More on Geometric Bijections and Reversal Systems

Chi Ho Yuen

Georgia Institute of Technology \Rightarrow University of Bern
Combinatorial Geometries 2018 at CIRM
September 26, 2018

Outline

Recall from Spencer's talk: $\operatorname{Jac}(M) \circlearrowright \mathcal{G}(M) \approx \chi(M) \leftrightarrow \mathcal{B}(M)$.

- Jac(M): Jacobian.
- $\mathcal{G}(M)$: Circuit-cocircuit reversal system.
- $\chi(M)$: Circuit-cocircuit minimal orientations.
- $\mathcal{B}(M)$: Bases.
(1) A group action-tiling duality for regular matroids (with examples).
(2) $\mathcal{G}(M) \not \approx \chi(M)$ for non-regular oriented matroids. (Joint work with Emeric Gioan)
(3) Geometric bijections $\chi(M) \leftrightarrow \mathcal{B}(M)$ for general oriented matroids. (Joint work with Spencer Backman and Francisco Santos)

More Details of $\operatorname{Jac}(M) \circlearrowright \mathcal{G}(M)$

$\operatorname{Jac}(M) \cong \frac{C_{1}(M)}{B_{1}(M) \oplus Z_{1}(M)}$.
$C_{1}(M)=\mathbb{Z}^{E}, B_{1}(M)$: cocircuit (bond) lattice, $Z_{1}(M)$: circuit (flow) lattice.

Group Actions from Geometric Bijections

$$
\operatorname{Jac}(M) \circlearrowright \mathcal{G}(M) \leftrightarrow \mathcal{B}(M)
$$

Observation

Any (geometric) bijection between $\mathcal{G}(M)$ and $\mathcal{B}(M)$ induces a group action on $\mathcal{B}(M)$ by $\operatorname{Jac}(M)$.

Group Actions from Geometric Bijections

$$
\operatorname{Jac}(M) \circlearrowright \mathcal{G}(M) \leftrightarrow \mathcal{B}(M)
$$

Observation

Any (geometric) bijection between $\mathcal{G}(M)$ and $\mathcal{B}(M)$ induces a group action on $\mathcal{B}(M)$ by $\operatorname{Jac}(M)$.

Observation

Different bijections may lead to isomorphic group actions.

Bernardi Process of Plane Graphs

Olivier Bernardi's process (08): Fix a starting edge (v, f) in a plane graph.

- For every spanning tree T, starting with (v, f), walk along edges in T.
- Cut every e $\notin T$ twice, put a chip at the end that was being cut first.

Bernardi Process of Plane Graphs

Olivier Bernardi's process (08): Fix a starting edge (v, f) in a plane graph.

- For every spanning tree T, starting with (v, f), walk along edges in T.
- Cut every e $\notin T$ twice, put a chip at the end that was being cut first.

Proposition (Y. 2017)

Bernardi bijections of plane graphs are geometric.

Bernardi Process of Plane Graphs

Olivier Bernardi's process (08): Fix a starting edge (v, f) in a plane graph.

- For every spanning tree T, starting with (v, f), walk along edges in T.
- Cut every e $\notin T$ twice, put a chip at the end that was being cut first.

Proposition (Y. 2017)

Bernardi bijections of plane graphs are geometric.

Theorem (Baker-Wang 2017, Chan-Church-Grochow 2015)

All Bernardi bijections (and rotor-routings) of a plane graph induce isomorphic group actions.

Tiling by Zonotopes

Theorem (Shephard 1974, McMullen 1975)

The zonotope of a matroid tiles the space iff the matroid is regular.

Tiling by Zonotopes

Observation

Many zonotopal tilings lead to the same tiling pattern.

Group Action-Tiling Duality

Theorem (Y. 2017+)
(Loosely speaking) Two "geometric" group actions for M are isomorphic iff the corresponding tilings for M^{*} differ only by a translation.

Group Action-Tiling Duality

Theorem (Y. 2017+)

(Loosely speaking) Two "geometric" group actions for M are isomorphic iff the corresponding tilings for M^{*} differ only by a translation.

