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Matroids

The pair (E, F)  is a matroid (H. Whitney, 1935) if E is a finite set
and F  is a subset of 2E  so that

(F1)  Ø ɛ F
(F2)  X ɛ F  implies that Y ɛ F  for every subset Y of X
(F3)  If X, Y ɛ F  and  |X| > |Y| then Ǝ an element x in  X—Y so that YU{x} ɛ F



The rank function of a matroid

The elements of F are the independent sets of the matroid. For any subset X of E
let r(X) denote the size of the maximal independent subsets of X. This function (the
rank function of the matroid) can be characterized by the following set of 
properties:

(R1)  r(Ø) = 0
(R2)  If X is a subset of Y then r(X) ≤ r(Y)
(R3)  r(X) ≤ |X| for every subset X
(R4)  r(X) + r(Y) ≥ r(X U Y) + r(X ∩ Y)   (submodularity)



The k-matroid intersection problem

Input:         k matroids F1, F2, …, Fk on the same underlying set E
and an integer t

Question:  Does there exist a subset X of E with X ɛ F1 ∩ F2 ∩ … ∩ Fk  
and |X|≥ t ?

We suppose that the matroids are given by independence oracles, that is, the
answer of a question like „Does X belong to Fi ?” takes one step in an algorithm.

This problem is polynomially solvable for k = 1 (with the greedy algorithm) and for

k = 2 (with the matroid intersection algorithm of J. Edmonds, 1965) but it is NP-
hard for k ≥ 3.





Bipartite matching
as 2-matroid intersection

Let G(A, B; E) be a bipartite graph. We define two matroids
A, B  on E so that a subset X of E is independent in A or in B 
if and only if no two edges of X share a common vertex in A or
in B, respectively.

G  has a matching of size t if and only if A and B have a common independent set of 
cardinality t.
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Bipartite matching
as 2-matroid intersection

Let G(A, B; E) be a bipartite graph. We define two matroids
A, B  on E so that a subset X of E is independent in A or in B 
if and only if no two edges of X share a common vertex in A
and in B, respectively.

G  has a matching of size t if and only if A and B have a common independent set of 
cardinality t.

The existence of a matching of given size in case of a non-bipartite graph cannot
be formulated as a 2-matroid intersection problem.



The polymatroid rank function
Recall that the rank function r(X) of a matroid can be characterized by the following
set of properties:

(R1)  r(Ø) = 0
(R2)  If X is a subset of Y then r(X) ≤ r(Y)
(R3)  r(X) ≤ |X| for every subset X
(R4)  r(X) + r(Y) ≥ r(X U Y) + r(X ∩ Y)   (submodularity)

If (R3) is replaced by

(R3’)  r(X) ≤ k·|X| for every subset X

then we obtain the concept of k-polymatroid rank function



Two examples for polymatroid rank functions

Example 1    Let F1 , F2 , …, Fk be k matroids on the same underlying set E, with
respective rank functions r1 , r2 , …, rk.   Then f1 (X)  =  r1(X) + r2(X) + … + rk(X)     is a 
k-polymatroid rank function.

Example 2    Let G(V, E) be a graph and X be a subset of E. Let f2 (X) denote the
number of vertices covered by X. Then f2 (X) is a 2-polymatroid rank function.



k-polymatroid matching

Let f(X) be a k-polymatroid rank function on a set E. A subset X of E is a k-matching
if f(X) = k·|X| 
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k-polymatroid matching

Let f(X) be a k-polymatroid rank function on a set E. A subset X of E is a k-matching
if f(X) = k·|X| 

Example 1    Let F1 , F2 , …, Fk be k matroids on the same underlying set E, with
respective rank functions r1 , r2 , …, rk.   Then f1 (X)  =  r1(X) + r2(X) + … + rk(X)    is a 
k-polymatroid rank function.

In this example X is a k-matching if and only if X ɛ Fi for every i. 

Example 2    Let G(V, E) be a graph and X be a subset of E. Let f2 (X) denote the
number of vertices covered by X. Then f2 (X) is a 2-polymatroid rank function.

In this example X is a 2-matching if and only if X is a matching in the graph G.



The k-polymatroid matching problem

Let f(X) be a k-polymatroid rank function on a set E. A subset X of E is a k-matching
if f(X) = k·|X| 

Input: A k-polymatroid rank function f(X) on a set E, and an integer t
Question:  Does there exist a k-matching of size t ?

We suppose that the k-polymatroid rank function is given by an oracle, that is, the
answer of a question like „What is the value of f for a given subset?” takes one step
in an algorithm.

This problem is polynomially solvable for k = 1 (with the greedy algorithm) and is 
NP-hard for k ≥ 3 (since it contains the k-matroid intersection problem as a special
case).





The matroid parity problem

The classical formulation:

Input:         A matroid F on the underlying set E = {x1 , y1 , x2 , y2 , … , xt , yt} 
and an integer p

Question:  Does there exist a subset X of E with X ɛ F and |X|≥ p , satisfying
|X∩{xi , yi}|≠ 1 for every i ?

