbf{x} \in \mathbb{Z}^{n-1} : \sum_{i=1}^{n-1} a_i x_i \equiv 0 \mod a_n \right\}.$$

Kannan (1992):

$$\mu(T_{\mathbf{a}}, \Lambda_{\mathbf{a}}, \mathbb{R}^{n-1}) = g(\mathbf{a}) + a_1 + \ldots + a_n$$

and

$$\mu(T_{\boldsymbol{a}}, \Lambda_{\boldsymbol{a}}, \mathbb{Z}^{n-1}) = g(\boldsymbol{a}) + a_n.$$

# Idea of the proof of Theorem 1 (i) for positive a

Let  $\mathbf{a} \in \mathbb{Z}_{>0}^n$  satisfy (3) and  $b \in \mathbb{Z}$ . Key inequality for positive case:

Lemma 4

$$d(\boldsymbol{a},b) \leq \frac{\mu(T_{\boldsymbol{a}},\Lambda_{\boldsymbol{a}},\mathbb{Z}^{n-1})}{\min_i a_i} \leq \frac{g(\boldsymbol{a}) + \|\boldsymbol{a}\|_{\infty}}{\min_i a_i}.$$

## Idea of the proof of Theorem 2 for positive a

For convenience, we will work with the quantity

$$f(\mathbf{a})=g(\mathbf{a})+a_1+\cdots+a_n.$$

Let  $s(a) = a_{n-1}a_n^{1/(n-1)}$  and

$$R = \{ \boldsymbol{a} \in \mathbb{Z}^n : 0 < a_1 \leq \cdots \leq a_n \}$$

## Idea of the proof of Theorem 2 for positive a

The next key lemma is a special case of a result of Strömbergsson (2012) on asymptotic distribution of Frobenius numbers (for n = 3 can be derived from results of Shur, Sinai and Ustinov (2009)).

#### Lemma 5

$$\#\left\{\mathbf{a}\in Q(H)\cap R: \frac{f(\mathbf{a})}{s(\mathbf{a})} > r\right\} \ll_n \frac{1}{r^{n-1}} \#(Q(H)), \tag{4}$$

over all r > 0 and H > 1.

With some technical work we move from  $s(\mathbf{a})$  to  $\|\mathbf{a}\|_{\infty}^{\epsilon}$  and then apply Lemma 4.

# Thank you for listening!