Proof Idea:
(1) $\operatorname{Jac}(M) \cong \frac{C_{1}(M)}{B_{1}(M) \oplus Z_{1}(M)} \cong \frac{C_{1}\left(M^{*}\right)}{Z_{1}\left(M^{*}\right) \oplus B_{1}\left(M^{*}\right)} \cong \operatorname{Jac}\left(M^{*}\right)$.
(2) $Z_{M^{*}}$ lives in the cocircuit space of M^{*}, so $Z_{1}\left(M^{*}\right)$ vanishes.
(3) $B_{1}\left(M^{*}\right)$ is the period of the tiling by $Z_{M^{*}}$.

Group Action-Tiling Duality

Theorem (Y. 2017+)

(Loosely speaking) Two "geometric" group actions for M are isomorphic iff the corresponding tilings for M^{*} differ only by a translation.

Proof Idea:
(1) $\operatorname{Jac}(M) \cong \frac{C_{1}(M)}{B_{1}(M) \oplus Z_{1}(M)} \cong \frac{C_{1}\left(M^{*}\right)}{Z_{1}\left(M^{*}\right) \oplus B_{1}\left(M^{*}\right)} \cong \operatorname{Jac}\left(M^{*}\right)$.
(2) $Z_{M^{*}}$ lives in the cocircuit space of M^{*}, so $Z_{1}\left(M^{*}\right)$ vanishes.
(3) $B_{1}\left(M^{*}\right)$ is the period of the tiling by $Z_{M^{*}}$.

Punchline: The dual tilings of Bernardi processes were introduced in tropical geometry before.

Tiling by Jac(Г)

ABKS Decomposition

An-Baker-Kuperberg-Shokrieh (2014): Construct a canonical decomposition of the tropical Jacobian $\mathrm{Jac}(\Gamma)$ of the tropical version of G.

ABKS Decomposition

An-Baker-Kuperberg-Shokrieh (2014): Construct a canonical decomposition of the tropical Jacobian $\operatorname{Jac}(\Gamma)$ of the tropical version of G.

Proposition (Y. 2017+)

The $A B K S$ decomposition of G^{*} is the dual of the Bernardi action of G.

Reversal Systems of Non-regular Matroids

Theorem (Gioan-Y. 2017+ (Converse of Gioan 2008))
 $|\mathcal{G}(M)|$ is strictly less than $|\mathcal{B}(M)|$ if M is not regular.

Reversal Systems of Non-regular Matroids

Theorem (Gioan-Y. 2017+ (Converse of Gioan 2008))

$|\mathcal{G}(M)|$ is strictly less than $|\mathcal{B}(M)|$ if M is not regular.
Sketch of Proof: Recall that an orientation is circuit-cocircuit minimal if the min element of every signed (co)circuit is oriented according to the reference orientation.

Reversal Systems of Non-regular Matroids

Theorem (Gioan-Y. 2017+ (Converse of Gioan 2008))

$|\mathcal{G}(M)|$ is strictly less than $|\mathcal{B}(M)|$ if M is not regular.
Sketch of Proof: Recall that an orientation is circuit-cocircuit minimal if the min element of every signed (co)circuit is oriented according to the reference orientation.

Theorem (Gioan-Las Vergnas 2005-2018+)

$|\mathcal{B}(M)|=|\chi(M)|$ for any oriented matroid M.

Reversal Systems of Non-regular Matroids

Theorem (Gioan-Y. 2017+ (Converse of Gioan 2008))

$|\mathcal{G}(M)|$ is strictly less than $|\mathcal{B}(M)|$ if M is not regular.
Sketch of Proof: Recall that an orientation is circuit-cocircuit minimal if the min element of every signed (co)circuit is oriented according to the reference orientation.

Theorem (Gioan-Las Vergnas 2005-2018+)

$|\mathcal{B}(M)|=|\chi(M)|$ for any oriented matroid M.