(For each pair, either take both elements or none of them.)



The straightforward generalization (also
known as the matroid k-parity problem)

Let T1 , T2 , … , Tt be disjoint k-element sets and let their union be denoted by E.  

Input:         A matroid F on the underlying set E,  and a number p

Question:  Does there exist a subset X of E with X ɛ F and with cardinality ≥ p,
which intersects each Ti in either no or k elements? 

(For each k-tuple, either take all the elements or none of them.)



The k-polymatroid matching problem

Let f(X) be a k-polymatroid rank function on a set E. A subset X of E is a k-matching
if f(X) = k·|X| 

Input: A k-polymatroid rank function f(X) on a set E, and an integer t
Question:  Does there exist a k-matching of size t ?

We suppose that the k-polymatroid rank function is given by an oracle, that is, the
answer of a question like „What is the value of f for a given subset?” takes one step
in an algorithm.

This problem is polynomially solvable for k = 1 (with the greedy algorithm) and is 
NP-hard for k ≥ 3 (since it contains the k-matroid intersection problem as a special
case).



The case k=2

E. Lawler (1976) conjectured that the case k=2 is polynomially solvable:

Matroid parity problem

Non-bipartite matching 2-matroid intersection problem

Bipartite matching



… but the truth is … 

Bad news: 
The matroid parity problem cannot be solved in polynomial time (L. Lovász, 1980 and P. 
M. Jensen – B. Korte, 1982)

Good news:
The most important special case (which is required for the engineering applications) is 
polynomially solvable (L. Lovász, 1980)



Ronald Graham:

”An ideal math talk should 
have one proof and one
joke and they should not 
be the same”. 



Sketch proof of the negative result:

Let |E| = 2t and let the function f be defined as follows:

If |X| < t then let f(X) = 2·|X|

If |X| > t then let f(X) = 2t+1

If |X| = t then choose the value of f(X) randomly from the set {2t – 1, 2t}

All these functions are submodular, hence they are 2-polymatroid rank functions.

One needs exponential time to discover if there exists a t-element subset X satisfying
f(X) = 2t.



A polynomially solvable special case

Let S = {x1 , y1 , x2 , y2 , … , xt , yt} and let M be a matroid on S, 
represented by a matrix M over the field of the rationals. Let E
be the set {1, 2, … , t} of the subscripts and for any subset X of E
let f(X) =  r(U{xi , yi} | iɛX) , where r is the rank function of the
matroid M. This f is clearly a 2-polymatroid rank function.

If a 2-polymatroid rank function f arises in this way (and if the matrix M is explicitly given) 
then the 2-polymatroid matching problem is polynomially solvable (L. Lovász, 1980).





Application #1   Electric network theory

Suppose at first that an electric network consists of voltage and current sources and 
positive resistors. Let G denote the graph of the interconnection of these elements.

The signed sum of the voltages along any circuit of G is zero and 
the signed sum of the currents along any cut set of G is zero
(Kirchhoff, 1847).

Hence a necessary (and, in fact, also sufficient) condition of the
unique solvability of the network is that the subgraph, formed by
the voltage sources must be circuit-free and the subgraph formed
by the current sources must be cut set free.

This is equivalent to the existence of a normal tree: this tree contains
every voltage source edge and none of the current source edges.



Application #1   Electric network theory

Suppose that the electric network contains
ideal transformers as well. These are 2-
ports, represented by two edges a, b and 
described by the two equations ub= kua
and ia = – kib . 

In this case the normal tree should contain
every voltage source edge, none of the
current source edges and exactly one edge
from the pair {a, b} for each transformer.

The existence of such a tree can be 
decided in polynomial time, using the 2-
matroid intersection algorithm.



Application #1   Electric network theory

Suppose that the electric network contains
ideal transformers as well. These are 2-
ports, represented by two edges a, b and 
described by the two equations ub= kua
and ia = – kib . 

In this case the normal tree should contain
every voltage source edge, none of the
current source edges and exactly one edge
from the pair {a, b} for each transformer.

The existence of such a tree can be 
decided in polynomial time, using the 2-
matroid intersection algorithm.

Suppose that the electric network contains
gyrators as well. These are 2-ports, 
represented by two edges a, b and described
by the two equations ub= Ria and ua = – Rib . 

In this case the normal tree should contain
every voltage source edge, none of the
current source edges and either none of the
edges or both edges from the pair {a, b} for
each gyrator.

The existence of such a tree can be decided in 
polynomial time, using the 2-polymatroid 
matching algorithm of Lovász.



Application #2   Bar and joint frameworks

A framework consists of rigid bars, joined by rotatable joints.

It is intuitively clear that the first framework is rigid, the second one is flexible, while
the third one is rigid in the plane but flexible in the 3-space.

What is the formal definition of rigidity?



