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Outline

Recall from Spencer’s talk: Jac(M) � G(M) ≈ χ(M)↔ B(M).

Jac(M): Jacobian.

G(M): Circuit-cocircuit reversal system.
χ(M): Circuit-cocircuit minimal orientations.

B(M): Bases.

1 A group action-tiling duality for regular matroids (with examples).

2 G(M) 6≈ χ(M) for non-regular oriented matroids.
(Joint work with Emeric Gioan)

3 Geometric bijections χ(M)↔ B(M) for general oriented matroids.
(Joint work with Spencer Backman and Francisco Santos)
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More Details of Jac(M) � G(M)

Jac(M) ∼= C1(M)
B1(M)⊕Z1(M) .

C1(M) = ZE , B1(M): cocircuit (bond) lattice, Z1(M): circuit (flow) lattice.
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Group Actions from Geometric Bijections

Jac(M) � G(M)↔ B(M)

Observation

Any (geometric) bijection between G(M) and B(M) induces a group
action on B(M) by Jac(M).

Observation

Different bijections may lead to isomorphic group actions.
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Bernardi Process of Plane Graphs

Olivier Bernardi’s process (08): Fix a starting edge (v , f ) in a plane graph.

For every spanning tree T , starting with (v , f ), walk along edges in T .

Cut every e 6∈ T twice, put a chip at the end that was being cut first.

Proposition (Y. 2017)

Bernardi bijections of plane graphs are geometric.

Theorem (Baker–Wang 2017, Chan–Church–Grochow 2015)

All Bernardi bijections (and rotor-routings) of a plane graph induce
isomorphic group actions.
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Tiling by Zonotopes

Theorem (Shephard 1974, McMullen 1975)

The zonotope of a matroid tiles the space iff the matroid is regular.
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Tiling by Zonotopes

Observation

Many zonotopal tilings lead to the same tiling pattern.
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Group Action–Tiling Duality

Theorem (Y. 2017+)

(Loosely speaking) Two “geometric” group actions for M are isomorphic
iff the corresponding tilings for M∗ differ only by a translation.

Proof Idea:

1 Jac(M) ∼= C1(M)
B1(M)⊕Z1(M)

∼= C1(M∗)
Z1(M∗)⊕B1(M∗)

∼= Jac(M∗).

2 ZM∗ lives in the cocircuit space of M∗, so Z1(M∗) vanishes.

3 B1(M∗) is the period of the tiling by ZM∗ .

Punchline: The dual tilings of Bernardi processes were introduced in
tropical geometry before.
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Tiling by Jac(Γ)
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ABKS Decomposition

An–Baker–Kuperberg–Shokrieh (2014): Construct a canonical
decomposition of the tropical Jacobian Jac(Γ) of the tropical version of G .

2

2

Proposition (Y. 2017+)

The ABKS decomposition of G ∗ is the dual of the Bernardi action of G.
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Reversal Systems of Non-regular Matroids

Theorem (Gioan–Y. 2017+ (Converse of Gioan 2008))

|G(M)| is strictly less than |B(M)| if M is not regular.

Sketch of Proof: Recall that an orientation is circuit-cocircuit minimal if
the min element of every signed (co)circuit is oriented according to the
reference orientation.

Theorem (Gioan–Las Vergnas 2005–2018+)

|B(M)| = |χ(M)| for any oriented matroid M.

Proposition (folklore, or Backman 2018)

Every reversal class contains at least one CCMO.

Corollary

It suffices to show that there exist equivalent CCMOs.
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Non-regular Case (cont.)

Theorem (Bland–Las Vergnas 1978)

An oriented matroid is regular iff it has no U2,4-minors.

Sketch of Proof (cont.):

1 Using U2,4-minors, construct a pair of conformal signed cocircuits
C ,D such that C4D is not a disjoint union of cocircuits.

2 Choose carefully a reference ordering of elements, and a CCMO.

3 Reverse C and then D for a distinct (but reversal equivalent) CCMO.

Question

Does there exist K > 1 such that |B(M)| ≥ K · |G(M)| for every
non-regular M? More generally, how does the structure of M affect the
inequality?
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Circuit-cocircuit Minimal Orientations Revisited

Definition

Fix a generic single-element lifting M̃ with signature σ, and
a generic single-element extension M ′ with signature σ∗.
An orientation O is (σ, σ∗)-compatible if (O −) is acyclic in M̃ and totally
cyclic in M ′.

Example

CCMOs are compatible orientations with respect to some lexicographic
lifting and extension.

Intuition: A generic circuit signature σ : C(M)→ {+,−} specifies a
reference orientation for every circuit of M, i.e., the one with σ(C ) = +.
Same for σ∗.
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Geometric Bijections of General Oriented Matroids

Theorem (Backman-Santos-Y. 2017+)

For any σ and σ∗, the number of (σ, σ∗)-compatible orientations equals
the number of bases. Moreover, geometric bijection provides an explicit
bijection.

Proof Idea: The bijectivity of a geometric bijection is essentially the
existence and uniqueness of optima of a family of bounded, feasible,
generic oriented matroid programs.
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Merci!
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