Proposition (folklore, or Backman 2018)

Every reversal class contains at least one CCMO.

Reversal Systems of Non-regular Matroids

Theorem (Gioan-Y. 2017+ (Converse of Gioan 2008))

$|\mathcal{G}(M)|$ is strictly less than $|\mathcal{B}(M)|$ if M is not regular.
Sketch of Proof: Recall that an orientation is circuit-cocircuit minimal if the min element of every signed (co)circuit is oriented according to the reference orientation.

Theorem (Gioan-Las Vergnas 2005-2018+)
$|\mathcal{B}(M)|=|\chi(M)|$ for any oriented matroid M.

Proposition (folklore, or Backman 2018)

Every reversal class contains at least one CCMO.

Corollary

It suffices to show that there exist equivalent CCMOs.

Non-regular Case (cont.)

Theorem (Bland-Las Vergnas 1978)

An oriented matroid is regular iff it has no $U_{2,4}$-minors.

Non-regular Case (cont.)

Theorem (Bland-Las Vergnas 1978)

An oriented matroid is regular iff it has no $U_{2,4}$-minors.
Sketch of Proof (cont.):
(1) Using $U_{2,4}$-minors, construct a pair of conformal signed cocircuits C, D such that $C \triangle D$ is not a disjoint union of cocircuits.
(2) Choose carefully a reference ordering of elements, and a CCMO.
(3) Reverse C and then D for a distinct (but reversal equivalent) CCMO.

Non-regular Case (cont.)

Theorem (Bland-Las Vergnas 1978)

An oriented matroid is regular iff it has no $U_{2,4}$-minors.
Sketch of Proof (cont.):
(1) Using $U_{2,4}$-minors, construct a pair of conformal signed cocircuits C, D such that $C \triangle D$ is not a disjoint union of cocircuits.
(2) Choose carefully a reference ordering of elements, and a CCMO.
(3) Reverse C and then D for a distinct (but reversal equivalent) CCMO.

Question

Does there exist $K>1$ such that $|\mathcal{B}(M)| \geq K \cdot|\mathcal{G}(M)|$ for every non-regular M ? More generally, how does the structure of M affect the inequality?

Circuit-cocircuit Minimal Orientations Revisited

Definition

Fix a generic single-element lifting \widetilde{M} with signature σ, and a generic single-element extension M^{\prime} with signature σ^{*}. An orientation \mathcal{O} is $\left(\sigma, \sigma^{*}\right)$-compatible if $(\mathcal{O}-)$ is acyclic in \widetilde{M} and totally cyclic in M^{\prime}.

Circuit-cocircuit Minimal Orientations Revisited

Definition

Fix a generic single-element lifting \widetilde{M} with signature σ, and a generic single-element extension M^{\prime} with signature σ^{*}.
An orientation \mathcal{O} is $\left(\sigma, \sigma^{*}\right)$-compatible if $(\mathcal{O}-)$ is acyclic in \widetilde{M} and totally cyclic in M^{\prime}.

Example

CCMOs are compatible orientations with respect to some lexicographic lifting and extension.

Intuition: A generic circuit signature $\sigma: \mathcal{C}(M) \rightarrow\{+,-\}$ specifies a reference orientation for every circuit of M, i.e., the one with $\sigma(C)=+$. Same for σ^{*}.

Geometric Bijections of General Oriented Matroids

Abstract

Theorem (Backman-Santos-Y. 2017+) For any σ and σ^{*}, the number of $\left(\sigma, \sigma^{*}\right)$-compatible orientations equals the number of bases. Moreover, geometric bijection provides an explicit bijection.

Geometric Bijections of General Oriented Matroids

Theorem (Backman-Santos-Y. 2017+)

For any σ and σ^{*}, the number of $\left(\sigma, \sigma^{*}\right)$-compatible orientations equals the number of bases. Moreover, geometric bijection provides an explicit bijection.

Proof Idea: The bijectivity of a geometric bijection is essentially the existence and uniqueness of optima of a family of bounded, feasible, generic oriented matroid programs.

Merci!