The straightforward generalization (also
known as the matroid k-parity problem)

Let T1 , T2 , … , Tt be disjoint k-element sets and let their union be denoted by E.  

Input:         A matroid F on the underlying set E,  and a number p

Question:  Does there exist a subset X of E with X ɛ F and with cardinality ≥ p,
which intersects each Ti in either no or k elements? 

(For each k-tuple, either take all the elements or none of them.)



Towards a generalization of the
matroid k-parity problem

Let T1 , T2 , … , Tt be disjoint k-element sets and let their union be denoted by E.  Let
A be a non-empty subset of {0, 1, 2, …, k}. 

Input:         A matroid F with underlying set is E,  the set A , and a number p
Question:  Does there exist a subset X of E with X ɛ F and with cardinality p , so that

|X ∩ Ti| ɛ A holds for each subscript?

This problem reduces to the matroid k-parity problem if A = {0, k}.



The generalized matroid k-parity problem

Let T1 , T2 , … , Tt be disjoint k-element sets and let their union be denoted by E.  Let
A be a non-empty subset of {0, 1, 2, …, k}. 

For an integer 0 ≤ c ≤ t a subset X of E is called
(≥c)–legal if |X ∩ Ti| ɛ A holds for at least c subscripts

and it is called
c–legal if |X ∩ Ti| ɛ A holds for exactly c subscripts

Input:         A matroid F with underlying set is E,  A (and possibly a number p)
Question:  Does there exist a (≥c)–legal or a c–legal subset X of E with X ɛ F (and

possibly with given cardinality p )? 

These problems reduce to the matroid parity problem if k=2, A = {0, 2} and c = t.



Some remarks

1. We speak about the weak version if there is no cardinality constraint, and 
about the strong version otherwise.

2. For a given A the complexity of the (≥c)–legal version is at most t times that
of the c–legal one but it is possible that only the former one is polynomial.

3. In view of the result of (Lovász, 1980) the complexity depends on the way
how the matroid F is given (explicit linear representation over the field of the
rationals or an independence oracle only).

Hence we have 23 = 8 variations of this problem. 



The first character:  
• s for the strong version, 
• w for the weak version

The second character: 
• o if the matroid is given by an 

independence oracle, 
• ℓ if it is given by a linear

representation

The third character: 
• = for the c-legal version, 
• ≥ for the (≥c)-legal version



Our results (A. Recski, 1983 and 
joint work with Jácint Szabó, 2006)

If the matroid is given by linear representation then we have only partial
results for the strong version but we could answer the other six cases.

Let B = {0, 1, 2, …, k} – A and let α and β denote the smallest elements of A and B, 
respectively. 

A number k is a gap if k does not belong to A but there are other numbers a<k<b 
so that a, b ɛ A .

o • • o • • • o o • • • o o

gap adjacent gaps



The „weak version” of the problem

F is given
by an independence oracle

F is a 
represented linear matroid

(≥c)–legal
sets

The problem is in P if and
only if α ≤ 1

The problem is in P if α ≤ 2 and it is 
NP-complete if α ≥ 3



The „weak version” of the problem

F is given
by an independence oracle

F is a 
represented linear matroid

(≥c)–legal
sets

The problem is in P if and
only if α ≤ 1

The problem is in P if α ≤ 2 and it is 
NP-complete if α ≥ 3

c–legal
sets

The problem is in P if and
only if max (α,β) = 1

The problem is in P if max (α,β)  ≤ 2 
and it is NP-complete if max (α,β) ≥ 3



The „strong version” of the problem

F is given
by an independence oracle

F is a 
represented linear matroid

(≥c)–legal
sets

The problem is in P if and
only if {1, 2, …, k – 1} is a 
subset of A

The problem is NP-complete unless
if A contains no adjacent gaps and 
intersects both of the sets {0, 1, 2} 
and {k – 2, k – 1, k}



The „strong version” of the problem

F is given
by an independence oracle

F is a 
represented linear matroid

(≥c)–legal
sets

The problem is in P if and
only if {1, 2, …, k – 1} is a 
subset of A

The problem is NP-complete unless
if A contains no adjacent gaps and 
intersects both of the sets {0, 1, 2} 
and {k – 2, k – 1, k}

c–legal
sets

The problem is in P if and
only if k = 1
(that is, never in P if k > 1)

The problem is NP-complete unless
if A and B contain no adjacent gaps
and they intersect both of the sets
{0, 1, 2} and {k – 2, k – 1, k}





* *
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**** ****



* *
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Two remarks
1. The simplest open cases are A = {0, 1, 3} and {0,2,3} – these cases motivated

the generalization during our investigations in electric network applications
35 years ago.

2. The concept of the adjacent gaps has first appeared in the classical results of 
Lovász, 1970 about the generalization of Tutte’s factor theorem for graphs.  
However, this similarity is accidental: The case k=2, A = {0, 2} is difficult here 
while it is a special case of his „antifactors” which is very easy. 
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